Huffman Coding

- David A. Huffman (1951)
 Huffman coding uses frequencies of symbols in a string to build a variable rate prefix code
 Each symbol is mapped to a binary string
 - More frequent symbols have shorter codes
 - No code is a prefix of another
- □ Example:

27/02/2011

Applied Algorithmics - week7

Variable Rate Codes	V	aria	ble	Rate	Coo	des
---------------------	---	------	-----	------	-----	-----

- □ Example:
 - 1) $A \rightarrow 00; B \rightarrow 01; C \rightarrow 10; D \rightarrow 11;$
 - 2) $A \rightarrow 0$; $B \rightarrow 100$; $C \rightarrow 101$; $D \rightarrow 11$;
- □ Two different encodings of *AABDDCAA*
 - 0000011111100000 (16 bits)
 1/1/10100 (14 bits)

Applied Algorithmics - week7

Cost of Huffman Trees

- □ Let $A = \{a_1, a_2, ..., a_m\}$ be the alphabet in which each symbol a_i has probability p_i
- □ We can define the cost of the Huffman tree *HT* as $C(HT) = \sum_{i=1}^{m} p_i \cdot r_i,$

where r_i is the length of the path from the root to a_i

□ The cost C(HT) is the *expected length* (in bits) of a *code word* represented by the tree HT. The value of C(HT) is called the *bit rate* of the code.

Cost of Huffman Trees - example

□ Example:

27/02/2011

• Let $a_1 = A$, $p_1 = 1/2$; $a_2 = B$, $p_2 = 1/8$; $a_3 = C$, $p_3 = 1/8$; $a_4 = D$, $p_4 = 1/4$ where $r_1 = 1$, $r_2 = 3$, $r_3 = 3$, and $r_4 = 2$

HT 0 1 A 0 B C

 $C(HT) = 1 \cdot 1/2 + 3 \cdot 1/8 + 3 \cdot 1/8 + 2 \cdot 1/4 = 1.75$

2

Huffman Tree Property

- □ *Input:* Given probabilities $p_1, p_2, ..., p_m$ for symbols $a_1, a_2, ..., a_m$ from alphabet *A*
- □ *Output:* A tree that *minimizes the average number of bits* (bit rate) to code a symbol from *A*
- □ I.e., the goal is to minimize function:

$C(HT)=\Sigma p_i \cdot r_i,$

where r_i is the length of the path from the root to leaf a_i .

This is called a Huffman tree or Huffman code for alphabet A

Applied Algorithmics - week7

Huffman Tree Property

- □ *Input:* Given probabilities $p_1, p_2, ..., p_m$ for symbols $a_1, a_2, ..., a_m$ from alphabet A
- □ *Output:* A tree that *minimizes the average number of bits* (bit rate) to code a symbol from *A*
- □ I.e., the goal is to minimize function:

 $C(HT) = \Sigma p_i \cdot r_i,$

where r_i is the length of the path from the root to leaf a_i . This is called a *Huffman tree* or *Huffman code* for alphabet A

Applied Algorithmics - week7

P(A) = 0.4, P(B) = 0.1, P(C) = 0.3, P(D) = 0.1, P(E) = 0.1

R

0.1 B 0.3

6

0.3 C 0.4

A

0.4 A

Construction of Huffman Trees Construction of Huffman Trees

- **\Box** Form a (tree) node for each symbol a_i with weight p_i
- □ Insert all nodes to a priority queue *PQ* (e.g., a heap) ordered by nodes probabilities
- **while** (the priority queue has more than two nodes)
 - $\quad \quad \min_{1} \leftarrow remove-min(PQ); \min_{2} \leftarrow remove-min(PQ); \\$
 - create a new (tree) node *T*;
 - *T.weight* \leftarrow *min*₁.*weight* + *min*₂.*weight*;
 - $T.left \leftarrow min_1; T.right \leftarrow min_2;$
 - $\bullet insert(PQ, T)$
- **return** (last node in PQ)

27/02/2011

27/02/2011

Applied Algorithmics - week7

7

5

27/02/2011

0.1

R

0.1

D

27/02/2011

Construction of Huffman Trees

Construction of Huffman Trees

Construction of Huffman Trees

Huffman Codes

□ *Theorem:* For any source *S* the Huffman code can be computed efficiently in time $O(n \cdot log n)$, where *n* is the size of the source *S*.

Proof: The time complexity of Huffman coding algorithm is dominated by the use of priority queues

- One can also prove that Huffman coding creates the most efficient set of prefix codes for a given text
- □ It is also one of the most efficient entropy coder

Applied Algorithmics - week7

Basics of Information Theory

□ The entropy of an information source (string) *S* built over alphabet $A = \{a_1, a_2, .., a_m\}$ is defined as:

 $H(S) = \sum_{i} p_i \cdot log_2(1/p_i)$

where p_i is the probability that symbol a_i in S will occur

- □ $log_2(1/p_i)$ indicates the amount of information contained in a_i , i.e., the number of bits needed to code a_i .
- □ For example, in an image with uniform distribution of gray-level intensity, i.e. all $p_i = 1/256$, then the number of bits needed to encode each gray level is 8 bits. The entropy of this image is 8.

```
27/02/2011
```

27/02/2011

Applied Algorithmics - week7

Huffman Code vs. Entropy

P(A) = 0.4, P(B) = 0.1, P(C) = 0.3, P(D) = 0.1, P(E) = 0.1

□ Entropy:

27/02/2011

- $0.4 \cdot log_2(10/4) + 0.1 \cdot log_2(10) + 0.3 \cdot log_2(10/3) + 0.1 \cdot log_2(10) + 0.1 \cdot log_2(10) = 2.05$ bits per symbol
- □ Huffman Code:
 - $\bullet 0.4 \cdot 1 + 0.1 \cdot 3 + 0.3 \cdot 2 + 0.1 \cdot 4 + 0.1 \cdot 4 = 2.10$
 - Not bad, not bad at all.

Error detection and correction

14

□ Hamming codes:

- codewords in Hamming (error detecting and error correcting) codes consist of *m* data bits and *r* redundant bits.
- Hamming distance between two strings represents the number of bit positions on which two bit patterns differ (similar to pattern matching k mismatches).
- *Hamming distance* of the code is determined by the two codewords whose Hamming distance is the *smallest*.
- *error detection* involves determining if codewords in the received message match closely enough legal codewords.

Applied Algorithmics - week8

13

Error detection and correction

Error detection and correction

- \Box To *detect* properly *d* single bit errors, one needs to apply a *d***+1** code distance.
- \Box To *correct* properly *d* single bit errors, one needs to apply a 2d+1 code distance.
- In general, the price for redundant bits is *too expensive* (!!) П to do error correction for all network messages
- Thus safety and integrity of network communication is based on error detecting codes and extra transmissions in case any errors were detected

Error detection --Detection via parity of subsets of bits via parity of subsets of bits Consider 4 bit words. Add 3 parity bits. Char. ASCII Check bits $D_3D_2D_1D_0$ $P_2P_1P_0$ 00110010000 Н 1001000 0 1 1 0 ??? 1100001 10111001001 а Each parity bit computed on a subset of bits 11101010101 1101101 m Note 1101101 11101010101 m $P_2 = D_3 \operatorname{xor} D_2 \operatorname{xor} D_1 = 0 \operatorname{xor} 1 \operatorname{xor} 1 = 0$ i 1101001 01101011001 Check bits occupy $P_1 = D_3 \operatorname{xor} D_2 \operatorname{xor} D_0 = 0 \operatorname{xor} 1 \operatorname{xor} 0 = 1$ 1101110 01101010110 n power of 2 slots $P_0 = D_3 \operatorname{xor} D_1 \operatorname{xor} D_0 = 0 \operatorname{xor} 1 \operatorname{xor} 0 = 1$ 1100111 01111001111 g 0100000 10011000000 1100011 11111000011 Use this word bit arrangement С 10101011111 0 1101111 $D_3D_2D_1P_2D_0P_1P_0$ 1100100 11111001100 d 0 1 1 0 0 1 1 00111000101 ρ 1100101 2345678 Check bits occupy power of 2 slots! Order of bit transmission 27/02/2011 Applied Algorithmics - week8 21 27/02/2011 Applied Algorithmics - week8 22

23

Detection via parity of subsets of bits no error occurred

 $D_3D_2D_1P_2D_0P_1P_0$ First, we send: No error occurred. But 0 1 1 0 0 1 1 how do we know that? Later, someone gets: $D_3D_2D_1P_2D_0P_1P_0$ 0 1 1 0 0 1 1 And computes: $B_2 = P_2 \operatorname{xor} D_3 \operatorname{xor} D_2 \operatorname{xor} D_1 = 0 \operatorname{xor} 0 \operatorname{xor} 1 \operatorname{xor} 1 = 0$ If all $B_{2}, B_{1}, B_{0} = 0$ $B_1 = P_1 \operatorname{xor} D_3 \operatorname{xor} D_2 \operatorname{xor} D_0 = 1 \operatorname{xor} 0 \operatorname{xor} 1 \operatorname{xor} 0 = 0$ $B_0 = P_0 \operatorname{xor} D_3 \operatorname{xor} D_1 \operatorname{xor} D_0 = 1 \operatorname{xor} 0 \operatorname{xor} 1 \operatorname{xor} 0 = 0$ there are no errors! These equations come from how we computed: $P_2 = D_3 \operatorname{xor} D_2 \operatorname{xor} D_1 = 0 \operatorname{xor} 1 \operatorname{xor} 1 = 0$ $P_1 = D_3 \operatorname{xor} D_2 \operatorname{xor} D_0 = 0 \operatorname{xor} 1 \operatorname{xor} 0 = 1$ $P_0 = D_3 \operatorname{xor} D_1 \operatorname{xor} D_0 = 0 \operatorname{xor} 1 \operatorname{xor} 0 = 1$ 27/02/2011 Applied Algorithmics - week8

Detection via parity of subsets of bits single bit is twisted

Detection via parity of subsets of bits magic trick revealed

Detection via parity of subsets of bits -