
30/01/2006 Applied Algorithmics - week2 1

Recursive Algorithms

In this technique, we define a procedure that is
allowed to make calls to itself as a subroutine
Those calls are meant to solve sub-problems of
smaller size
Recursive procedure should always define a
base case that can be solved directly without
using recursion

30/01/2006 Applied Algorithmics - week2 2

Recursive procedure

30/01/2006 Applied Algorithmics - week2 3

Recurrence Equation
Recurrence equation defines mathematical statements that
the running time of a recursive algorithm must satisfy
Function T(n) denotes the running time of the algorithm on
an input size n, e.g.,

Ideally, we would like to characterize a recurrence equation
in closed form, e.g., T(n)=7(n-1)+3 =7n -2 = O(n)

30/01/2006 Applied Algorithmics - week2 4

Data Structures
An important element in the design of any algorithmic
solution is the right choice of the data structure
Data structures provide some mechanism for representing
sets and operations defined on set elements
Some basic and general data structures appear as elements
of programming languages, e.g., as types: arrays, strings,
sets, records, …)
Some other: abstract data structures are more specialised
and complex (stacks, queues, lists, trees, graphs, …)

30/01/2006 Applied Algorithmics - week2 5

Data Structures
Typical operations defined on data structures:

checking (set) membership
accessing indexed elements
insertion/deletion/update
more complex (set of objects) querying

The efficiency of operations provided by the data
structures is usually related to the level of
ordering of stored data.

30/01/2006 Applied Algorithmics - week2 6

Stacks
Objects can be inserted into a stack at any time, but only
the most recently inserted (“last”) object can be removed
at any time
E.g., Internet Web browsers store the address of recently
visited sites on a stack
A stack is a container of objects that are inserted
according to the last in first out (LIFO) principle

30/01/2006 Applied Algorithmics - week2 7

Stack Abstract Data Type
A stack is an abstract data type (ADT) supporting
the following two methods

push(o) : insert object o at the top of the stack
pop() : remove from the stack and return the top object
on the stack; an error occurs if the stack is empty

30/01/2006 Applied Algorithmics - week2 8

Stack (supporting methods)
The stack supporting methods are:

size() : return the number of objects in the stack
isEmpty() : return a Boolean indicating if the stack is
empty
top() : return the top object on the stack, without
removing it; an errors occurs if the stack is empty

30/01/2006 Applied Algorithmics - week2 9

Stack (array implementation)
A stack can be implemented with an N-element
array S, with elements stored from S[0] to S[t],
where t is an integer that gives the index of the top
element in S

30/01/2006 Applied Algorithmics - week2 10

Stack Main Methods

30/01/2006 Applied Algorithmics - week2 11

Stack Methods Complexity
each of the stack methods executes a constant
number of statements
all supporting methods of the Stack ADT can be
easily implemented in constant time
thus, in array implementation of stack ADT each
method runs in O(1) time

30/01/2006 Applied Algorithmics - week2 12

Stack (application)

Stacks are important application to the run-time
environments of modern procedural languages
(C,C++,Java)
Each thread in a running program written in one
of these languages has a private stack, method
stack, which is used to keep track of local
variables and other important information on
methods

30/01/2006 Applied Algorithmics - week2 13

Stack (application)

30/01/2006 Applied Algorithmics - week2 14

Stack (recursion)
One of the benefits of using stack to implement
method invocation is that it allows programs to
use recursion
Recursion is a powerful method, as it often allows
to design simple and efficient programs for fairly
difficult problems

30/01/2006 Applied Algorithmics - week2 15

Queues
A queue is a container of objects that are inserted
according to the first in first out (FIFO) principle
Objects can be inserted into a queue at any time, but only
the element that was in the queue the longest can be
removed at any time
We say that elements enter the queue at the rear and are
removed from the front

30/01/2006 Applied Algorithmics - week2 16

Queue ADT
The queue ADT supports the following two
fundamental methods

enqueue(o) : insert object o at the rear of the queue
dequeue(o) : remove and return from the queue the
object at the front; an error occurs if the queue is
empty

30/01/2006 Applied Algorithmics - week2 17

Queue (supporting methods)
The queue supporting methods are

size() : return the number of objects in the queue
isEmpty() : return a Boolean value indicating whether
the queue is empty
front() : return, but do not remove, the front object in
the queue; an error occurs if the queue is empty

30/01/2006 Applied Algorithmics - week2 18

Queue (array implementation)
A queue can be implemented an N-element array
Q, with elements stored from S[f] to S[r] (mod N)
f is an index of Q storing the first element of the
queue (if not empty)
r is an index to the next available array cell in Q
(if Q is not full)

30/01/2006 Applied Algorithmics - week2 19

Queue (array implementation)
Normal (f ≤ r) configuration (a) and wrap around
(f > r) configuration (b)

30/01/2006 Applied Algorithmics - week2 20

Queue (main methods)

30/01/2006 Applied Algorithmics - week2 21

Queue Methods Complexity

each of the queue methods executes a constant
number of statements
all supporting methods of the queue ADT can be
easily implemented in constant time
thus, in array implementation of queue ADT
each method runs in O(1) time

30/01/2006 Applied Algorithmics - week2 22

Queue and Multiprogramming

Multiprogramming is a way of achieving a
limited form of parallelism
It allows to run multiple tasks or computational
threads at the same time
E.g., one thread can be responsible for catching
mouse clicks while others can be responsible for
moving parts of animation around in a screen
canvas

30/01/2006 Applied Algorithmics - week2 23

Queue and Multiprogramming

When we design a program or operating system
that uses multiple threads, we must disallow an
individual thread to monopolise the CPU, in
order to avoid application or applet hanging
One of the solutions is to utilise a queue to
allocate the CPU time to the running threats in
the round-robin protocol.

30/01/2006 Applied Algorithmics - week2 24

Linked List
A node in a singly linked list stores in a next link a
reference to the next node in the list (traversing in only
one direction is possible)
A node in a doubly linked list stores two references – a
next link, and a previous link which points to the previous
node in the list (traversing in two two directions is
possible)

30/01/2006 Applied Algorithmics - week2 25

Doubly Linked List
Doubly linked list with two sentinel (dummy)
nodes header and trailer

30/01/2006 Applied Algorithmics - week2 26

List Update (element insertion)

30/01/2006 Applied Algorithmics - week2 27

List Update (element removal)

30/01/2006 Applied Algorithmics - week2 28

List Update (complexity)

What is the cost (complexity) of both insertion
and removal update?

If the address of element at position p is known, the
cost of an update is O(1)
If only the address of a header is known, the cost of
an update is O(p) (we need to traverse the list from
position 0 up to p)

30/01/2006 Applied Algorithmics - week2 29

Rooted Tree
A tree T is a set of nodes storing elements in a parent-
child relationship, s.t.,

T has a special node r, called the root of T
Each node v of T different from r has a parent node u.

30/01/2006 Applied Algorithmics - week2 30

Rooted Tree
If node u is a parent of node v, we say that v is a child of u
Two nodes that are children of the same parent are siblings
A node is external (leaf) if it has no children, and it is
internal otherwise
Parent-child relationship naturally extends to ancestor-
descendent relationship
A tree is ordered if there a linear ordering defined for the
children of each node

30/01/2006 Applied Algorithmics - week2 31

Binary Tree
A binary tree is an ordered tree in which every
node has at most two children
A binary tree is proper if each internal node has
exactly two children
Each child in a binary tree is labelled as either a
left child or a right child

30/01/2006 Applied Algorithmics - week2 32

Binary Tree (arithm. expression)
External node is a variable or a constant
Internal node defines arithmetic operation on its
children

[(3 + 1) · 3]/[(9 - 5) + 2] –
[3 · (7-4) + 6] = -13

30/01/2006 Applied Algorithmics - week2 33

The Depth in a Tree
The depth of v is the number of ancestors of v,
excluding v itself

30/01/2006 Applied Algorithmics - week2 34

The Height of a Tree

The height of a tree is equal to the maximum depth
of an external node in it

30/01/2006 Applied Algorithmics - week2 35

Data Structures for Trees
Vector-based structure:

v is the root -> p(v) = 1
v is the left child of u -> p(v) = 2· p(u)
v is the right child of u -> p(v) = 2· p(u) +1

The numbering function p() is known as a level
numbering of the nodes in a binary tree.
Efficient representation for proper binary trees

30/01/2006 Applied Algorithmics - week2 36

Data Structures for Trees

30/01/2006 Applied Algorithmics - week2 37

Data Structures for Trees
Linked structure : each node v of T is represented by
an object with references to the element stored at v
and positions of its parent and children

30/01/2006 Applied Algorithmics - week2 38

Priority Queue
Priority queue is an abstract data structure used to
store elements from the ordered (≤) set
The operations defined on priority queue PQ

Create(PQ) – creates empty priority queue PQ
Insert(PQ, el) – inserts element el to PQ
RemoveMin(PQ) – removes minimal element from PQ
Min(PQ) – gives the value of the minimal element

30/01/2006 Applied Algorithmics - week2 39

Heap Data Structure

A heap is a realisation of PQ that is efficient for
both insertions and removals
heap allows to perform both insertions and
removals in logarithmic time
In heap the elements and their keys are stored in
(almost complete) binary tree

30/01/2006 Applied Algorithmics - week2 40

Heap-Order Property
In a heap T, for every node v other than the root, the key
stored at v is greater than (or equal) to the key stored at
its parent

30/01/2006 Applied Algorithmics - week2 41

PQ/Heap Implementation
heap: complete binary tree T containing elements with
keys satisfying heap-order property; implemented using a
vector representation
last: reference to the last used node of T
comp: comparator that defines the total order relation on
keys and maintains the minimum element at the root of T

30/01/2006 Applied Algorithmics - week2 42

PQ/Heap Implementation

30/01/2006 Applied Algorithmics - week2 43

Up-Heap Bubbling (insertion)

30/01/2006 Applied Algorithmics - week2 44

Up-Heap Bubbling (insertion)

30/01/2006 Applied Algorithmics - week2 45

Down-Heap Bubbling (removal)

30/01/2006 Applied Algorithmics - week2 46

Down-Heap Bubbling (removal)

30/01/2006 Applied Algorithmics - week2 47

Heap Performance

Operation times:
Create(PQ): O(1)
Min(PQ): O(1)
Insert(PQ, el): O(log n)
RemoveMin(PQ): O(log n)

Heaps have several applications including sorting
(Heap-sort) and data compression (Huffman coding).

30/01/2006 Applied Algorithmics - week2 48

Heap-Sorting

Theorem: The heap-sort algorithm sorts a
sequence of S of n comparable elements, e.g.,
numbers, in time O(n log n), where

Bottom-up construction of heap with n items takes
O(n) units of time, and
Extraction of n elements (in increasing order) from the
heap takes O(n log n) units of time

30/01/2006 Applied Algorithmics - week2 49

Representation of sets
We already know that sets can be represented in
many ways as different types of data structures
Efficiency of set representation depends on its size
and application
Small sets can be represented as characteristic
vectors (binary arrays), where:

the array is indexed by the set elements
the entries are either 1 (element is in) or 0 (otherwise)

30/01/2006 Applied Algorithmics - week2 50

Example
A subset of the universal set U={0,1,2,3,4,5,6,7,8,9}
can be represented as any binary array of length 10
For example, the subset S of odd numbers from U,
i.e., S={1,3,5,7,9} can be represented as:

30/01/2006 Applied Algorithmics - week2 51

Generation of all k-subsets
Generation of all k-subsets of the universal set
U={0,1,2,3,4,5,6,7,8,n-1} can be done with a help
of the following formula (details to be discussed):

30/01/2006 Applied Algorithmics - week2 52

Generation of all 3-subsets

