
Off-line text search (indexing)

� Off-line text search refers to the situation in which a preprocessed 
digital collection of documents, e.g., a text database, is searched for 
specific patterns, similarities, irregularities, etc. 

� In the off-line text search precomputed text data structures support 
efficient simultaneous examination of multiple documents stored on 
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efficient simultaneous examination of multiple documents stored on 
the system. 

� Off-line text searching methods are used in a large variety of 
applications ranging from  bibliographic databases, word processing 
environments,  search engines (Google, Bing, Yahoo, etc),  
intrusion detection and analysis of DNA/RNA sequences. 

� Off-line text search methods are very often referred to as text 
indexing methods. 

Suffix Trees

� A suffix tree is a data structure that exposes in 

detail the internal structure of a string

� The real virtue of suffix trees comes from their 
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use in linear time solutions to many string 

problems more complex than exact matching

� Suffix trees provide a bridge between exact 

matching problems and matching with various 

types of errors

Suffix Trees and pattern matching

� In off-line pattern matching one is allowed to 
process the text T=T[0..n-1] in time O(n), s.t., any 
further matching queries with unknown pattern 
P=P[0..m-1] can be served in time O(m).
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P=P[0..m-1] can be served in time O(m).

� Compact suffix trees provide efficient solution to 
off-line pattern matching problem

� Compact suffix trees provide also solution to a 
number of substring problems, periodicities and 
regularities

Compact suffix trees - brief history

� First linear algorithm for constructing compact 

suffix trees in ‘73 by Weiner

� More space efficient also linear algorithm was 
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introduced in ‘76 by McCreight

� An alternative, conceptually different (and easier) 

algorithm for linear construction of compact suffix 

trees was proposed by Ukkonen in ‘95



Tries - trees of strings

� A trie T for a set of strings S over alphabet A is a 
rooted tree, such that:

� edges in T are labeled by single symbols from A,

� each string s ∈ S is represented by a path from the root
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� each string s ∈ S is represented by a path from the root
of T to some leaf of T,

� for some technical reasons (e.g., to handle the case 
when for some s,w ∈ S, s is a prefix of w) every string 
s ∈ S is represented in T as s#, where # is a special 
symbol that does not belong to A.

Tries - example

� Strings in S={a,aba,bba,abba,abab} are replaced 

by a#, aba#, bba#, abba#, abab# respectively

a b
root
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Suffix trees

� A suffix tree ST(w) is a trie that contains all 

suffixes of a given word w, i.e.,

� Similarly as it happens in tries ends of a suffixes 
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are denoted by the special character # which form 

leaves in ST(w)

� Moreover each internal node of the suffix tree 

ST(w) represent the end of some substring of w

Suffix Trees - example

� Take w=f5=babbabab (5th Fibonacci word)

� The suffixes of w are

� b represented in ST(w) as b#

� ab represented in ST(w) as ab#
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� ab represented in ST(w) as ab#

� bab represented in ST(w) as bab#

� abab represented in ST(w) as abab#

� babab represented in ST(w) as babab#

� bbabab represented in ST(w) as bbabab#

� abbabab represented in ST(w) as abbabab#

� babbabab represented in ST(w) as babbabab#



Suffix Trees - example

� suffixes of w
� b#

� ab#

� bab#

ba

#

#

#
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� bab#

� abab#

� babab#

� bbabab#

� abbabab#

� babbabab#
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Compact suffix trees

� We know that suffix trees can be very large, i.e., 

quadratic in the size of an input string, e.g. when 

the input string has many different symbols.
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� This problem can be cured if we encode all chains 

(paths with nodes of degree 2) in the suffix tree by 

reference to some substring in the original string.

� A suffix tree with encoded chains is called a 

compact suffix tree.

Compact suffix trees - example

#

#

#
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[0,0]Suffix tree Compact

Suffix tree [1,2]

[1,2]

[1,2]
[3,7]

[3,7]
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Compact suffix trees

� Theorem: The size of a compact suffix tree 
constructed for any string w=w[0..n-1] is O(n)

� In the (compact) suffix tree there is only n leaves 
marked by #s
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marked by #s

� Since each internal node in the compact suffix tree is 
of degree ≥ 2 there are ≤ n-1 edges in the tree

� Each edge is represented by two indexes in the 
original string w

� Thus the total space required is linear in n.  



Longest repeated sequence

� Using a compact suffix tree for any string w=w[0..n-1] we 
can find the longest repeated sequence in w in time O(n). 

Find the deepest

node in the tree

procedure longest(v:tree; depth: integer);

if v is not a leaf then
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node in the tree

which has degree

at least 2

w[i+x..m-1]
w[j+x..m-1]

if (depth>max-depth)

then max-depth � depth;

for each u ∈ v.children do

longest(u,depth+length(v,u));

…

max-depth � 0;

longest(T.root,0);

return(max-depth);

…

depth x

w[i..i+x-1]=

w[j..j+x-1]

Suffix trees for several strings

� One can compute joint properties of two (or more) 

strings w1 and w2 constructing a single compact 

suffix tree T for string w1$w2# , where
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� Symbol $ does not belong neither to w1 nor to w2

� All branches in T are truncated below the special 

symbol $

� For example, using similar procedure one can 

compute the longest substring shared by w1 and w2

Longest shared substring

� Initially, for each node v ∈ T we compute attribute shares, 

which says whether v is an ancestor of leaves $ and #

Find the deepest

node in the tree

function sharing(v:tree): set of {$,#}

if v is a leaf then
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node in the tree

which represents 

substrings from 

w1 and w2

w1[i+x..m-1] w2[j+x..m-1]

depth x
w1[i..i+x-1]=

w2[j..j+x-1]

return(v.symbol)

else

set � {};

for each u ∈ v.children do

set � set ∪ sharing(u);

v.shares � set;

return(v.shares);

…

sharing(T.root);

…

Longest shared substring

� Using a truncated compact suffix tree for the string w1$w2 we can 
find the longest shared substring by w1 and w2 in linear time. 

procedure longest(v:tree; depth: integer);

if v.shares={$,#} then
Find the deepest

node in the tree
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if (depth>max-depth)

then max-depth � depth;

for each u ∈ v.child do

longest(v,depth+length(v,u));

…

max-depth � 0;

longest(T,0);

return(max-depth);

…

node in the tree

which represents 

substrings from 

w1 and w2

w1[i..m-1] w2[j..m-1]

depth xw1[i+x-1]=

w2[j+x-1]



Lowest common ancestor - LCA

� A node z is the lowest common 

ancestor of any two nodes u,v in 

the tree T rooted in the node r,   

z =lca (u,v), iff:

r
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z =lcaT(u,v), iff:

1) node z belongs to both paths 

from u to r and from v to r

2) node z is the deepest node in 

T with property 1) u

v

z =lca(u,v)

Lowest common ancestor

� Theorem: Any tree of size n can preprocessed in 

time O(n), such that, the lowest common ancestor 

query lca(u,v), for any two nodes u,v in the tree 

can be served in O(1) time.
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can be served in O(1) time.

� For example, we can preprocess any suffix tree in 

linear time and then compute the longest prefix 

shared by any two suffixes in O(1) time.

� LCA queries have also many other applications.

Pattern matching with k mismatches

� So far we discussed algorithmic solutions either 

for exact pattern matching or pattern matching 

with don’t care symbols, where the choice of text 

symbols was available at fixed pattern positions
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symbols was available at fixed pattern positions

� In pattern matching with k mismatches we say that 

an occurrence of the pattern is acceptable if there 

is at most k mismatches between pattern symbols 

and respective substring of the text

Pattern matching with k mismatches

at most k mismatches
acceptable pattern occurrence

Pattern P
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Text T

Pattern P

Si+1

Si

Si

Si+1

matching substrings



Pattern matching with k mismatches

� As many other instances of pattern matching also in this 

case one can provide an easy solution with time 

complexity O(m·n). However we are after faster solution.

� The search stage in pattern matching with k mismatches 
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� The search stage in pattern matching with k mismatches 

is preceded by the construction of a compact suffix tree 

ST for the string P$T#

� The tree ST is later processed for LCA queries which will 

allow to fast recognition of matching substrings Si

� Both steps are preformed in linear time

Pattern matching with k mismatches
� During the search stage each text position is tested for potential approximate 

occurrence of the pattern P

� Consecutive blocks Si are recovered in O(1) time via LCA queries in preprocessed 
ST tree at most k times, which gives total complexity O(kn).

suffix u in P
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text T

pattern P

Si+1

Si

Si

Si+1

suffix v in T

z = lca(u,v) in ST

Suffix arrays

� One of the very attractive alternatives to compact 

suffix trees is a suffix array

� For any string w=w[0..n-1] the suffix array is an 
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array of length n in which suffixes (namely their 

indexes) of w are sorted in lexicographical order

� The space required to compute and store the suffix 

arrays is smaller, the construction is simpler, and 

the use/properties are comparable with suffix trees

Suffix arrays - example

Original string w = b a b b a b a b

0 1 2 3 4 5 6 7

Suffix array w = 6 4 1 7 5 3 0 2

0 1 2 3 4 5 6 7

a b a b  [4]

a b  [6]� Suffix arrays provide tools for off-line 
pattern matching in time O(m·log n), 
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b a b b a b a b  [0]

a b b a b a b  [1]

b b a b a b  [2]

b a b a b [3]

a b a b  [4]

b a b  [5]

b  [7]

pattern matching in time O(m·log n), 
where n is the length of the text and m
is the length of the pattern 

� There exists linear transformation 
between suffix trees and suffix arrays

� Suffix arrays provide simple and 
efficient mechanism for several text 
compression methods


