String Processing

- □ Typical applications:
 - pattern matching/recognition
 - molecular biology, comparative genomics, ...
 - information retrieval
 - data/text mining
 - data/text compression, coding, encryption

Applied Algorithmics - week3

string processing in large databases

Strings

- □ A string is a *sequence of symbols* drawn from some well defined set call *the alphabet*.
- □ Examples of alphabets include:
 - ASCII code, Unicode
 - binary alphabet {0,1}
 - System of DNA base-pairs {A,C,G,T}
 - Latin, Greek, Chinese alphabet
- **Examples of strings**
 - Java/C/ADA programs, HTML/XML documents,...
 - DNA sequences, image/video/audio files

25/02/2011

Applied Algorithmics - week3

Strings

25/02/2011

L . . .

- □ Basic definitions:
 - Let A be an alphabet. We say that A⁺ contains all non-empty strings based on symbols from A, and A^{*}=A⁺ √{ε}, where ε is an *empty string*.
 - Let w be a string of length n. We say that w=w[0..n-1].
 - Any initial fragment *w*[0..*i*] is called a *prefix* of *w*.
 - Any final fragment *w*[*j*..*n*-1] is called a *suffix* of *w*.
 - Any fragment of form *w*[*i*.*j*] is called a *substring* of *w*.

Periodicity

□ We say that w=w[0..n-1] has a *period* p **iff** w[i]=w[i+p], for all $0 \le i \le n-p-1$, see below

 \square For example string w = abaabaabaaba has period 3

Applied Algorithmics - week3

3

Periodicity Lemma

- \square But *w*=*abaabaabaaba* has also periods 6, 9 and 11
- □ *Lemma: p* is the shortest period in *w*=*w*[0..*n*-1] **iff** *w*[0..*n*-*p*-1] is the longest prefix of w which is also a suffix *w*[*p*..*n*-1], see figure on previous slide
- □ *Periodicty Lemma:* If string w=w[0..n-1] has periods *p* and *q* such that $p+q \le n$ then *w* has also period gcd(p,q), where gcd(,) stands for the greatest common divisor of two integers.

Applied Algorithmics - week3

Periodicity Lemma

□ *Proof:* The main observation is based on the fact that if string *w* has two periods $p \ge q$ then it also has period *p*-*q*.

□ The thesis of the periodicity lemma follows from the observation (Euclid's Algorithm) that for any positive integers a > b, gcd(a,b) = gcd(b,a-b).

Applied Algorithmics - week3

String pattern matching

- □ *Input:* given two strings: P = P[0..m-1] called the *pattern* and T = T[0..n-1] called the *text*.
- □ *Task:* is to find *all occurrences* of *P* in *T* using as small number as possible text symbol comparisons, where an occurrence of *P* at position *i* in *T* is defined as P[j]=T[i+j] for all $0 \le j \le m-1$, see example below

Brute-Force Algorithm

- □ The brute-force algorithm tests naively (via consecutive symbols comparison) whether pattern *P* occurs at any permissible position $0 \le i \le n-m-1$ in text *T*.
- □ The test at each position can cost as much as m, for example when T=aaaaaaaaa..a and P=aaaaa
 - possible scenario in images, unlikely in natural languages, codes
- □ Thus the time complexity of brute force algorithms is bounded by $(n-m)\cdot m=O(n\cdot m)$

```
25/02/2011
```

25/02/2011

25/02/2011

7

5

25/02/2011

Brute-force algorithm - code

 \square Algorithm *Brute-Force-First-Match*(*T*,*P*): integer; for $i \leftarrow 0$ to n - m - 1 do $i \leftarrow 0;$ while (j < m) and (T[i+j]=P[j]) do $i \leftarrow i + l;$ if (j=m)then return (i); *return* (-1); 25/02/2011 Applied Algorithmics - week3 9

More efficient pattern matching

- \Box Can we perform pattern matching in time O(m+n)in any, even the worst case, scenario?
- □ The answer is yes, and the solution is based on proper use of periodicity of strings.
- □ But what is the cause of high complexity anyway?
- □ It must be multiple comparisons of text symbols.
- Can we do something about it?

25/02/2011

25/02/2011

□ Indeed, we can, at least on most of the occasions. Applied Algorithmics - week3

Principle of Knuth-Morris-Pratt KMP Algorithm

- □ In Brute-force solution, when the algorithm moves from position *i* to i+1 it forgets all text symbols that have been recognized previously
- KMP algorithm similarly to Brute-force solution searches consecutive text positions storing at any time the longest currently recognized prefix π of *P*
- \square But when the mismatch between P and T is found KMP moves by the length of the smallest period of π remembering all recognized text symbols

Principle of Knuth-Morris-Pratt KMP Algorithm

If a shorter than *s* shift was feasible *s* would not be the shortest period of π .

KMP Failure Function

- □ The KMP algorithm works in two stages: *pattern preprocessing* and actual *text search*.
- During pattern preprocessing we:
 - compute the longest proper prefix/suffix of each prefix *P[0..i]* and store its length in an array *F[1..m]* at position *i+1*. Vector *F* called the KMP *failure function*.
- During the text search we:
 - traverse consecutive text positions looking for pattern occurrences and avoiding redundant positive tests with a help of the failure function *F[1...m]*.

KMP failure function - example

- \Box Let P[0..5] = abaaba
- □ Then the KMP failure function looks as follows
 - *F*[0] is not defined
 - F[1] = 0 (string *a* has no proper prefix/suffix)
 - F[2] = 0 (string *ab* has no proper prefix/suffix)
 - F[3] = 1 (the longest prefix/suffix in *aba* is *a*)
 - F[4] = 1 (the longest prefix/suffix in *abaa* is *a*)
 - F[5] = 2 (the longest prefix/suffix in *abaab* is *ab*)
 - F[6] = 3 (the longest prefix/suffix in *abaaba* is *aba*)

25/02/2011	Applied Algorithmics - week3	13	25/02/2011	Applied Algorithmics - week3	14

15

KMP algorithm - text search

KMP text search complexity

New symbol is matched	right end moves
	a
New symbol causes mismatch left end moves	
	<u> </u>

Since either left end of the recognized pattern prefix or its right end always move the time complexity (number of symbol comparisons) is bounded by 2n.

KMP algorithm - preprocessing

□ Algorithm Brute-Force-KMP-Match(P): integer; $F[1] \leftarrow 0;$ $i \leftarrow 1; j \leftarrow F[1];$ while $(i \le m-1)$ do if (P[j]=P[i])then $F[i+1] \leftarrow j+1; j \leftarrow F[i+1]; i \leftarrow i+1;$ else if (j=0)then $F[i+1] \leftarrow 0; j \leftarrow F[i+1]; i \leftarrow i+1;$ else $j \leftarrow F[j];$

KMP complexity

- □ Using similar argument to the one used in the text search one can prove that the preprocessing requires at most $2 \cdot m$ comparisons.
- □ *Theorem:* The total time (number of comparisons) complexity of KMP pattern matching algorithm is bounded by $2 \cdot m + 2 \cdot n = O(m+n)$ and the extra space required for failure function is of size O(m).
- □ We show later that one can obtain similar time bounds having only O(1) space.

25/02/2011	Applied Algorithmics - week3	17	25/02/2011	Applied Algorithmics - week3

Other string matching algorithms

- □ Boyer-Moore (BM) algorithm
 - symbols in pattern *P* are tested against the text symbols from right to left, i.e., the algorithm is based on *suffix recognition*
 - this approach allows to perform text search in time c·n, for constant c<1 on average (in random and natural texts), but the method works in time O(n·m) in the worst case.</p>
 - It is possible to improve the worst time complexity of BM algorithm O(n) if we keep in the memory information about the last recognized suffix of the pattern

Other string matching algorithms

□ Boyer-Moore algorithm

Other string matching algorithms

- $\Box Karp-Rabin algorithm is based on the use of a relatively simple hash function <math>f()$
 - each symbol *a* in the alphabet *A* has a unique integer score *s(a)*, e.g., all symbols can be enumerated from *1* to |*A*| or using another (ASCII, Unicode) encoding
 - the score is extendable from symbols to strings with the help of a hash function f(), s.t.,
 - for $a, b \in A$ and strings $s, s_1 = a \cdot s$, and $s_2 = s \cdot b$
 - the score f(s) is easily computable from $f(s_1)$ and s(a), as well as
 - the score $f(s_2)$ is easily computable from f(s) and s(b)

25/02/201

Applied Algorithmics - week3

Other string matching algorithms

- □ Karp-Rabin algorithm
 - the algorithm computes initially the score *f*(*P*)
 - in the search stage it compares the score of consecutive text substrings f(T[i..i+m-1]), for all i∈1,..,n-m-1
 - for every position *i*, s.t., *f*(*T*[*i*..*i*+*m*-1])=*f*(*P*) we test the appropriate text and pattern symbols naively
- □ The algorithm works in time O(n) on average (in random and natural texts) but in time $O(n \cdot m)$ in the worst case

25/02/2011

21

Applied Algorithmics - week3

Other string matching algorithms

□ Karp-Rabin algorithm

Other string matching algorithms

- □ There exists an algorithm that uses $O(n \cdot log(m)/m)$ symbol comparisons in random texts after O(m) time preprocessing; this is the best result possible in this model.
- □ There exists text search algorithm based on n+O(n/m) symbol comparisons in the worst case after $O(m^2)$ time preprocessing; this is the best result possible in this model
- □ For extra information on string matching see: http://www-igm.univ-mlv.fr/~lecroq/string/index.html

23