—

Off-line text search (indexing)

O Off-line text search refers to the situation in which a preprocessed
digital collection of documents, e.g., a text database, is searched for
specific patterns, similarities, irregularities, etc.

O In the off-line text search precomputed text data structures support
efficient simultaneous examination of multiple documents stored on
the system.

O Off-line text searching methods are used in a large variety of
applications ranging from bibliographic databases, word processing
environments, search engines (Google, Bing, Yahoo, etc),
intrusion detection and analysis of DNA/RNA sequences.

O Off-line text search methods are very often referred to as text
indexing methods.

27/02/2011 Applied Algorithmics - week5 1

—

Suffix Trees

O A suffix tree is a data structure that exposes in
detail the internal structure of a string

O The real virtue of suffix trees comes from their
use in linear time solutions to many string
problems more complex than exact matching

O Suffix trees provide a bridge between exact
matching problems and matching with various
types of errors

27/02/2011 Applied Algorithmics - week5 2

—

Suffix Trees and pattern matching

O In off-line pattern matching one is allowed to
process the text 7=T/0..n-1] in time O(n), s.t., any
further matching queries with unknown pattern
P=P[0..m-1] can be served in time O(m).

O Compact suffix trees provide efficient solution to
off-line pattern matching problem

0 Compact suffix trees provide also solution to a
number of substring problems, periodicities and
regularities

27/02/2011 Applied Algorithmics - week5 3

—

Compact suffix trees - brief history

O First linear algorithm for constructing compact
suffix trees in “73 by Weiner

O More space efficient also linear algorithm was
introduced in “76 by McCreight

O An alternative, conceptually different (and easier)
algorithm for linear construction of compact suffix
trees was proposed by Ukkonen in ‘95

27/02/2011 Applied Algorithmics - week5 4

Tries - trees of strings

O A trie T for a set of strings S over alphabet A is a
rooted tree, such that:
m edges in T are labeled by single symbols from A,
m each string s € S is represented by a path from the root
of T to some leaf of 7,

m for some technical reasons (e.g., to handle the case
when for some s,w € §, s 1s a prefix of w) every string
s € Sis represented in T as s#, where # is a special
symbol that does not belong to A.

27/02/2011 Applied Algorithmics - week5 5

Tries - example

O Strings in S={a,aba,bba,abba,abab} are replaced
by a#, aba#, bba#, abba#, abab# respectively

27/02/2011

T
i,

root

J
",

Applied Algorithmics - week5

Suffix trees

O A suffix tree ST(w) is a trie that contains all
suffixes of a given word w, 1.e.,

O Similarly as it happens in tries ends of a suffixes
are denoted by the special character # which form
leaves in ST(w)

O Moreover each internal node of the suffix tree
ST(w) represent the end of some substring of w

27/02/2011 Applied Algorithmics - week5 7

Suffix Trees - example

0 Take w=fs=babbabab (5th Fibonacci word)
O The suffixes of w are

27/02/2011

b

ab

bab

abab
babab
bbabab
abbabab
babbabab

represented in ST(w) as
represented in ST(w) as
represented in ST(w) as
represented in ST(w) as
represented in ST(w) as
represented in ST(w) as
represented in ST(w) as
represented in ST(w) as

Applied Algorithmics - week5

b#

ab#

bab#
abab#
babab#
bbabab#
abbabab#
babbabab#

Suffix Trees - example

suffixes of w
m b#

m ab#

m bab#

m abab#

m babab#

-~ m bbabab#
abbabab#
- m babbabab#

27/02/2011 Applied Algorithmics - week5 9

Compact suffix trees

O We know that suffix trees can be very large, i.e.,
quadratic in the size of an input string, e.g. when
the input string has many different symbols.

O This problem can be cured if we encode all chains
(paths with nodes of degree 2) in the suffix tree by
reference to some substring in the original string.

O A suffix tree with encoded chains is called a
compact suffix tree.

27/02/2011 Applied Algorithmics - week5 10

Compact suffix trees - example

Suffix tree Compact

Suffix tree

[1,2]

Original stringw =babbabab
01234567

27/02/2011 . Applied Algorithmics - week5 11

Compact suffix trees

O Theorem: The size of a compact suffix tree
constructed for any string w=w/[0..n-1] is O(n)

= In the (compact) suffix tree there is only n leaves
marked by #s

= Since each internal node in the compact suffix tree is
of degree > 2 there are <n-1 edges in the tree

= Each edge is represented by two indexes in the
original string w
m Thus the total space required is linear in n.

27/02/2011 Applied Algorithmics - week5 12

Longest repeated sequence

O Using a compact suffix tree for any string w=w/[0..n-1] we
can find the longest repeated sequence in w in time O(n).

procedure longest(v:tree; depth: integer);
if v is not a leaf then
if (depth>max-depth)
then max-depth € depth;

Find the deepest
node in the tree
which has degree

atleast 2 for each u € v.children do
longest(u,depth+length(v,u));
wli..i+x-1]=
wlj..j+x-1] max-depth € 0;
longest(T.root,0);
return(max-depth);
27/02/2011 w/, J +X..1m-1 | Applied Algorithmics - week5 13

wli+x..m-1]

Suffix trees for several strings

O One can compute joint properties of two (or more)
strings w; and w, constructing a single compact
suffix tree 7 for string w,8w,#, where
= Symbol § does not belong neither to w, nor to w,

m All branches in T are truncated below the special
symbol $

O For example, using similar procedure one can
compute the longest substring shared by w, and w,

27/02/2011 Applied Algorithmics - week5 14

Longest shared substring

O Initially, for each node v € T we compute attribute shares,
which says whether v is an ancestor of leaves $ and #

function sharing(v:tree): set of {$,#}

Find the deepest
if v is a leaf then

node in the tree

which represents return(v.symbol)
substrings from else
w; and w, set € {};
for each u e v.children do
w[i.i+x-1]= set €& set U sharing(u);
wolj.j+x-1] v.shares € set,

return(v.shares);

sharing(T.root);
27/02/2011 w, [i+x.m-1] Wz[j+x..m- 1] Applied Algorithmics - week5

Longest shared substring

0 Using a truncated compact suffix tree for the string w,$w, we can
find the longest shared substring by w, and w, in linear time.

procedure longest(v:tree; depth: integer);
if v.shares={$,#} then
if (depth>max-depth)
then max-depth € depth;

Find the deepest
node in the tree
which represents
substrings from

w; and w, for each u € v.child do
longest(v,depth+length(v,u));
w,[i+x-1]=
wolj+x-1] max-depth € 0,

longest(T,0);
return(max-depth);

27/02/2011 w,[i..m—]] wz[],,m-]] Applied Algorithmics - week5

Lowest common ancestor - LCA

O A node z is the lowest common r
ancestor of any two nodes u,v in
the tree 7 rooted in the node r,
z =lca(u,v), iff:
1) node z belongs to both paths
from u to r and from v to r

z =lca(u,v)

2) node z is the deepest node in
T with property 1)

27/02/2011 Applied Algorithmics - week5 17

Lowest common ancestor

O Theorem: Any tree of size n can preprocessed in
time O(n), such that, the lowest common ancestor
query lca(u,v), for any two nodes u,v in the tree
can be served in O(/) time.

O For example, we can preprocess any suffix tree in
linear time and then compute the longest prefix
shared by any two suffixes in O(1) time.

O LCA queries have also many other applications.

27/02/2011 Applied Algorithmics - week5 18

Pattern matching with k mismatches

O So far we discussed algorithmic solutions either
for exact pattern matching or pattern matching
with don’t care symbols, where the choice of text
symbols was available at fixed pattern positions

O In pattern matching with k mismatches we say that
an occurrence of the pattern is acceptable if there
1s at most k mismatches between pattern symbols
and respective substring of the text

27/02/2011 Applied Algorithmics - week5 19

Pattern matching with k mismatches

at most k mismatches
acceptable pattern occurrence

e\

1 BISNENIEI
Is sl

T

matching substrings

27/02/2011 Applied Algorithmics - week5 20

Text T

Pattern matching with k mismatches

O As many other instances of pattern matching also in this
case one can provide an easy solution with time
complexity O(m-n). However we are after faster solution.

O The search stage in pattern matching with £ mismatches
1s preceded by the construction of a compact suffix tree
ST for the string P$T#

O The tree ST is later processed for LCA queries which will
allow to fast recognition of matching substrings S,

O Both steps are preformed in linear time

27/02/2011 Applied Algorithmics - week5 21

Pattern matching with k mismatches

O During the search stage each text position is tested for potential approximate
occurrence of the pattern P

o Consecutive blocks S, are recovered in O(1) time via LCA queries in preprocessed
ST tree at most k times, which gives total complexity O(kn).

1 BIE lSHl N s

P suffix u in P

pattern P

text T

4

27/02/2011 Applied Algorithmics - week5

Suffix arrays

O One of the very attractive alternatives to compact
suffix trees is a suffix array

O For any string w=w/[0..n-1] the suffix array is an
array of length » in which suffixes (namely their
indexes) of w are sorted in lexicographical order

0O The space required to compute and store the suffix
arrays 1s smaller, the construction is simpler, and
the use/properties are comparable with suffix trees

27/02/2011 Applied Algorithmics - week5 23

Suffix arrays - example

Original stringw =babbabab Suffixarrayw=64175302

01234567 01234567
O Suffix arrays provide tools for off-line ab [6]
pattern matching in time O(m-log n), abab [4]
yvhere n is the length of the text and m abbabab [1]
is the length of the pattern b [7]
O There exists linear transformation bab [5]
between suffix trees and suffix arrays a
) .) babab|[3]
O Suffix arrays provide simple and
efficient mechanism for several text babbabab [0]
compression methods bbabab [2]

27/02/2011 Applied Algorithmics - week5 24

