Recursive Algorithms

- □ In this technique, we define a procedure that is allowed to make calls to itself as a subroutine
- Those calls are meant to solve sub-problems of smaller size
- Recursive procedure should always define a base case that can be solved directly without using recursion

Applied Algorithmics - week2

Recursive procedure

Algorithm recursive Max(A, n): *Input:* An array A storing $n \ge 1$ integers. *Output:* The maximum element in A. if n = 1 then return A[0]return max{recursive Max(A, n - 1), A[n - 1]}

Applied Algorithmics - week2

2

4

Recurrence Equation

- □ Recurrence equation defines mathematical statements that the running time of a recursive algorithm must satisfy
- □ Function T(n) denotes the running time of the algorithm on an input size n, e.g.,

$$T(n) = \begin{cases} 3 & \text{if } n = 1\\ T(n-1) + 7 & \text{otherwise,} \end{cases}$$

□ Ideally, we would like to characterize a recurrence equation in closed form, e.g., T(n)=7(n-1)+3=7n-2=O(n)

Data Structures

30/01/2006

30/01/2006

- □ An important element in the design of any algorithmic solution is the *right choice of the data structure*
- □ Data structures provide some mechanism for *representing* sets and operations defined on set elements
- □ Some basic and general data structures appear as *elements* of programming languages, e.g., as types: arrays, strings, sets, records, ...)
- □ Some other: *abstract data structures* are more specialised and complex (stacks, queues, lists, trees, graphs, ...)

30/01/2006

Data Structures

- □ Typical operations defined on data structures:
 - checking (set) membership
 - accessing indexed elements
 - insertion/deletion/update
 - more complex (set of objects) querying
- The *efficiency of operations* provided by the data structures is usually related to the *level of ordering* of stored data.

Stacks

- Objects can be inserted into a stack at any time, but only the most recently inserted ("last") object can be removed at any time
- □ E.g., Internet Web browsers store the address of recently visited sites on a stack
- □ A stack is a container of objects that are inserted according to the last in first out (LIFO) principle

30/01/2006	Applied Algorithmics - week2	5	30/01/2006	Applied Algorithmics - week2	6

Stack Abstract Data Type

- □ A *stack* is an abstract data type (ADT) supporting the following two methods
 - push(o) : insert object o at the top of the stack
 - *pop()* : remove from the stack and return the top object on the stack; an error occurs if the stack is empty

Stack (supporting methods)

- □ The stack supporting methods are:
 - size() : return the number of objects in the stack
 - isEmpty() : return a Boolean indicating if the stack is
 empty
 - *top()* : return the top object on the stack, without removing it; an errors occurs if the stack is empty

Stack (array implementation)

□ A *stack* can be implemented with an N-element array S, with elements stored from S[0] to S[t], where t is an integer that gives the index of the top element in S

Stack Methods Complexity

- each of the *stack methods* executes a *constant* number of statements
- all supporting methods of the Stack ADT can be easily implemented in constant time
- thus, in array implementation of stack ADT each method runs in O(1) time

Stack Main Methods

Algorithm push(o): if size() = N then indicate that a stack-full error has occurred $t \leftarrow t+1$ $S[t] \leftarrow o$ Algorithm pop(): if isEmpty() then indicate that a stack-empty error has occurred $e \leftarrow S[t]$. $S[t] \leftarrow null$ $t \leftarrow t-1$ return e

Applied Algorithmics - week2

Stack (application)

- Stacks are important application to the run-time environments of modern procedural languages (C,C++,Java)
- Each thread in a running program written in one of these languages has a private stack, method stack, which is used to keep track of local variables and other important information on methods

11

30/01/2006

30/01/2006

Stack (recursion)

- One of the benefits of using stack to implement method invocation is that it allows programs to use recursion
- *Recursion* is a powerful method, as it often allows to design *simple and efficient* programs for fairly *difficult problems*

Applied Algorithmics - week2

Queues

- □ A queue is a container of objects that are inserted according to the first in first out (FIFO) principle
- Objects can be inserted into a queue at any time, but only the element that was in the queue the longest can be removed at any time
- □ We say that elements *enter* the queue at the rear and are *removed* from the front

Queue ADT

30/01/2006

- The queue ADT supports the following two fundamental methods
 - *enqueue(o)* : insert object o at the rear of the queue
 - *dequeue(o)* : remove and return from the queue the object at the front; an error occurs if the queue is empty

15

Queue (supporting methods)

- □ The queue supporting methods are
 - size() : return the number of objects in the queue
 - *isEmpty()* : return a *Boolean* value indicating whether the queue is empty
 - *front()* : return, but *do not remove*, the front object in the queue; an error occurs if the queue is empty

Queue (array implementation)

- □ A *queue* can be implemented an *N*-element array *Q*, with elements stored from *S*[*f*] to *S*[*r*] (mod *N*)
- \Box f is an index of Q storing the *first* element of the queue (if not empty)
- $\Box r is an index to the$ *next available*array cell in Q (if Q is not full)

Queue Methods Complexity

- each of the *queue methods* executes a *constant* number of statements
- all supporting methods of the queue ADT can be easily implemented in constant time
- □ thus, in array implementation of queue ADT *each method* runs in O(1) time

Applied Algorithmics - week2

Queue and Multiprogramming

- Multiprogramming is a way of achieving a limited form of *parallelism*
- □ It allows to run *multiple tasks* or computational threads *at the same time*
- E.g., one thread can be responsible for catching mouse clicks while others can be responsible for moving parts of animation around in a screen canvas

Applied Algorithmics - week2

Queue and Multiprogramming

- □ When we design a *program* or operating system that uses *multiple threads*, we must disallow an individual thread to *monopolise* the CPU, in order to avoid *application* or *applet* hanging
- One of the solutions is to utilise a queue to allocate the CPU time to the running threats in the round-robin protocol.

Linked List

30/01/2006

30/01/2006

- □ A node in a singly linked list stores in a next link a reference to the *next node* in the list (traversing in only *one direction* is possible)
- A node in a doubly linked list stores two references a next link, and a previous link which points to the *previous node* in the list (traversing in two *two directions* is possible)

30/01/2006

23

21

Doubly Linked List

Doubly linked list with two sentinel (dummy) nodes header and trailer

List Update (element removal)

List Update (element insertion)

List Update (complexity)

- □ What is the cost (complexity) of both *insertion* and *removal* update?
 - If the *address* of element at *position p* is known, the cost of an update is O(1)
 - If *only* the *address* of a *header* is known, the cost of an update is O(p) (we need to traverse the list from position 0 up to p)

27

30/01/2006

Rooted Tree

- \Box A tree *T* is a set of nodes storing elements in a parentchild relationship, s.t.,
 - T has a special node r, called the root of T
 - Each node v of T different from r has a parent node u.

Rooted Tree

30/01/2006

- \Box If node *u* is a *parent* of node *v*, we say that *v* is a child of *u*
- □ Two nodes that are *children* of the *same parent* are siblings
- □ A node is external (leaf) if it has *no children*, and it is internal otherwise
- Parent-child relationship naturally extends to ancestordescendent relationship
- □ A tree is ordered if there a *linear ordering* defined for the *children* of each node

Applied Algorithmics - week2

30

Binary	Tree
--------	------

- □ A binary tree is an ordered tree in which every node has *at most two children*
- □ A *binary tree* is proper if each internal node has *exactly two children*
- *Each child* in a binary tree is labelled as either a left child or a right child

Binary Tree (arithm. expression)

- *External node* is a *variable* or a *constant*
- Internal node defines arithmetic operation on its children

31

The Depth in a Tree

The depth of v is the number of ancestors of v, excluding v itself

```
Algorithm depth(T, v):

if T.isRoot(v) then

return 0

else

return 1 + depth(T,T.parent(v))
```

The Height of a Tree

□ The height of a tree is equal to the maximum depth of an external node in it

Algorithm height(T, v): if T.isExternal(v) then return 0 else h = 0for each $w \in T$.children(v) do $h = \max(h, \operatorname{height}(T, w))$ return 1 + h

30/01/2006	Applied Algorithmics - week2	33	30/01/2006	Applied Algorithmics - week2	34

Data Structures for Trees

- □ Vector-based structure:
 - v is the root -> p(v) = 1
 - *v* is the *left child* of $u \rightarrow p(v) = 2 \cdot p(u)$
 - v is the right child of $u \rightarrow p(v) = 2 \cdot p(u) + 1$
- □ The numbering function p() is known as a level numbering of the nodes in a binary tree.
- □ Efficient representation for *proper* binary trees

Data Structures for Trees

35

30/01/2006

Applied Algorithmics - week2

Data Structures for Trees

Linked structure : each node v of T is represented by an *object* with *references* to the *element stored at v* and positions of its *parent* and *children*

Priority Queue

- □ Priority queue is an abstract data structure used to store elements from the ordered (\leq) set
- \square The operations defined on priority queue PQ
 - *Create(PQ)* creates empty priority queue PQ
 - *Insert(PQ, el)* inserts element *el* to *PQ*
 - RemoveMin(PQ) removes minimal element from PQ
 - *Min(PQ)* gives the value of the minimal element

Applied Algorithmics - week2

Heap	Data	Structure	

- □ A heap is a realisation of PQ that is *efficient* for both *insertions* and *removals*
- heap allows to perform both *insertions* and *removals* in *logarithmic time*
- In heap the elements and their keys are stored in (almost *complete*) *binary tree*

Heap-Order Property

□ In a heap *T*, for *every node v* other than the *root*, *the key* stored at *v* is greater than (or equal) to *the key* stored at its parent

39

30/01/2006

2

PQ/Heap Implementation

- heap: complete binary tree T containing elements with keys satisfying heap-order property; implemented using a vector representation
- \Box last: *reference* to the *last used* node of *T*

30/01/2006

□ comp: *comparator* that defines the *total order relation* on *keys* and *maintains* the *minimum* element at the *root* of *T*

Applied Algorithmics - week2

41

PQ/Heap Implementation

42

Up-Heap Bubbling (insertion)

Up-Heap Bubbling (insertion)

Down-Heap Bubbling (removal)

Heap Performance

- □ Operation times:
 - Create(PQ): O(1)
 - Min(PQ): O(1)
 - Insert(PQ, el): O(log n)
 - RemoveMin(PQ): O(log n)
- Heaps have several applications including sorting (Heap-sort) and data compression (Huffman coding).

Heap-Sorting

- □ **Theorem:** The heap-sort algorithm sorts a sequence of *S* of *n* comparable elements, e.g., numbers, in time $O(n \log n)$, where
 - Bottom-up construction of heap with *n* items takes
 O(n) units of time, and
 - Extraction of *n* elements (in increasing order) from the heap takes *O*(*n* log *n*) units of time

30/01/2006

47

30/01/2006

Representation of sets

- We already know that sets can be represented in many ways as different types of data structures
- Efficiency of set representation depends on its size and application
- Small sets can be represented as characteristic vectors (binary arrays), where:
 - the array is indexed by the set elements
 - the entries are either 1 (element is in) or 0 (otherwise)

Applied Algorithmics - week2

30/01/2006

Example

- □ A subset of the universal set $U=\{0,1,2,3,4,5,6,7,8,9\}$ can be represented as any binary array of length 10
- □ For example, the subset S of odd numbers from U,
 i.e., S={1,3,5,7,9} can be represented as:


```
30/01/2006
```

30/01/2006

Applied Algorithmics - week2

Generation of all k-subsets

□ Generation of all *k*-subsets of the universal set U={0,1,2,3,4,5,6,7,8,n-1} can be done with a help of the following formula (details to be discussed):

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Generation of all 3-subsets

1110000000	1001000001	0110000100	0100001001	0010001010	0000111000	
110100000	1000110000	0110000010	0100000110	0010001001	0000110100	
1100100000	1000101000	0110000001	0100000101	0010000110	0000110010	
1100010000	1000100100	0101100000	010000011	0010000101	0000110001	
1100001000	1000100010	0101010000	0011100000	0010000011	0000101100	
1100000100	1000100001	0101001000	0011010000	0001110000	0000101010	
110000010	1000011000	0101000100	0011001000	0001101000	0000101001	
110000001	1000010100	0101000010	0011000100	0001100100	0000100110	
1011000000	1000010010	0101000001	0011000010	0001100010	0000100101	
1010100000	1000010001	0100110000	0011000001	0001100001	0000100011	
1010010000	1000001100	0100101000	0010110000	0001011000	0000011100	
1010001000	1000001010	0100100100	0010101000	0001010100	0000011010	
1010000100	1000001001	0100100010	0010100100	0001010010	0000011001	
101000010	100000110	0100100001	0010100010	0001010001	0000010110	
101000001	100000101	0100011000	0010100001	0001001100	0000010101	
1001100000	100000011	0100010100	0010011000	0001001010	0000010011	
1001010000	0111000000	0100010010	0010010100	0001001001	0000001110	
1001001000	0110100000	0100010001	0010010010	0001000110	0000001101	
1001000100	0110010000	0100001100	0010010001	0001000101	0000001011	
1001000010	0110001000	0100001010	0010001100	0001000011	000000111	

30/01/2006

51

49

Applied Algorithmics - week2