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Non-periodicity and witnesses
Periodicity - continued

If string w=w[0..n-1] has periodicity p if w[i]=w[i+p], for 
i=0,…, n-p-1
But what happens if w does not have a period p?
We say that there is a witness against periodicity p, and it is 
defined as an arbitrary position p ≤ ω ≤ n, s.t., w[ω]=w[ω-p]
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Dueling via witnesses
If pattern P has no period p, then comparing any two 
positions i and i+p in text T we can eliminate at least one 
of them as an occurrence of P
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Pattern matching via duels
Assume that pattern P is non-periodic, i.e., the shortest 
period of P is longer than m/2 (we will deal with periodic 
case later)
Split the whole text T into consecutive segments Si, for 
i=0..2n/m, of size m/2 each.
In each segment Si eliminate all (but at most one) 
occurrences using < m/2 duels
Test the remaining 2n/m occurrences test naively
The total cost of dueling and the final test is O(n)
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Pattern matching via dules
The search stage is preceded by pattern 
preprocessing when the witness is computed for 
every non-period in pattern P
The witnesses can be computed on the basis of 
KMP failure function in linear O(m) time
Theorem: The pattern matching via duels is 
performed in time O(n+m) and memory O(m)
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Pattern matching via duels
One of the greatest advantages of pattern 
matching by duels is that the elimination of 
pattern occurrences can be done in many segments  
of the text parallel
And indeed, the idea of duels (extended by 
deterministic sampling method) provides tools for 
optimal pattern matching in 2d-meshes, PRAMs, 
and hyper-cubes.  
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Parallel Random Access Machine
Parallel Random Access Machine (PRAM) is a 
system of enumerated (uniform) processors that 
communicate with each other and perform various 
algorithmic tasks with a help of shared memory
In simple words PRAM is a regular RAM 
(simplified model of standard PC) in which 
instead of one we have a number of processors 
with the same computational power.

13/02/2006 Applied Algorithmics - week4 7

Parallel Random Access Machine

1 2 3 n

There are several sub-models of PRAM that differentiate 
according to the memory access protocols 
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PRAM sub-models
EREW - exclusive read / exclusive write

Two (or more) processors can never read from or write to the 
same memory cell simultaneously

CREW - concurrent read / exclusive write
Processors can read from though cannot write to the same 
memory cell simultaneously

CRCW - concurrent read / concurrent write
Processors can both read from and write to the same memory 
cell simultaneously
It is often assumed that in case of concurrent write an arbitrary 
value is written into the memory cell
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PRAM complexity measures
The following measures are used:

Time complexity
Space complexity
Work which is defined as multiplication of the time and the 
number of processors used to solve the problem

In case of PRAM we are mostly interested in the design of 
parallel algorithms whose time complexity is bounded by 
O(logcn) and work is comparable with the time complexity 
of the most efficient sequential algorithms
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Parallel pattern matching in time O(log m)
Reduce the number of occurrences to 2n/m
for j=1 to log m -1 do
for i=1 to n/2j in-parallel do

Processor Pi reduces (using one duel) the number
occurrences in segment P[(i-1)2j..i2j-1] to one

Test naively all remaining pattern occurrences
for i=1 to n in-parallel do

processors with index i = k (mod m/2) test naively single
remaining occurrence in segment k·m/2..(k+1)·(m/2) -1
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Parallel pattern matching
The algorithm uses:

O(log m) rounds (time)
O(n) processors and O(n+m) memory
O(n·log m) work (which is non-linear! I.e, non-optimal)

The work can be reduced to O(n)
In each consecutive text segment of length log m use one 
processor to reduce the number of occurrences to one
Later apply non-optimal algorithm on at most n/log m
remaining pattern occurrences
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Pattern preprocessing
One can prove that pattern preprocessing 
(computation of witnesses) in all PRAM sub-
models can be done in optimal time O(log m) and 
work O(m).
The preprocessing is based on non-trivial pseudo-
period method.
Theorem: Parallel pattern matching can be done 
in optimal time O(log m) and work O(n+m).
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Parallel pattern matching in O(1) time 
In the most powerful PRAM sub-model CRCW 
the search stage can be performed in O(1) time
The search is based on the notion of deterministic 
sample, which is a small collection of witnesses

m/2
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k≤log m

The only occurrence of P
in text segment of size m/2
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Parallel pattern matching in O(1) time
The search stage on CRCW PRAM can be done in O(1)
time on O(n·log m) processors as follows
1) Each position in text T is tested for the occurrence of 
deterministic sample using O(log m) processors
2) In each segment of size m/2 use m/2 processors to mark 
the first and the last occurrence of the deterministic sample 
(all other occurrences can be ignored) 
3) Test marked occurrences naively using O(n) processors
All 3 steps can be performed in O(1) time
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Parallel pattern matching in O(1) time
The search stage in pattern matching based on 
deterministic sample can be tuned to work in 
optimal time O(1) and work O(n).
The search stage is preceded by pattern 
preprocessing in optimal time O(loglog m) and 
work O(m).
There exists O(1) time parallel pattern matching 
algorithm with O(1) expected preprocessing time
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Pattern matching in small extra space
Note that one can use the deterministic sample to 
implement sequential pattern matching that works 
in O(n) time and O(log m) extra space.
In fact, one can reduce the extra space to O(1) and 
still keep the linear O(n) pattern search time.  
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Pattern matching with “don’t care” symbols
In some applications we are interested in finding patterns 
that contain special symbols that match any symbol in the 
alphabet
We call these special character “don’t care” symbols
The methods designed for exact string matching do not 
work efficiently if the number of “don’t care” symbols in 
the pattern is large  
Efficient solution to pattern matching with don’t care 
symbols is based on fast computation of convolutions
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Pattern matching with “don’t care” symbols
We assume that the strings are built over binary 
{0,1} extended by a “don’t care” symbol *
For a larger alphabet A of cardinality n we can 
encode each symbol by exactly log n bits
For any pattern P∈{0,1,*}* we define two strings:

P0 which is P in which all occurrences of *s are 
replaced by 0s, and 
P1 which is P in which all occurrences of *s are 
replaced by 1s and then all bits are negated
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Example of P, P1 and P2

Let pattern P=011*01011**1*0, reversed P is
P0=01100101100100, 
Also after replacing *s with 1s we get a string
01110101111110, and negating all bits we have
P1=10001010000001.
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Pattern matching with “don’t care” symbols
The search for pattern P in text T is replaced by:
1) the search for P0 in text T, and
2) the search for P1 in text T with all bits negated
In both cases for each text position we count the 
number of recognized 1s (in case 2 the number of 
1s corresponds to the number of 0s in P)
If at any text position the number of matched 1s 
and 0s is the same as the number of 1s and 0s in P
the pattern occurrence is found.
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Pattern matching with “don’t care” symbols
Let P=011*01011**1*0, and
Text T=0101010111100101110101110110101110
Then P1=01100101100100, P2=10001010000001.

P1=01100101100100
T=0101010111100101110101110110101110

~T=1010101000011010001010001001010001
P2=10001010000001
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The Fast Fourier Transform
But how can we match efficiently all 1s in 
patterns P1 and P0? 
Rather surprisingly we can translate the matching 
of all 1s into the multiplication of large integers
and polynomials
The Fast Fourier Transform is a surprisingly 
efficient procedure for multiplying such objects 
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The Fast Fourier Transform
A polynomial represented in a coefficient form is described 
by a coefficient vector a= [a0, a1, …,an-1] as follows:

The degree of such a polynomial is the largest index of non-
zero coefficient ai

A coefficient vector of length n can represent polynomials 
of degree n-1
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Multiplication of Polynomials
Fast multiplication of two polynomials p(x)·q(x) as 
defined in coefficient form, is seen as follows
Consider p(x)·q(x), where:

p(x)= Σ ai·xi and q(x)= Σ bi·xi

Then p(x)·q(x)=
Σ ci·xi, where ci= Σ aj·bi-j, for i= m-1,..,n+m-2

The coefficients ci for other values are based on 
shorter summations, and we have no interest in them

i=0
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i=0
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n+m-2

i=0 j=i-m+1
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Convolutions and FFT

The equation defines a vector c = [c0, c1, …,cn-1], 
which we is the convolution of the vectors a and b
If we apply the definition of convolutions directly, 
then it will take us time Θ(nm) to multiply the two 
polynomials p(x) and q(x)
The Fast Fourier Transform (FFT) algorithm allows 
us to perform this multiplication in time O(n log m).

13/02/2006 Applied Algorithmics - week4 26

Convolutions and PM with don’t cares
So what the convolutions have to do with pattern 
matching with “don’t care” symbols?
In fact convolutions help a lot. One can interpret 
patterns P1

R and P0
R as well as text(s) T and ~T as 

binary coefficients of polynomials of degrees m-1
and n-1 respectively.
And in particular we are interested in convolutions 
in polynomials P1

R(x)·T(x) and P0
R(x)·~T(x)
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Convolutions and PM with don’t cares
Since convolutions of polynomials of degree n
and m can be computed in time O(n·log m) we can 
compute convolutions for P1

R(x)·T(x) and 
P0

R(x)·~T(x) in time O(n·log m).
The values of convolutions correspond to the 
number of matched 1s and 0s at consecutive 
positions in text T
Theorem: The pattern matching with don’t care 
symbols can be solved in time O(n·log m).
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Convolutions and PM with don’t cares
Convolutions forming a coefficient at terms with power 
i= m-1,..,n+m-2 correspond to number of matched ones

i-m+1 i-1 i

0 m-1m-2
the convolution of these 
values will form the
coefficient of term xi


