
String Processing

� Typical applications:

� pattern matching/recognition

� molecular biology, comparative genomics, …

25/02/2011 Applied Algorithmics - week3 1

� molecular biology, comparative genomics, …

� information retrieval

� data/text mining

� data/text compression, coding, encryption

� string processing in large databases

� …

Strings

� A string is a sequence of symbols drawn from some well
defined set call the alphabet.

� Examples of alphabets include:

� ASCII code, Unicode

25/02/2011 Applied Algorithmics - week3 2

� ASCII code, Unicode

� binary alphabet {0,1}

� System of DNA base-pairs {A,C,G,T}

� Latin, Greek, Chinese alphabet

� Examples of strings

� Java/C/ADA programs, HTML/XML documents,…

� DNA sequences, image/video/audio files

Strings

� Basic definitions:

� Let A be an alphabet. We say that A+ contains all non-

empty strings based on symbols from A, and

A*=A+
∪{ε}, where ε is an empty string.

25/02/2011 Applied Algorithmics - week3 3

A*=A+
∪{ε}, where ε is an empty string.

� Let w be a string of length n. We say that w=w[0..n-1].

� Any initial fragment w[0..i] is called a prefix of w.

� Any final fragment w[j..n-1] is called a suffix of w.

� Any fragment of form w[i..j] is called a substring of w.

Periodicity

� We say that w=w[0..n-1] has a period p iff

w[i]=w[i+p], for all 0≤i≤n-p-1, see below

w

25/02/2011 Applied Algorithmics - week3 4

p

0 1 2

a b a

a b a

a b a

p p+1 p+2

0 1 2

w

w

n-1n-p-1

n-1

� For example string w=abaabaabaaba has period 3

Periodicity Lemma

� But w=abaabaabaaba has also periods 6, 9 and 11

� Lemma: p is the shortest period in w=w[0..n-1] iff

w[0..n-p-1] is the longest prefix of w which is also

25/02/2011 Applied Algorithmics - week3 5

a suffix w[p..n-1], see figure on previous slide

� Periodicty Lemma: If string w=w[0..n-1] has

periods p and q such that p+q≤ n then w has also

period gcd(p,q), where gcd(,) stands for the greatest

common divisor of two integers.

Periodicity Lemma

� Proof: The main observation is based on the fact
that if string w has two periods p≥q then it also
has period p-q.

p

25/02/2011 Applied Algorithmics - week3 6

� The thesis of the periodicity lemma follows from
the observation (Euclid’s Algorithm) that for any
positive integers a>b, gcd(a,b)=gcd(b,a-b).

a
p-q

q

a a

String pattern matching

� Input: given two strings: P=P[0..m-1] called the pattern
and T=T[0..n-1] called the text.

� Task: is to find all occurrences of P in T using as small
number as possible text symbol comparisons, where an

25/02/2011 Applied Algorithmics - week3 7

number as possible text symbol comparisons, where an
occurrence of P at position i in T is defined as
P[j]=T[i+j] for all 0≤j≤m-1, see example below

T

P

a a ab

a b a a

i+m-1i

m-10

Brute-Force Algorithm

� The brute-force algorithm tests naively (via consecutive

symbols comparison) whether pattern P occurs at any

permissible position 0≤i≤n-m-1 in text T.

� The test at each position can cost as much as m, for

25/02/2011 Applied Algorithmics - week3 8

� The test at each position can cost as much as m, for

example when T=aaaaaaaa..a and P=aaaaa

� possible scenario in images, unlikely in natural languages, codes

� Thus the time complexity of brute force algorithms is

bounded by (n-m)·m=O(n·m)

Brute-force algorithm - code

� Algorithm Brute-Force-First-Match(T,P): integer;

for i ← 0 to n-m-1 do

j ← 0;

25/02/2011 Applied Algorithmics - week3 9

while (j<m) and (T[i+j]=P[j]) do

j ← j +1;

if (j=m)

then return (i);

return (-1);

More efficient pattern matching

� Can we perform pattern matching in time O(m+n)

in any, even the worst case, scenario?

� The answer is yes, and the solution is based on

proper use of periodicity of strings.

25/02/2011 Applied Algorithmics - week3 10

proper use of periodicity of strings.

� But what is the cause of high complexity anyway?

� It must be multiple comparisons of text symbols.

� Can we do something about it?

� Indeed, we can, at least on most of the occasions.

Principle of Knuth-Morris-Pratt KMP Algorithm

� In Brute-force solution, when the algorithm moves
from position i to i+1 it forgets all text symbols
that have been recognized previously

� KMP algorithm similarly to Brute-force solution

25/02/2011 Applied Algorithmics - week3 11

� KMP algorithm similarly to Brute-force solution
searches consecutive text positions storing at any
time the longest currently recognized prefix π of P

� But when the mismatch between P and T is found
KMP moves by the length of the smallest period
of π remembering all recognized text symbols

Principle of Knuth-Morris-Pratt KMP Algorithm

pattern P

π

shortest period of π

called a shift s

longest prefix/suffix of π

no occurrence of P

in range (i..i+s-1)
pattern P

?

25/02/2011 Applied Algorithmics - week3 12

� If a shorter than s shift was feasible s would not be the

shortest period of π.

text T

i

0

prefix π

i+s

s

mismatch b≠a

b

a
pattern P

KMP Failure Function

� The KMP algorithm works in two stages: pattern

preprocessing and actual text search.

� During pattern preprocessing we:

� compute the longest proper prefix/suffix of each prefix P[0..i]

25/02/2011 Applied Algorithmics - week3 13

� compute the longest proper prefix/suffix of each prefix P[0..i]

and store its length in an array F[1..m] at position i+1. Vector

F called the KMP failure function.

� During the text search we:

� traverse consecutive text positions looking for pattern

occurrences and avoiding redundant positive tests with a help of

the failure function F[1…m].

KMP failure function - example

� Let P[0..5] = abaaba

� Then the KMP failure function looks as follows

� F[0] is not defined

� F[1] = 0 (string a has no proper prefix/suffix)

25/02/2011 Applied Algorithmics - week3 14

� F[1] = 0 (string a has no proper prefix/suffix)

� F[2] = 0 (string ab has no proper prefix/suffix)

� F[3] = 1 (the longest prefix/suffix in aba is a)

� F[4] = 1 (the longest prefix/suffix in abaa is a)

� F[5] = 2 (the longest prefix/suffix in abaab is ab)

� F[6] = 3 (the longest prefix/suffix in abaaba is aba)

KMP algorithm - text search
� Algorithm KMP-First-Match(T,P): integer;

i ← j ← 0;

while (j<m) and (T[i+j]=P[j]) { //test next text symbol//

j ← j +1;

if (j=m) {

25/02/2011 Applied Algorithmics - week3 15

if (j=m) {

then return (i); // return the first occurrence of P //

else if (j>0) {

then { i ← i +(j-F[j]); j ← F[j]; } // shift based on F //

else i+1; // shift based on empty prefix //

}

}

if (i>n-m) return (-1); // end of the text, no pattern occurrences //

}

KMP text search complexity

a

a

New symbol is matched
right end moves

25/02/2011 Applied Algorithmics - week3 16

� Since either left end of the recognized pattern prefix or its

right end always move the time complexity (number of

symbol comparisons) is bounded by 2n.

a

b

New symbol causes mismatch

left end moves

KMP algorithm - preprocessing

� Algorithm Brute-Force-KMP-Match(P): integer;

F[1] ← 0;

i ← 1; j ← F[1];

while (i≤m-1) do

25/02/2011 Applied Algorithmics - week3 17

while (i≤m-1) do

if (P[j]=P[i])

then F[i+1] ← j+1; j ← F[i+1]; i ← i+1;

else if (j=0)

then F[i+1] ← 0; j ← F[i+1]; i ← i+1;

else j ← F[j];

KMP complexity

� Using similar argument to the one used in the text
search one can prove that the preprocessing
requires at most 2·m comparisons.

� Theorem: The total time (number of comparisons)

25/02/2011 Applied Algorithmics - week3 18

� Theorem: The total time (number of comparisons)
complexity of KMP pattern matching algorithm is
bounded by 2·m+2·n =O(m+n) and the extra
space required for failure function is of size O(m).

� We show later that one can obtain similar time
bounds having only O(1) space.

Other string matching algorithms

� Boyer-Moore (BM) algorithm

� symbols in pattern P are tested against the text symbols from right

to left, i.e., the algorithm is based on suffix recognition

� this approach allows to perform text search in time c·n, for

25/02/2011 Applied Algorithmics - week3 19

� this approach allows to perform text search in time c·n, for

constant c<1 on average (in random and natural texts), but the

method works in time O(n·m) in the worst case.

� It is possible to improve the worst time complexity of BM

algorithm O(n) if we keep in the memory information about the

last recognized suffix of the pattern

Other string matching algorithms

� Boyer-Moore algorithm

long shift

25/02/2011 Applied Algorithmics - week3 20

text T

pattern P

small number of comparisons

Other string matching algorithms

� Karp-Rabin algorithm is based on the use of a

relatively simple hash function f()

� each symbol a in the alphabet A has a unique integer

score s(a), e.g., all symbols can be enumerated from 1 to

25/02/2011 Applied Algorithmics - week3 21

score s(a), e.g., all symbols can be enumerated from 1 to

|A| or using another (ASCII, Unicode) encoding

� the score is extendable from symbols to strings with the

help of a hash function f(), s.t.,
� for a,b∈A and strings s, s1=a·s, and s2=s·b

� the score f(s) is easily computable from f(s1) and s(a), as well as

� the score f(s2) is easily computable from f(s) and s(b)

Other string matching algorithms

� Karp-Rabin algorithm

� the algorithm computes initially the score f(P)

� in the search stage it compares the score of consecutive
text substrings f(T[i..i+m-1]), for all i∈1,..,n-m-1

25/02/2011 Applied Algorithmics - week3 22

text substrings f(T[i..i+m-1]), for all i∈1,..,n-m-1

� for every position i, s.t., f(T[i..i+m-1])=f(P) we test the
appropriate text and pattern symbols naively

� The algorithm works in time O(n) on average (in
random and natural texts) but in time O(n·m) in the
worst case

Other string matching algorithms

� Karp-Rabin algorithm

shift of size 1

is f(P)=f(sb)?

25/02/2011 Applied Algorithmics - week3 23

text T

a bs = P[i+1..i+m-1]

pattern P

is f(P)=f(as)?

is f(P)=f(sb)?

Other string matching algorithms

� There exists an algorithm that uses O(n·log(m)/m) symbol
comparisons in random texts after O(m) time
preprocessing; this is the best result possible in this
model.

25/02/2011 Applied Algorithmics - week3 24

� There exists text search algorithm based on n+O(n/m)
symbol comparisons in the worst case after O(m2) time
preprocessing; this is the best result possible in this model

� For extra information on string matching see:

http://www-igm.univ-mlv.fr/~lecroq/string/index.html

