

Pattern matching via duels

- □ Assume that pattern *P* is *non-periodic*, i.e., the shortest period of *P* is longer than *m*/2 (we will deal with periodic case later)
- □ Split the whole text *T* into consecutive segments S_i , for i=0..2n/m, of size m/2 each.
- □ In each segment S_i eliminate all (but at most one) occurrences using < m/2 duels
- □ Test the remaining 2n/m occurrences test naively
- □ The total cost of dueling and the final test is O(n)

Pattern matching via dules

- The search stage is preceded by pattern preprocessing when the witness is computed for every non-period in pattern *P*
- □ The witnesses can be computed on the basis of KMP failure function in linear O(m) time
- □ *Theorem:* The pattern matching via duels is performed in time O(n+m) and memory O(m)

3

13/02/2006

Pattern matching via duels

- One of the greatest advantages of pattern matching by duels is that the elimination of pattern occurrences can be done in many segments of the text parallel
- And indeed, the idea of duels (extended by deterministic sampling method) provides tools for optimal pattern matching in 2d-meshes, PRAMs, and hyper-cubes.

Parallel Random Access Machine

- Parallel Random Access Machine (PRAM) is a system of enumerated (uniform) processors that communicate with each other and perform various algorithmic tasks with a help of shared memory
- In simple words PRAM is a regular RAM (simplified model of standard PC) in which instead of one we have a number of processors with the same computational power.

13/02/2006 Applied Algorithmics - week4 5	13/02/2006 Applied Algorithmics - week4 6
Parallel Random Access Machine	PRAM sub-models
P ₁ P ₂ P ₃ P P _n Memory	 <i>EREW</i> - exclusive read / exclusive write Two (or more) processors can never read from or write to the same memory cell simultaneously <i>CREW</i> - concurrent read / exclusive write Processors can read from though cannot write to the same memory cell simultaneously <i>CRCW</i> - concurrent read / concurrent write Processors can both read from and write to the same memory
There are several sub-models of PRAM that differentiate according to the memory access protocols	 Processors can both read from and write to the same memory cell simultaneously It is often assumed that in case of concurrent write an arbitrary value is written into the memory cell

13/02/2006

Applied Algorithmics - week4

PRAM complexity measures

- □ The following measures are used:
 - Time complexity
 - Space complexity
 - *Work* which is defined as multiplication of the time and the number of processors used to solve the problem
- In case of PRAM we are mostly interested in the design of parallel algorithms whose time complexity is bounded by *O(log^cn)* and work is comparable with the time complexity of the most efficient sequential algorithms

Applied Algorithmics - week4

Parallel pattern matching in time O(log m)

Reduce the number of occurrences to 2n/m

for j=1 to log m - 1 do for i=1 to $n/2^{j}$ in-parallel do Processor P_i reduces (using one duel) the number occurrences in segment $P[(i-1)2^{j}..i2^{j}-1]$ to one

Test naively all remaining pattern occurrences

for i=1 to *n* in-parallel do

processors with index $i = k \pmod{m/2}$ test naively single remaining occurrence in segment $k \cdot m/2 \cdot (k+1) \cdot (m/2) - 1$

13/02/2006

Applied Algorithmics - week4

10

Parallel pattern matching

- □ The algorithm uses:
 - O(log m) rounds (time)
 - O(n) processors and O(n+m) memory
 - O(n·log m) work (which is non-linear! I.e, non-optimal)
- \Box The work can be reduced to O(n)
 - In each consecutive text segment of length *log m* use one processor to reduce the number of occurrences to one
 - Later apply non-optimal algorithm on at most *n/log m* remaining pattern occurrences

Pattern preprocessing

- One can prove that pattern preprocessing (computation of witnesses) in all PRAM submodels can be done in optimal time O(log m) and work O(m).
- □ The preprocessing is based on non-trivial *pseudoperiod method*.
- □ *Theorem:* Parallel pattern matching can be done in optimal time $O(\log m)$ and work O(n+m).

13/02/2006

Parallel pattern matching in O(1) time

- □ In the most powerful PRAM sub-model CRCW the search stage can be performed in O(1) time
- □ The search is based on the notion of *deterministic sample,* which is a small collection of witnesses

Parallel pattern matching in O(1) time

- □ The search stage on CRCW PRAM can be done in O(1) time on $O(n \cdot \log m)$ processors as follows
- 1) Each position in text *T* is tested for the occurrence of deterministic sample using *O(log m)* processors
- 2) In each segment of size *m*/2 use *m*/2 processors to mark the *first* and the *last* occurrence of the deterministic sample (all other occurrences can be ignored)
- \square 3) Test marked occurrences naively using O(n) processors
- □ All 3 steps can be performed in O(1) time

13/02/2006

13/02/2006

Applied Algorithmics - week4

Parallel pattern matching in O(1) time

- □ The search stage in pattern matching based on deterministic sample can be tuned to work in optimal time O(1) and work O(n).
- □ The search stage is preceded by pattern preprocessing in optimal time *O(loglog m)* and work *O(m)*.
- □ There exists O(1) time parallel pattern matching algorithm with O(1) expected preprocessing time

Pattern matching in small extra space

- □ Note that one can use the deterministic sample to implement sequential pattern matching that works in O(n) time and $O(\log m)$ extra space.
- □ In fact, one can reduce the extra space to O(1) and still keep the linear O(n) pattern search time.

15

Pattern matching with "don't care" symbols

- In some applications we are interested in finding patterns that contain special symbols that match any symbol in the alphabet
- □ We call these special character "don't care" symbols
- The methods designed for exact string matching do not work efficiently if the number of "don't care" symbols in the pattern is large

Applied Algorithmics - week4

□ Efficient solution to pattern matching with don't care symbols is based on fast computation of *convolutions*

Pattern matching with "don't care" symbols

- □ We assume that the strings are built over binary {0,1} extended by a "don't care" symbol *
- □ For a larger alphabet *A* of cardinality *n* we can encode each symbol by exactly *log n* bits
- \square For any pattern $P \in \{0, 1, *\}^*$ we define two strings:
 - *P*₀ which is *P* in which all occurrences of *s are replaced by 0s, and
 - *P₁* which is *P* in which all occurrences of *s are replaced by *I*s and then all bits are negated

Applied Algorithmics - week4

Example of P, P_1 and P_2

- $\Box \text{ Let pattern } P = 011*01011**1*0, \text{ reversed } P \text{ is}$
- $\square P_0 = 01100101100100,$
- □ Also after replacing *s with *I*s we get a string
- □ 01110101111110, and negating all bits we have □ $P_1 = 10001010000001$.

Pattern matching with "don't care" symbols

- □ The search for pattern *P* in text *T* is replaced by: 1) the search for P_0 in text *T*, and
 - 2) the search for P_1 in text *T* with all bits negated
- In both cases for each text position we count the number of recognized 1s (in case 2 the number of 1s corresponds to the number of 0s in P)
- □ If at any text position the number of matched *I*s and *0*s is the same as the number of *I*s and *0*s in *P* the pattern occurrence is found.

13/02/2006

19

17

13/02/2006

13/02/2006

The Fast Fourier Transform

- \square But how can we match efficiently all *I*s in patterns P_1 and P_0 ?
- □ Rather surprisingly we can translate the matching of all 1s into the *multiplication* of *large integers* and *polynomials*
- □ *The Fast Fourier Transform* is a surprisingly efficient procedure for multiplying such objects

Applied Algorithmics - week4

The Fast Fourier Transform

□ A polynomial represented in a coefficient form is described by a coefficient vector $\mathbf{a} = [a_0, a_1, ..., a_{n-1}]$ as follows:

$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$

- □ The degree of such a polynomial is the largest index of nonzero coefficient a_i
- \square A coefficient vector of length *n* can represent polynomials of degree *n-1* 13/02/2006

Multiplication of Polynomials

- \Box Fast multiplication of two polynomials $p(x) \cdot q(x)$ as defined in coefficient form, is seen as follows
- \Box Consider $p(x) \cdot q(x)$, where:
 - $p(x) = \sum_{i=0}^{n-1} a_i \cdot x^i \text{ and } q(x) = \sum_{i=0}^{m-1} b_i \cdot x^i$
- \Box Then $p(x) \cdot q(x) =$

13/02/2006

- $\sum_{i=0}^{n-m-2} c_i \cdot x^i, \text{ where } c_i = \sum_{i=1-m+1}^{n-1} a_{i-j} \cdot b_{i-j}, \text{ for } i = m-1, ..., n+m-2$
- \Box The coefficients c_i for other values are based on shorter summations, and we have no interest in them

23

Convolutions and FFT

- □ The equation defines a vector $\mathbf{c} = [c_0, c_1, ..., c_{n-1}]$, which we is the *convolution* of the vectors \mathbf{a} and \mathbf{b}
- □ If we apply the definition of convolutions directly, then it will take us time $\Theta(nm)$ to multiply the two polynomials p(x) and q(x)
- □ The *Fast Fourier Transform (FFT)* algorithm allows us to perform this multiplication in time *O(n log m)*.

Convolutions and PM with don't cares

- So what the convolutions have to do with pattern matching with "don't care" symbols?
- □ In fact convolutions help a lot. One can interpret patterns P_1^R and P_0^R as well as text(s) *T* and $\sim T$ as binary coefficients of polynomials of degrees *m*-1 and *n*-1 respectively.
- □ And in particular we are interested in convolutions in polynomials $P_1^R(x) \cdot T(x)$ and $P_0^R(x) \cdot T(x)$

13/02/2006	Applied Algorithmics - week4	25	13/02/2006	Applied Algorithmics - week4	26
Convolu	tions and PM with don't	cares	Convolutions	and PM with	don't cares
and <i>m</i> ca compute	nvolutions of polynomials of degree in be computed in time $O(n \cdot \log m)$ convolutions for $P_1^R(x) \cdot T(x)$ and $T(x)$ in time $O(n \cdot \log m)$.			ming a coefficient at ter correspond to number of	1
■ The values of convolutions correspond to the number of matched <i>I</i> s and <i>0</i> s at consecutive positions in text <i>T</i>			0 m-2 m-1	the convolution of these values will form the coefficient of term x ⁱ	

□ *Theorem:* The pattern matching with don't care symbols can be solved in time $O(n \cdot log m)$.

13/02/2006

27

13/02/2006

i-1 i

i-m+1

Applied Algorithmics - week4