
Applied Algorithmics COMP526 – tutorial 5

L.A. Gąsieniec and D. Cartwright

1 Questions

1.1 Suffix-trees and compact suffix trees

Draw asuffix treefor an input stringabbabbaa and further form acompact suffix tree. Comment
briefly on sizes ofsuffix treesandcompact suffix treesfor strings built over constant size alphabets.

1.2 Off-line pattern matching

Write a pseudocode of a recursive procedure that finds a pattern p = p[0, ..,m − 1] in a text
t = t[0, .., n − 1] ∈ {a, b}∗ available in the form of a compact suffix treeT.

1

2 Solutions

2.1 Suffix-trees and compact suffix trees

The suffix tree, see Figure 1, for the stringabbabbaais a trie that contains all suffixes ofabbabbaa.
A compact suffix tree for the string is obtained by exchange ofall chains (including single edges)
in the suffix tree by a reference to an appropriate substring of abbabbaa.

3 61 2 4 5 70
String: a b b a b b a a

a
#

b

ba#a

a

#

b

a

b

a

a
a

a

a

b

b

a

b

a

b a

#

b

a

b

#

#

#

#

#

Suffix tree Compact suffix tree

#

#

#
#

#

#

#

#

#

[0,0]
[0,0] [1,1]

[0,0]

[0,0]
[1,3]

[0,0]

[0,0]

[2,3]

[4,7]

[4,7] [4,7]

Figure 1: The suffix tree and a compact suffix tree forabbababa

A standard suffix tree might be as large asΩ(n2), e.g., when all symbols in the input string are
different. However, one can construct a compact suffix tree of sizeO(n), which is a standard suffix
tree in which all chains (including single edges) are replaced by a reference to the appropriate
substring.

2.2 Off-line pattern matching

Assume that each nodev in the suffixT tree keeps the following information:

• v.lchild andv.rchild to denote links to the left child and to the right child respectively. Any
of these links is set tonull if there is no branch leading to the appropriate child.

• v.hash which is set totrue is v represents some suffix,

• (v.li, v.lj) and(v.ri, v.rj) to denote labels on edges leading to children, where each label is
a pair of corresponding indices in the textt.

2

Assume also that we have a linear functionpref(x, y) that checks whether a stringx is a prefix of
another stringy.

function match(v : node, k : integer) : boolean;

if (p[k] = a) and(v.lchild 6= null) then (if the next symbol inp is a, go to the left subtree)
if pref(t[v.li, .., v.lj], p[k, ..,m − 1]) then

return (match(v.lchild, k + v.lj − v.li + 1));
elseifpref(p[k, ..,m− 1], t[v.li, .., v.lj]) then

return (true);
else return (false);

elseif(p[k] = b) and(v.rchild 6= null) then (if the next symbol inp is b, go to the right subtree)
if pref(t[v.ri, .., v.rj], p[k, ..,m − 1]) then

return (match(v.rchild, k + v.rj − v.ri + 1));
elseifpref(p[k, ..,m− 1], t[v.ri, .., v.rj]) then

return (true);
else return (false);

else return (false); (if there is no appropriate child, exit)

endmatch;

(somewhere in the Main program)
...
k ← 0;
if match(T, 0) then report thatp occurs int

elsereport thatp does not occur int.
...

3

	Questions
	Suffix-trees and compact suffix trees
	Off-line pattern matching

	Solutions
	Suffix-trees and compact suffix trees
	Off-line pattern matching

