String Processing

O Typical applications:
m pattern matching/recognition
molecular biology, comparative genomics, ...
information retrieval
data/text mining
data/text compression, coding, encryption

string processing in large databases

25/02/2011 Applied Algorithmics - week3 1

T ——
Strings

O A string is a sequence of symbols drawn from some well
defined set call the alphabet.
O Examples of alphabets include:
m ASCII code, Unicode
= binary alphabet {0,1}
m System of DNA base-pairs {A,C,G,T}
= Latin, Greek, Chinese alphabet
O Examples of strings
m Java/C/ADA programs, HTML/XML documents,...
= DNA sequences, image/video/audio files

25/02/2011 Applied Algorithmics - week3 2

I —
Strings

O Basic definitions:

m Let A be an alphabet. We say that A* contains all non-
empty strings based on symbols from A, and
A"=A*{ &}, where £is an empty string.

Let w be a string of length n. We say that w=w/[0..n-1].
Any initial fragment w/0..i] is called a prefix of w.
Any final fragment w/j..n-1] is called a suffix of w.

Any fragment of form w/i..j] is called a substring of w.

25/02/2011 Applied Algorithmics - week3 3

———————————————
Periodicity

O We say that w=w/0..n-1] has a period p iff
wli]=w[i+p], for all 0<i<n-p-1, see below

w
aba aba
0o 1 2 p p+ip+2 n-1
w
aba
p 01 2 nop-l n-1

O For example string w=abaabaabaaba has period 3

25/02/2011 Applied Algorithmics - week3 4

Periodicity Lemma

O But w=abaabaabaaba has also periods 6,9 and 11

0O Lemma: p is the shortest period in w=w/[0..n-1] iff
w[0..n-p-1] is the longest prefix of w which is also
a suffix w/p..n-1], see figure on previous slide

O Periodicty Lemma: If string w=w/[(0..n-1] has
periods p and g such that p+g<n then w has also
period ged(p,q), where gcd(,) stands for the greatest
common divisor of two integers.

25/02/2011 Applied Algorithmics - week3 5

Periodicity Lemma

O Proof: The main observation is based on the fact
that if string w has two periods p=>g then it also
has period p-g.

p

q

[)
a a (4]

O The thesis of the periodicity lemma follows from
the observation (Euclid’s Algorithm) that for any
positive integers a>b, gcd(a,b)=gcd(b,a-b).

25/02/2011 Applied Algorithmics - week3 6

String pattern matching

O Input: given two strings: P=P[0..m-1] called the pattern
and T=T/0..n-1] called the text.

O Task: is to find all occurrences of P in T using as small
number as possible text symbol comparisons, where an
occurrence of P at position i in 7 1s defined as
P[j]=T[i+j] for all 0<5j<in-1, see example below

T ‘ aba a
i i+m:1

P aba a

0 m-1

25/02/2011 Applied Algorithmics - week3 7

Brute-Force Algorithm

O The brute-force algorithm tests naively (via consecutive
symbols comparison) whether pattern P occurs at any
permissible position 0<i<n-m-1 in text 7.

O The test at each position can cost as much as m, for
example when T=aaaaaaaa..a and P=aaaaa

m possible scenario in images, unlikely in natural languages, codes

O Thus the time complexity of brute force algorithms is
bounded by (n-m)-m=0(n-m)

25/02/2011 Applied Algorithmics - week3 8

Brute-force algorithm - code

O Algorithm Brute-Force-First-Match(T,P): integer;
for i « 0 to n-m-1 do
Jj <0
while (j<m) and (T[i+j]=P[j]) do
J e+
if (j=m)
then return (i);
return (-1);

25/02/2011 Applied Algorithmics - week3 9

More efficient pattern matching

O Can we perform pattern matching in time O(m+n)
in any, even the worst case, scenario?

O The answer is yes, and the solution is based on
proper use of periodicity of strings.

But what is the cause of high complexity anyway?
It must be multiple comparisons of text symbols.

O O o4O

Can we do something about it?
O Indeed, we can, at least on most of the occasions.

25/02/2011 Applied Algorithmics - week3 10

Principle of Knuth-Morris-Pratt KMP Algorithm

O In Brute-force solution, when the algorithm moves
from position i to i+ it forgets all text symbols
that have been recognized previously

0 KMP algorithm similarly to Brute-force solution
searches consecutive text positions storing at any
time the longest currently recognized prefix = of P

0O But when the mismatch between P and 7 is found
KMP moves by the length of the smallest period
of 7 remembering all recognized text symbols

25/02/2011 Applied Algorithmics - week3 11

Principle of Knuth-Morris-Pratt KMP Algorithm

shortest period of 7t longest prefix/suffix of 7T

called a shift s pattern P
A i
no occurrence of P] V4 ‘
in range (11+s-1) ' > ' pattern P
preflx T a, ‘ T
= text

i its T,
mismatch b;éa

O If a shorter than s shift was feasible s would not be the
shortest period of 7.

25/02/2011 Applied Algorithmics - week3 12

———
KMP Failure Function

O The KMP algorithm works in two stages: pattern
preprocessing and actual text search.

O During pattern preprocessing we:

= compute the longest proper prefix/suffix of each prefix P/[0..i]
and store its length in an array F[/..m] at position i+ /. Vector
F called the KMP failure function.

O During the text search we:

® traverse consecutive text positions looking for pattern
occurrences and avoiding redundant positive tests with a help of
the failure function F/1...m].

25/02/2011 Applied Algorithmics - week3 13

KMP failure function - example

o Let P[0..5] = abaaba

O Then the KMP failure function looks as follows
m F/[0] is not defined
m F[1] = 0 (string a has no proper prefix/suffix)
m F[2] = 0 (string ab has no proper prefix/suffix)
m F[3] = I (the longest prefix/suffix in aba is a)
m F[4] = I (the longest prefix/suffix in abaa is a)
m F[5] = 2 (the longest prefix/suffix in abaab is ab)
m F[6] = 3 (the longest prefix/suffix in abaaba is aba)

25/02/2011 Applied Algorithmics - week3 14

—————————————————
KMP algorithm - text search

O Algorithm KMP-First-Match(T,P): integer;
i—j««0
- while (j<m) and (T[i+j]=P[j]) { //test next text symbol//
i+l
7 if (j=m) {
then return (i); // return the first occurrence of P //
¢« elseif (j>0) {
then { i « i +(j-F[j]); j « F[j]; } // shift based on F //

.
U M,
.
PR

1
1
1

-
i else i+/; // shift based on empty prefix //
Ly

-}
if (i>n-m) return (-1); // end of the text, no pattern occurrences //
o }
25/02/2011 Applied Algorithmics - week3 15

———————————————
KMP text search complexity

New symbol is matched

right end moves

| [la

I b |

O Since either left end of the recognized pattern prefix or its
right end always move the time complexity (number of
symbol comparisons) is bounded by 2n.

25/02/2011 Applied Algorithmics - week3 16

I ——
KMP algorithm - preprocessing

O Algorithm Brute-Force-KMP-Match(P): integer;
F[1] « 0,
i—1; jF[l],
while (i<m-1) do
if (P[j]=Pli])
then F[i+1] «j+1;j « F[i+1];i «i+1;
else if (j=0)
then F[i+1] «0;j « F[i+1];i «i+1,
elsej « F[j];

25/02/2011 Applied Algorithmics - week3 17

—————————————————————
KMP complexity

O Using similar argument to the one used in the text
search one can prove that the preprocessing
requires at most 2-m comparisons.

O Theorem: The total time (number of comparisons)
complexity of KMP pattern matching algorithm is
bounded by 2:m+2-n =O(m+n) and the extra
space required for failure function is of size O(m).

O We show later that one can obtain similar time
bounds having only O(1) space.

25/02/2011 Applied Algorithmics - week3 18

Other string matching algorithms

O Boyer-Moore (BM) algorithm
= symbols in pattern P are tested against the text symbols from right
to left, i.e., the algorithm is based on suffix recognition

m this approach allows to perform text search in time c-n, for
constant c</ on average (in random and natural texts), but the
method works in time O(n-m) in the worst case.

m [t is possible to improve the worst time complexity of BM
algorithm O(n) if we keep in the memory information about the
last recognized suffix of the pattern

25/02/2011 Applied Algorithmics - week3 19

Other string matching algorithms

O Boyer-Moore algorithm

long shift -

pattern P

text T

small number of comparisons
25/02/2011 Applied Algorithmics - week3 20

Other string matching algorithms

O Karp-Rabin algorithm is based on the use of a
relatively simple hash function f{)

= each symbol « in the alphabet A has a unique integer
score s(a), e.g., all symbols can be enumerated from / to
|Al or using another (ASCII, Unicode) encoding

m the score is extendable from symbols to strings with the
help of a hash function f{), s.t.,

m fora,beA and strings s, s,=a-s, and s,=s-b
= the score f{ss) is easily computable from f{ss;) and s(a), as well as
= the score f{s,) is easily computable from f{s) and s(b)

25/02/2011 Applied Algorithmics - week3 21

Other string matching algorithms

O Karp-Rabin algorithm
m the algorithm computes initially the score f{P)
= in the search stage it compares the score of consecutive
text substrings f(T[i..i+m-1]), for all iel,..,n-m-1
m for every position i, s.t., f{T[i..i+m-1])=f(P) we test the
appropriate text and pattern symbols naively
O The algorithm works in time O(n) on average (in
random and natural texts) but in time O(n-m) in the
worst case

25/02/2011 Applied Algorithmics - week3 22

Other string matching algorithms

O Karp-Rabin algorithm

shift of size 1

is f(P)=f(sb)?

pattern P

is f(P)=f(as)?

text T

al s = Pli+l..i+m-1] b

25/02/2011 Applied Algorithmics - week3 23

Other string matching algorithms

O There exists an algorithm that uses O(n-log(m)/m) symbol
comparisons in random texts after O(m) time
preprocessing; this is the best result possible in this
model.

O There exists text search algorithm based on n+O(n/m)
symbol comparisons in the worst case after O(m?) time
preprocessing; this is the best result possible in this model

O For extra information on string matching see:
http://www-igm.univ-mlv.fr/~lecroq/string/index.html

25/02/2011 Applied Algorithmics - week3 24

