Applied Algorithmics COMP526 - tutorial 4

L.A. Gąsieniec and D. Cartwright

1 Questions

1.1 Non-periodicity and witness table

Fibonacci language contains words defined recursively. In particular, $w_{0}=a, w_{1}=b$, and $w_{i}=$ $w_{i-1} \cdot w_{i-2}$, for all integer $i \geq 2$. E.g., $w_{2}=b a, w_{3}=b a b, w_{4}=b a b b a$, etc. (Note that the length of w_{i} corresponds to the length of $i^{\text {th }}$ Fibonacci number f_{i}, where similarly $f_{0}=1, f_{1}=1$, and $f_{i}=f_{i-1}+f_{i-2}$, for all integer $i \geq 2$.)

Construct the witness table (see notes from the lecture) for w_{6}.

1.2 String matching with don't care symbols

Given a pattern $P=10 * 1$ and a text $T=1010110010110101$. Recall the pattern matching algorithm for patterns equipped with the don't care symbol $*$ (symbol $*$ matches both 1 s and 0 s). Show (via computing appropriate values of convolution vectors) that P occurs at position 5 (recall that symbols are counted from position 0) in T, and that P does not occur at position 9 .

2 Solutions

2.1 Non-periodicity and witness table

Recall that the witness table is stored in the array $W\left[0 . .\left|w_{6}\right|-1\right]$, where $W[i]$ stands for the position of a witness against periodicity i. We assume that when the input string, in this case w_{6}, has a period i then the position of the witness is 0 meaning that such a witness does not exist.

index	0123456789101112	
$w_{6}=$	babbababbabba	$W[i]$
shift $i=0$	$\underline{\mathrm{babbababbabba}}$	0
shift $i=1$	babbababbabba	1
shift $i=2$	$\underline{\mathrm{b}} \mathrm{abbababbabba}$	3
shift $i=3$	$\underline{\mathrm{bab}} \mathrm{bababbabba}$	6
shift $i=4$	babbababbabba	4
shift $i=5$	babbababbabba	11
shift $i=6$	babbababbabba	6
shift $i=7$	$\underline{\mathrm{b}} \mathrm{abbababbabba}$	8
shift $i=8$	babbababbabba	0
shift $i=9$	babbababbabba	9
shift $i=10$	$\underline{\mathrm{b}} \mathrm{abbababbabba}$	11
shift $i=11$	$\underline{\text { babbababbabba }}$	0
shift $i=12$	babbababbabba	12

2.2 String matching with don't care symbols

The mechanism for fast search for patterns with don't care symbols is based on FFT (Fast Fourier Transform) and a couple of observations on how to count matched pattern's 1s and 0 s at every position i in the text.

And indeed, we create two modified instances of the pattern P : (1) P_{0} which is obtained from P via exchange of all $*$ s by 0 s. P_{0} will be used to identify matched 1 s ; (2) P_{1} which is obtained from P via exchange of all $* \mathrm{~s}$ by 1 s and further swap of all 1 s by 0 s and vice versa. Assuming that $P=10 * 1$ we get $P_{0}=1001$ and $P_{1}=0100$.

In order to test every position i in the text for matching 1 s in P we interpret T and $P_{0}^{R}=1001$ (reversed P_{0}, in this case $P_{0}^{R}=P_{0}$ since they are palindromes) as integers (or polynomials) and we use fast integer (polynomial) multiplication to obtain convolution coefficients including required positions 5 and 9 . The respective convolution coefficients are two and zero, see Figure The first value (two) corresponds to the expected number of matched 1 s in the pattern occurrence at position

5 in the text. The second value (zero) provides an evidence that there is no pattern occurrence at position 9 in the text.

$(1 \cdot 1+0 \cdot 0+0 \cdot 0+1 \cdot 1=2)$

Figure 1: Numbers of matched 1 s at positions 5 and 9.
Now we have to test every position i in the text for matching 0 s in P. We interpret $\sim T$ and $P_{1}^{R}=0010$ (reversed P_{1}) as integers (or polynomials) and we use fast integer (polynomial) multiplication to obtain convolution coefficients including required positions 5 and 9 . The respective convolution coefficients are one and zero, see Figure 2 The value one at position 5 confirms that there is an occurrence of the pattern since there are two matched 1 s and one matched 0 . However at position 9 two matched 1 s are not accompanied by one 0 thus we conclude that there is no pattern occurrence at position 9 .

Figure 2: Numbers of matched 0 s at positions 5 and 9.

