Off-line text search (indexing)

- *Off-line text search* refers to the situation in which a preprocessed digital collection of documents, e.g., a text database, is searched for specific patterns, similarities, irregularities, etc.
- \Box In the off-line text search precomputed text data structures support efficient simultaneous examination of multiple documents stored on the system.
- \Box Off-line text searching methods are used in a large variety of applications ranging from bibliographic databases, word processing environments, search engines (Google, Bing, Yahoo, etc), intrusion detection and analysis of DNA/RNA sequences.
- \Box Off-line text search methods are very often referred to as text indexing methods.

```
27/02/2011
```
Applied Algorithmics - week5 ¹

Suffix Trees

27/02/2011

27/02/2011

- ^A*suffix tree* is a data structure that exposes in detail the internal structure of a string
- \Box The real virtue of suffix trees comes from their use in linear time solutions to many string problems more complex than exact matching
- \Box Suffix trees provide a bridge between exact matching problems and matching with various types of errors

Applied Algorithmics - week5 2

Suffix Trees and pattern matching

- In *off-line pattern matching* one is allowed to process the text *T=T[0..n-1]* in time *O(n)*, s.t., any further matching queries with unknown pattern *P=P[0..m-1]* can be served in time *O(m)*.
- \Box Compact suffix trees provide efficient solution to off-line pattern matching problem
- Compact suffix trees provide also solution to a number of *substring problems*, *periodicities* and *regularities*

Compact suffix trees - brief history

- First linear algorithm for constructing compact suffix trees in '73 by *Weiner*
- \Box More space efficient also linear algorithm was introduced in '76 by *McCreight*
- An alternative, conceptually different (and easier) algorithm for linear construction of compact suffix trees was proposed by *Ukkonen* in '95

Tries - trees of strings

- ^A*trie ^T* for a set of strings *^S* over alphabet *^A* is a rooted tree, such that:
	- edges in *T* are labeled by single symbols from *A*,
	- each string $s \in S$ is represented by a path from the *root* of T to some lost of T of *T* to some leaf of *T,*
	- \blacksquare for some technical reasons (e.g., to handle the case when for some $s, w \in S$, *s* is a prefix of *w*) every string $s \in S$ is represented in T as s *th* where *this* a special $s \in S$ is represented in *T* as $s \neq$, where \neq is a special symbol that does not belong to Λ symbol that does not belong to *A*.

Applied Algorithmics - week5 5

Tries - example

 Strings in *S={a,aba,bba,abba,abab}* are replaced by *a#*, *aba#*, *bba#*, *abba#*, *abab#* respectively

Suffix trees

27/02/2011

- ^A*suffix tree ST(w)* is a trie that contains all suffixes of a given word *^w*, i.e.,
- \Box Similarly as it happens in tries ends of a suffixes are denoted by the special character *#* which form leaves in *ST(w)*
- Moreover each internal node of the suffix tree *ST(w)* represent the end of some substring of *^w*

Suffix Trees - example

- Take *w=f5=babbabab* (*5th* Fibonacci word)
- \Box The suffixes of *^w* are

27/02/2011

Suffix Trees - example

Compact suffix trees

- \Box We know that suffix trees can be very large, i.e., quadratic in the size of an input string, e.g. when the input string has many different symbols.
- This problem can be cured if we encode all *chains* (paths with nodes of degree 2) in the suffix tree by reference to some substring in the original string.

Applied Algorithmics - week5

A suffix tree with encoded chains is called a *compact suffix tree*.

Compact suffix trees - example

Compact suffix trees

- *Theorem:* The size of a compact suffix tree constructed for any string *w=w[0..n-1] is O(n)*
	- In the (compact) suffix tree there is only n leaves marked by *#*s
	- Since each internal node in the compact suffix tree is of degree $≥$ 2 there are $≤$ *n*-*1* edges in the tree
	- - Each edge is represented by two indexes in the original string *w*
	- Thus the total space required is *linear* in *n*. -

Longest repeated sequence

 \Box Using a compact suffix tree for any string *w=w[0..n-1]* we can find the longest repeated sequence in *w* in time *O(n)*.

Suffix trees for several strings

- One can compute joint properties of two (or more) strings w_1 and w_2 constructing a single compact suffix tree *T* for string $w_1 \text{\textless} w_2 \text{\textless} \textless w_1$, where
	- Symbol \oint does not belong neither to w_1 nor to w_2
	- **All branches in** *T* are truncated below the special symbol *\$*
- \Box For example, using similar procedure one can compute the longest substring shared by w_1 and w_2

Longest shared substring

◻ Initially, for each node *v* [∈] *^T* we compute attribute *shares*, which says whether *^v* is an ancestor of leaves *\$* and *#*

Longest shared substring

Using a truncated compact suffix tree for the string $w_1 \mathcal{S} w_2$ we can find the longest shared substring by w_l *and* w_2 in linear time.

Find the deepest

node in the tree **if** *v.shares={\$,#}* then which represents substrings from *^w1 and w²* $w_l[i+x-l]=\int d\theta$ *depth x ^w2[j+x-1]*

27/02/2011

27/02/2011

procedure *longest*(*v*:tree; *depth*: integer); **if** (*depth>max-depth*) **then** *max-depth* \leftarrow *depth*;
ash *u* \in *y abild* **d**e **for each** *^u*[∈] *v.child* **do** *longest(v,depth+length(v,u));*

Applied Algorithmics - week5 14

 $max\text{-}depth \leftarrow 0;$
 $l_{\text{on}} \text{cost}(T \cap \cdot)$ *longest*(*T,0*);**return**(*max-depth*);

…

…

 $w_j[i..m-1]$ $w_2[j..m-1]$ Applied Algorithmics - week5 16

Lowest common ancestor - LCA

- \Box \Box A node *z* is the lowest common ancestor of any two nodes *^u*,*^v*in the tree T rooted in the node r , $z = lca_T(u, v)$, iff:
	- 1) node *z* belongs to *both* paths from u to r and from v to r 2) node *z* is the deepest node in *T* with property 1)

Applied Algorithmics - week5 17

Lowest common ancestor

- *Theorem:* Any tree of size n can preprocessed in time *O(n)*, such that, the *lowest common ancestor query lca(u,v)*, for any two nodes u,v in the tree can be served in *O(1)* time.
- \Box For example, we can preprocess any suffix tree in linear time and then compute the longest prefix shared by any two suffixes in *O(1)* time.
- \Box LCA queries have also many other applications.

Applied Algorithmics - week5 18

Pattern matching with k mismatches

- \Box So far we discussed algorithmic solutions either for exact pattern matching or pattern matching with don't care symbols, where the choice of text symbols was available at fixed pattern positions
- In *pattern matching with k mismatches* we say that an occurrence of the pattern is acceptable if there is at most *k* mismatches between pattern symbols and respective substring of the text

Pattern matching with k mismatches

27/02/2011

Pattern matching with k mismatches

- \Box As many other instances of pattern matching also in this case one can provide an easy solution with time complexity *O(m·n)*. However we are after faster solution.
- The search stage in pattern matching with *k* mismatches is preceded by the construction of a compact suffix tree *ST* for the string *P\$T#*
- \Box The tree *ST* is later processed for *LCA* queries which will allow to fast recognition of matching substrings *Si*

Applied Algorithmics - week5 21

 \Box Both steps are preformed in linear time

Pattern matching with k mismatches

- П During the search stage each text position is tested for potential approximate occurrence of the pattern*P*
- Consecutive blocks S_i are recovered in $O(1)$ time via *LCA* queries in preprocessed \Box *ST* tree at most *k* times, which gives total complexity *O(kn).*

Suffix arrays

- \Box One of the very attractive alternatives to compact suffix trees is a *suffix array*
- \Box For any string $w=w[0..n-1]$ the suffix array is an array of length *n* in which suffixes (namely their indexes) of w are sorted in lexicographical order
- \Box The space required to compute and store the suffix arrays is smaller, the construction is simpler, and the use/properties are comparable with suffix trees

Suffix arrays - example

27/02/2011