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Off-line text search (indexing)

O Off-line text search refers to the situation in which a preprocessed
digital collection of documents, e.g., a text database, is searched for
specific patterns, similarities, irregularities, etc.

O In the off-line text search precomputed text data structures support
efficient simultaneous examination of multiple documents stored on
the system.

O Off-line text searching methods are used in a large variety of
applications ranging from bibliographic databases, word processing
environments, search engines (Google, Bing, Yahoo, etc),
intrusion detection and analysis of DNA/RNA sequences.

O Off-line text search methods are very often referred to as text
indexing methods.
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Suffix Trees

O A suffix tree is a data structure that exposes in
detail the internal structure of a string

O The real virtue of suffix trees comes from their
use in linear time solutions to many string
problems more complex than exact matching

O Suffix trees provide a bridge between exact
matching problems and matching with various
types of errors
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Suffix Trees and pattern matching

O In off-line pattern matching one is allowed to
process the text 7=T/0..n-1] in time O(n), s.t., any
further matching queries with unknown pattern
P=P[0..m-1] can be served in time O(m).

O Compact suffix trees provide efficient solution to
off-line pattern matching problem

0 Compact suffix trees provide also solution to a
number of substring problems, periodicities and
regularities
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Compact suffix trees - brief history

O First linear algorithm for constructing compact
suffix trees in “73 by Weiner

O More space efficient also linear algorithm was
introduced in “76 by McCreight

O An alternative, conceptually different (and easier)
algorithm for linear construction of compact suffix
trees was proposed by Ukkonen in ‘95
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Tries - trees of strings

O A trie T for a set of strings S over alphabet A is a
rooted tree, such that:
m edges in T are labeled by single symbols from A,
m each string s € S is represented by a path from the root
of T to some leaf of 7,

m for some technical reasons (e.g., to handle the case
when for some s,w € §, s 1s a prefix of w) every string
s € Sis represented in T as s#, where # is a special
symbol that does not belong to A.
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Tries - example

O Strings in S={a,aba,bba,abba,abab} are replaced
by a#, aba#, bba#, abba#, abab# respectively

27/02/2011

T
i,

root

J
",

Applied Algorithmics - week5

Suffix trees

O A suffix tree ST(w) is a trie that contains all
suffixes of a given word w, 1.e.,

O Similarly as it happens in tries ends of a suffixes
are denoted by the special character # which form
leaves in ST(w)

O Moreover each internal node of the suffix tree
ST(w) represent the end of some substring of w
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Suffix Trees - example

0 Take w=fs=babbabab (5th Fibonacci word)
O The suffixes of w are
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Suffix Trees - example

suffixes of w
m b#

m ab#

m  bab#

m  abab#

m  babab#

-~ m  bbabab#
abbabab#
- m  babbabab#
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Compact suffix trees

O We know that suffix trees can be very large, i.e.,
quadratic in the size of an input string, e.g. when
the input string has many different symbols.

O This problem can be cured if we encode all chains
(paths with nodes of degree 2) in the suffix tree by
reference to some substring in the original string.

O A suffix tree with encoded chains is called a
compact suffix tree.
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Compact suffix trees - example

Suffix tree Compact

Suffix tree

[1,2]

Original stringw =babbabab
01234567
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Compact suffix trees

O Theorem: The size of a compact suffix tree
constructed for any string w=w/[0..n-1] is O(n)

= In the (compact) suffix tree there is only n leaves
marked by #s

= Since each internal node in the compact suffix tree is
of degree > 2 there are <n-1 edges in the tree

= Each edge is represented by two indexes in the
original string w
m Thus the total space required is linear in n.
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Longest repeated sequence

O Using a compact suffix tree for any string w=w/[0..n-1] we
can find the longest repeated sequence in w in time O(n).

procedure longest(v:tree; depth: integer);
if v is not a leaf then
if (depth>max-depth)
then max-depth € depth;

Find the deepest
node in the tree
which has degree

atleast 2 for each u € v.children do
longest(u,depth+length(v,u));
wli..i+x-1]=
wlj..j+x-1] max-depth € 0;
longest(T.root,0);
return(max-depth);
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wli+x..m-1]

Suffix trees for several strings

O One can compute joint properties of two (or more)
strings w; and w, constructing a single compact
suffix tree 7 for string w,8w,#, where
= Symbol § does not belong neither to w, nor to w,

m All branches in T are truncated below the special
symbol $

O For example, using similar procedure one can
compute the longest substring shared by w, and w,
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Longest shared substring

O Initially, for each node v € T we compute attribute shares,
which says whether v is an ancestor of leaves $ and #

function sharing(v:tree): set of {$,#}

Find the deepest
if v is a leaf then

node in the tree

which represents return(v.symbol)
substrings from else
w; and w, set € {};
for each u e v.children do
w[i.i+x-1]= set €& set U sharing(u);
wolj.j+x-1] v.shares € set,

return(v.shares);

sharing(T.root);
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Longest shared substring

0 Using a truncated compact suffix tree for the string w,$w, we can
find the longest shared substring by w, and w, in linear time.

procedure longest(v:tree; depth: integer);
if v.shares={$,#} then
if (depth>max-depth)
then max-depth € depth;

Find the deepest
node in the tree
which represents
substrings from

w; and w, for each u € v.child do
longest(v,depth+length(v,u));
w,[i+x-1]=
wolj+x-1] max-depth € 0,

longest(T,0);
return(max-depth);
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Lowest common ancestor - LCA

O A node z is the lowest common r
ancestor of any two nodes u,v in
the tree 7 rooted in the node r,
z =lca(u,v), iff:
1) node z belongs to both paths
from u to r and from v to r

z =lca(u,v)

2) node z is the deepest node in
T with property 1)
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Lowest common ancestor

O Theorem: Any tree of size n can preprocessed in
time O(n), such that, the lowest common ancestor
query lca(u,v), for any two nodes u,v in the tree
can be served in O(/) time.

O For example, we can preprocess any suffix tree in
linear time and then compute the longest prefix
shared by any two suffixes in O(1) time.

O LCA queries have also many other applications.
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Pattern matching with k mismatches

O So far we discussed algorithmic solutions either
for exact pattern matching or pattern matching
with don’t care symbols, where the choice of text
symbols was available at fixed pattern positions

O In pattern matching with k mismatches we say that
an occurrence of the pattern is acceptable if there
1s at most k mismatches between pattern symbols
and respective substring of the text
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Pattern matching with k mismatches

at most k mismatches
acceptable pattern occurrence
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Pattern matching with k mismatches

O As many other instances of pattern matching also in this
case one can provide an easy solution with time
complexity O(m-n). However we are after faster solution.

O The search stage in pattern matching with £ mismatches
1s preceded by the construction of a compact suffix tree
ST for the string P$T#

O The tree ST is later processed for LCA queries which will
allow to fast recognition of matching substrings S,

O Both steps are preformed in linear time
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Pattern matching with k mismatches

O During the search stage each text position is tested for potential approximate
occurrence of the pattern P

o Consecutive blocks S, are recovered in O(1) time via LCA queries in preprocessed
ST tree at most k times, which gives total complexity O(kn).
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Suffix arrays

O One of the very attractive alternatives to compact
suffix trees is a suffix array

O For any string w=w/[0..n-1] the suffix array is an
array of length » in which suffixes (namely their
indexes) of w are sorted in lexicographical order

0O The space required to compute and store the suffix
arrays 1s smaller, the construction is simpler, and
the use/properties are comparable with suffix trees
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Suffix arrays - example

Original stringw =babbabab Suffixarrayw=64175302

01234567 01234567
O Suffix arrays provide tools for off-line ab [6]
pattern matching in time O(m-log n), abab [4]
yvhere n is the length of the text and m abbabab [1]
is the length of the pattern b [7]
O There exists linear transformation bab [5]
between suffix trees and suffix arrays a
) . ) babab|[3]
O Suffix arrays provide simple and
efficient mechanism for several text babbabab [0]
compression methods bbabab [2]
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