
String Processing

� Typical applications:

� pattern matching/recognition

� molecular biology, comparative genomics, …
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� molecular biology, comparative genomics, …

� information retrieval

� data/text mining

� data/text compression, coding, encryption 

� string processing in large databases

� …

Strings

� A string is a sequence of symbols drawn from some well 
defined set call the alphabet.

� Examples of alphabets include:

� ASCII code, Unicode 
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� ASCII code, Unicode 

� binary alphabet {0,1}

� System of DNA base-pairs {A,C,G,T}

� Latin, Greek, Chinese alphabet

� Examples of strings

� Java/C/ADA programs, HTML/XML documents,…

� DNA sequences, image/video/audio files

Strings

� Basic definitions:

� Let A be an alphabet. We say that A+ contains all non-

empty strings based on symbols from A, and          

A*=A+
∪{ε}, where ε is an empty string.
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A*=A+
∪{ε}, where ε is an empty string.

� Let w be a string of length n. We say that w=w[0..n-1]. 

� Any initial fragment w[0..i] is called a prefix of w.

� Any final fragment w[j..n-1] is called a suffix of w.

� Any fragment of form w[i..j] is called a substring of w.

Periodicity

� We say that w=w[0..n-1] has a period p iff

w[i]=w[i+p], for all 0≤i≤n-p-1, see below

w
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� For example string w=abaabaabaaba has period 3



Periodicity Lemma

� But w=abaabaabaaba has also periods 6, 9 and 11

� Lemma: p is the shortest period in w=w[0..n-1] iff

w[0..n-p-1] is the longest prefix of w which is also 
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a suffix w[p..n-1], see figure on previous slide

� Periodicty Lemma: If string w=w[0..n-1] has 

periods p and q such that p+q≤ n then w has also 

period gcd(p,q), where gcd(,) stands for the greatest 

common divisor of two integers.

Periodicity Lemma

� Proof: The main observation is based on the fact  
that if string w has two periods p≥q then it also 
has period p-q.

p
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� The thesis of the periodicity lemma follows from 
the observation (Euclid’s Algorithm) that for any 
positive integers a>b, gcd(a,b)=gcd(b,a-b).

a
p-q

q

a a

String pattern matching

� Input: given two strings: P=P[0..m-1] called the pattern
and T=T[0..n-1] called the text.

� Task: is to find all occurrences of P in T using as small 
number as possible text symbol comparisons, where an 
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number as possible text symbol comparisons, where an 
occurrence of P at position i in T is defined as 
P[j]=T[i+j] for all 0≤j≤m-1, see example below

T

P

a a ab

a b a a

i+m-1i

m-10

Brute-Force Algorithm

� The brute-force algorithm tests naively (via consecutive 

symbols comparison) whether pattern P occurs at any 

permissible position 0≤i≤n-m-1 in text T.

� The test at each position can cost as much as m, for 
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� The test at each position can cost as much as m, for 

example when T=aaaaaaaa..a and P=aaaaa

� possible scenario in images, unlikely in natural languages, codes

� Thus the time complexity of brute force algorithms is 

bounded by (n-m)·m=O(n·m)



Brute-force algorithm - code

� Algorithm Brute-Force-First-Match(T,P): integer;

for i ← 0 to n-m-1 do

j  ← 0;
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while (j<m) and (T[i+j]=P[j]) do

j ← j +1;

if (j=m) 

then return (i);

return (-1);

More efficient pattern matching

� Can we perform pattern matching in time O(m+n)

in any, even the worst case, scenario?

� The answer is yes, and the solution is based on 

proper use of periodicity of strings. 
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proper use of periodicity of strings. 

� But what is the cause of high complexity anyway?

� It must be multiple comparisons of text symbols.

� Can we do something about it? 

� Indeed, we can, at least on most of the occasions.

Principle of Knuth-Morris-Pratt KMP Algorithm

� In Brute-force solution, when the algorithm moves 
from position i to i+1 it forgets all text symbols 
that have been recognized previously

� KMP algorithm similarly to Brute-force solution 
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� KMP algorithm similarly to Brute-force solution 
searches consecutive text positions storing at any 
time the longest currently recognized prefix π of P

� But when the mismatch between P and T is found 
KMP moves by the length of the smallest period 
of π remembering all recognized text symbols

Principle of Knuth-Morris-Pratt KMP Algorithm

pattern P

π

shortest period of π

called a shift s

longest prefix/suffix of π

no occurrence of P

in range (i..i+s-1)
pattern P

?
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� If a shorter than s shift was feasible s would not be the 

shortest period of π.  

text T

i

0

prefix π

i+s

s

mismatch b≠a

b

a
pattern P



KMP Failure Function

� The KMP algorithm works in two stages: pattern 

preprocessing and actual text search.

� During pattern preprocessing we:

� compute the longest proper prefix/suffix of each prefix P[0..i]
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� compute the longest proper prefix/suffix of each prefix P[0..i]

and store its length in an array F[1..m] at position i+1. Vector 

F called the KMP failure function.

� During the text search we:

� traverse consecutive text positions looking for pattern 

occurrences and avoiding redundant positive tests with a help of 

the failure function F[1…m].

KMP failure function - example

� Let P[0..5] = abaaba

� Then the KMP failure function looks as follows

� F[0] is not defined

� F[1] = 0 (string a has no proper prefix/suffix)
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� F[1] = 0 (string a has no proper prefix/suffix)

� F[2] = 0 (string ab has no proper prefix/suffix)

� F[3] = 1 (the longest prefix/suffix in aba is a)

� F[4] = 1 (the longest prefix/suffix in abaa is a)

� F[5] = 2 (the longest prefix/suffix in abaab is ab)

� F[6] = 3 (the longest prefix/suffix in abaaba is aba)

KMP algorithm - text search 
� Algorithm KMP-First-Match(T,P): integer;

i ← j ← 0; 

while (j<m) and (T[i+j]=P[j]) { //test next text symbol//

j ← j +1;

if (j=m) {
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if (j=m) {

then return (i); // return the first occurrence of P //

else if (j>0) {

then { i ← i +(j-F[j]); j ← F[j]; } // shift based on F //

else i+1;     // shift based on empty prefix //

}

}

if (i>n-m) return (-1);   // end of the text, no pattern occurrences //

}

KMP text search complexity

a

a

New symbol is matched
right end moves
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� Since either left end of the recognized pattern prefix or its 

right end always move the time complexity (number of 

symbol comparisons) is bounded by 2n.  

a

b

New symbol causes mismatch

left end moves



KMP algorithm - preprocessing

� Algorithm Brute-Force-KMP-Match(P): integer;

F[1] ← 0;

i ← 1;  j ← F[1];

while (i≤m-1) do
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while (i≤m-1) do

if (P[j]=P[i]) 

then F[i+1] ← j+1; j ← F[i+1]; i ← i+1;

else if (j=0)

then F[i+1] ← 0; j ← F[i+1]; i ← i+1;

else j ← F[j];

KMP complexity

� Using similar argument to the one used in the text 
search one can prove that the preprocessing 
requires at most 2·m comparisons.

� Theorem: The total time (number of comparisons) 

25/02/2011 Applied Algorithmics - week3 18

� Theorem: The total time (number of comparisons) 
complexity of KMP pattern matching algorithm is 
bounded by 2·m+2·n =O(m+n) and the extra 
space required for failure function is of size O(m).

� We show later that one can obtain similar time 
bounds having only O(1) space.

Other string matching algorithms

� Boyer-Moore (BM) algorithm

� symbols in pattern P are tested against the text symbols from right 

to left, i.e., the algorithm is based on suffix recognition

� this approach allows to perform text search in time c·n, for 
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� this approach allows to perform text search in time c·n, for 

constant c<1 on average (in random and natural texts), but the 

method works in time O(n·m) in the worst case.

� It is possible to improve the worst time complexity of BM 

algorithm O(n) if we keep in the memory information about the 

last recognized suffix of the pattern 

Other string matching algorithms

� Boyer-Moore algorithm

long shift
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text T

pattern P

small number of comparisons



Other string matching algorithms

� Karp-Rabin algorithm is based on the use of a 

relatively simple hash function f()

� each symbol a in the alphabet A has a unique integer 

score s(a), e.g., all symbols can be enumerated from 1 to 
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score s(a), e.g., all symbols can be enumerated from 1 to 

|A| or using another (ASCII, Unicode) encoding

� the score is extendable from symbols to strings with the 

help of a hash function f(), s.t., 
� for a,b∈A and strings s, s1=a·s, and s2=s·b

� the score f(s) is easily computable from f(s1) and s(a), as well as

� the score f(s2) is easily computable from f(s) and s(b)

Other string matching algorithms 

� Karp-Rabin algorithm

� the algorithm computes initially the score f(P)

� in the search stage it compares the score of consecutive 
text substrings f(T[i..i+m-1]), for all i∈1,..,n-m-1
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text substrings f(T[i..i+m-1]), for all i∈1,..,n-m-1

� for every position i, s.t., f(T[i..i+m-1])=f(P) we test the 
appropriate text and pattern symbols naively

� The algorithm works in time O(n) on average (in 
random and natural texts) but in time O(n·m) in the 
worst case

Other string matching algorithms

� Karp-Rabin algorithm

shift of size 1

is f(P)=f(sb)?
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text T

a bs = P[i+1..i+m-1]

pattern P

is f(P)=f(as)?

is f(P)=f(sb)?

Other string matching algorithms 

� There exists an algorithm that uses O(n·log(m)/m) symbol 
comparisons in random texts after O(m) time 
preprocessing; this is the best result possible in this 
model.
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� There exists text search algorithm based on n+O(n/m)
symbol comparisons in the worst case after O(m2) time 
preprocessing; this is the best result possible in this model

� For extra information on string matching see:

http://www-igm.univ-mlv.fr/~lecroq/string/index.html


