
Off-line text search (indexing)

� Off-line text search refers to the situation in which a preprocessed
digital collection of documents, e.g., a text database, is searched for
specific patterns, similarities, irregularities, etc.

� In the off-line text search precomputed text data structures support
efficient simultaneous examination of multiple documents stored on

27/02/2011 Applied Algorithmics - week5 1

efficient simultaneous examination of multiple documents stored on
the system.

� Off-line text searching methods are used in a large variety of
applications ranging from bibliographic databases, word processing
environments, search engines (Google, Bing, Yahoo, etc),
intrusion detection and analysis of DNA/RNA sequences.

� Off-line text search methods are very often referred to as text
indexing methods.

Suffix Trees

� A suffix tree is a data structure that exposes in

detail the internal structure of a string

� The real virtue of suffix trees comes from their

27/02/2011 Applied Algorithmics - week5 2

use in linear time solutions to many string

problems more complex than exact matching

� Suffix trees provide a bridge between exact

matching problems and matching with various

types of errors

Suffix Trees and pattern matching

� In off-line pattern matching one is allowed to
process the text T=T[0..n-1] in time O(n), s.t., any
further matching queries with unknown pattern
P=P[0..m-1] can be served in time O(m).

27/02/2011 Applied Algorithmics - week5 3

P=P[0..m-1] can be served in time O(m).

� Compact suffix trees provide efficient solution to
off-line pattern matching problem

� Compact suffix trees provide also solution to a
number of substring problems, periodicities and
regularities

Compact suffix trees - brief history

� First linear algorithm for constructing compact

suffix trees in ‘73 by Weiner

� More space efficient also linear algorithm was

27/02/2011 Applied Algorithmics - week5 4

introduced in ‘76 by McCreight

� An alternative, conceptually different (and easier)

algorithm for linear construction of compact suffix

trees was proposed by Ukkonen in ‘95

Tries - trees of strings

� A trie T for a set of strings S over alphabet A is a
rooted tree, such that:

� edges in T are labeled by single symbols from A,

� each string s ∈ S is represented by a path from the root

27/02/2011 Applied Algorithmics - week5 5

� each string s ∈ S is represented by a path from the root
of T to some leaf of T,

� for some technical reasons (e.g., to handle the case
when for some s,w ∈ S, s is a prefix of w) every string
s ∈ S is represented in T as s#, where # is a special
symbol that does not belong to A.

Tries - example

� Strings in S={a,aba,bba,abba,abab} are replaced

by a#, aba#, bba#, abba#, abab# respectively

a b
root

27/02/2011 Applied Algorithmics - week5 6

a

a

a

b

b

b

b

#

#

#

#

Suffix trees

� A suffix tree ST(w) is a trie that contains all

suffixes of a given word w, i.e.,

� Similarly as it happens in tries ends of a suffixes

27/02/2011 Applied Algorithmics - week5 7

are denoted by the special character # which form

leaves in ST(w)

� Moreover each internal node of the suffix tree

ST(w) represent the end of some substring of w

Suffix Trees - example

� Take w=f5=babbabab (5th Fibonacci word)

� The suffixes of w are

� b represented in ST(w) as b#

� ab represented in ST(w) as ab#

27/02/2011 Applied Algorithmics - week5 8

� ab represented in ST(w) as ab#

� bab represented in ST(w) as bab#

� abab represented in ST(w) as abab#

� babab represented in ST(w) as babab#

� bbabab represented in ST(w) as bbabab#

� abbabab represented in ST(w) as abbabab#

� babbabab represented in ST(w) as babbabab#

Suffix Trees - example

� suffixes of w
� b#

� ab#

� bab#

ba

#

#

#

b
b

b

b
a

a

a

a

27/02/2011 Applied Algorithmics - week5 9

� bab#

� abab#

� babab#

� bbabab#

� abbabab#

� babbabab#

#

#

#

#

#

#

b

b

b

b

b

b

b

b

b

b

a

a

a

aa

a

Compact suffix trees

� We know that suffix trees can be very large, i.e.,

quadratic in the size of an input string, e.g. when

the input string has many different symbols.

27/02/2011 Applied Algorithmics - week5 10

� This problem can be cured if we encode all chains

(paths with nodes of degree 2) in the suffix tree by

reference to some substring in the original string.

� A suffix tree with encoded chains is called a

compact suffix tree.

Compact suffix trees - example

#

#

#

b
b

b

b
a

a

a

a b

#

#

#

#

[0,0]Suffix tree Compact

Suffix tree [1,2]

[1,2]

[1,2]
[3,7]

[3,7]

27/02/2011 Applied Algorithmics - week5 11

#

#

#

#

#

#

b

b

b

b

b

b

b

b

b

b

a

a

a

a
a

a
Original string w = b a b b a b a b

#

#

#

#

0 1 2 3 4 5 6 7

[1,2]

[1,2]
[3,7]

[3,7]

Compact suffix trees

� Theorem: The size of a compact suffix tree
constructed for any string w=w[0..n-1] is O(n)

� In the (compact) suffix tree there is only n leaves
marked by #s

27/02/2011 Applied Algorithmics - week5 12

marked by #s

� Since each internal node in the compact suffix tree is
of degree ≥ 2 there are ≤ n-1 edges in the tree

� Each edge is represented by two indexes in the
original string w

� Thus the total space required is linear in n.

Longest repeated sequence

� Using a compact suffix tree for any string w=w[0..n-1] we
can find the longest repeated sequence in w in time O(n).

Find the deepest

node in the tree

procedure longest(v:tree; depth: integer);

if v is not a leaf then

27/02/2011 Applied Algorithmics - week5 13

node in the tree

which has degree

at least 2

w[i+x..m-1]
w[j+x..m-1]

if (depth>max-depth)

then max-depth � depth;

for each u ∈ v.children do

longest(u,depth+length(v,u));

…

max-depth � 0;

longest(T.root,0);

return(max-depth);

…

depth x

w[i..i+x-1]=

w[j..j+x-1]

Suffix trees for several strings

� One can compute joint properties of two (or more)

strings w1 and w2 constructing a single compact

suffix tree T for string w1$w2# , where

27/02/2011 Applied Algorithmics - week5 14

� Symbol $ does not belong neither to w1 nor to w2

� All branches in T are truncated below the special

symbol $

� For example, using similar procedure one can

compute the longest substring shared by w1 and w2

Longest shared substring

� Initially, for each node v ∈ T we compute attribute shares,

which says whether v is an ancestor of leaves $ and #

Find the deepest

node in the tree

function sharing(v:tree): set of {$,#}

if v is a leaf then

27/02/2011 Applied Algorithmics - week5 15

node in the tree

which represents

substrings from

w1 and w2

w1[i+x..m-1] w2[j+x..m-1]

depth x
w1[i..i+x-1]=

w2[j..j+x-1]

return(v.symbol)

else

set � {};

for each u ∈ v.children do

set � set ∪ sharing(u);

v.shares � set;

return(v.shares);

…

sharing(T.root);

…

Longest shared substring

� Using a truncated compact suffix tree for the string w1$w2 we can
find the longest shared substring by w1 and w2 in linear time.

procedure longest(v:tree; depth: integer);

if v.shares={$,#} then
Find the deepest

node in the tree

27/02/2011 Applied Algorithmics - week5 16

if (depth>max-depth)

then max-depth � depth;

for each u ∈ v.child do

longest(v,depth+length(v,u));

…

max-depth � 0;

longest(T,0);

return(max-depth);

…

node in the tree

which represents

substrings from

w1 and w2

w1[i..m-1] w2[j..m-1]

depth xw1[i+x-1]=

w2[j+x-1]

Lowest common ancestor - LCA

� A node z is the lowest common

ancestor of any two nodes u,v in

the tree T rooted in the node r,

z =lca (u,v), iff:

r

27/02/2011 Applied Algorithmics - week5 17

z =lcaT(u,v), iff:

1) node z belongs to both paths

from u to r and from v to r

2) node z is the deepest node in

T with property 1) u

v

z =lca(u,v)

Lowest common ancestor

� Theorem: Any tree of size n can preprocessed in

time O(n), such that, the lowest common ancestor

query lca(u,v), for any two nodes u,v in the tree

can be served in O(1) time.

27/02/2011 Applied Algorithmics - week5 18

can be served in O(1) time.

� For example, we can preprocess any suffix tree in

linear time and then compute the longest prefix

shared by any two suffixes in O(1) time.

� LCA queries have also many other applications.

Pattern matching with k mismatches

� So far we discussed algorithmic solutions either

for exact pattern matching or pattern matching

with don’t care symbols, where the choice of text

symbols was available at fixed pattern positions

27/02/2011 Applied Algorithmics - week5 19

symbols was available at fixed pattern positions

� In pattern matching with k mismatches we say that

an occurrence of the pattern is acceptable if there

is at most k mismatches between pattern symbols

and respective substring of the text

Pattern matching with k mismatches

at most k mismatches
acceptable pattern occurrence

Pattern P

27/02/2011 Applied Algorithmics - week5 20

Text T

Pattern P

Si+1

Si

Si

Si+1

matching substrings

Pattern matching with k mismatches

� As many other instances of pattern matching also in this

case one can provide an easy solution with time

complexity O(m·n). However we are after faster solution.

� The search stage in pattern matching with k mismatches

27/02/2011 Applied Algorithmics - week5 21

� The search stage in pattern matching with k mismatches

is preceded by the construction of a compact suffix tree

ST for the string P$T#

� The tree ST is later processed for LCA queries which will

allow to fast recognition of matching substrings Si

� Both steps are preformed in linear time

Pattern matching with k mismatches
� During the search stage each text position is tested for potential approximate

occurrence of the pattern P

� Consecutive blocks Si are recovered in O(1) time via LCA queries in preprocessed
ST tree at most k times, which gives total complexity O(kn).

suffix u in P

27/02/2011 Applied Algorithmics - week5 22

text T

pattern P

Si+1

Si

Si

Si+1

suffix v in T

z = lca(u,v) in ST

Suffix arrays

� One of the very attractive alternatives to compact

suffix trees is a suffix array

� For any string w=w[0..n-1] the suffix array is an

27/02/2011 Applied Algorithmics - week5 23

array of length n in which suffixes (namely their

indexes) of w are sorted in lexicographical order

� The space required to compute and store the suffix

arrays is smaller, the construction is simpler, and

the use/properties are comparable with suffix trees

Suffix arrays - example

Original string w = b a b b a b a b

0 1 2 3 4 5 6 7

Suffix array w = 6 4 1 7 5 3 0 2

0 1 2 3 4 5 6 7

a b a b [4]

a b [6]� Suffix arrays provide tools for off-line
pattern matching in time O(m·log n),

27/02/2011 Applied Algorithmics - week5 24

b a b b a b a b [0]

a b b a b a b [1]

b b a b a b [2]

b a b a b [3]

a b a b [4]

b a b [5]

b [7]

pattern matching in time O(m·log n),
where n is the length of the text and m
is the length of the pattern

� There exists linear transformation
between suffix trees and suffix arrays

� Suffix arrays provide simple and
efficient mechanism for several text
compression methods

