
Huffman Coding

� David A. Huffman (1951)

� Huffman coding uses frequencies of symbols in a string to build a variable rate prefix code

� Each symbol is mapped to a binary string

� More frequent symbols have shorter codes

� No code is a prefix of another

27/02/2011 Applied Algorithmics - week7 1

� No code is a prefix of another

� Example:

A 0

B 100

C 101

D 11

D

CB

A

1

1

10

0

0

Variable Rate Codes

� Example:

1) A → 00; B → 01; C → 10; D → 11;

2) A → 0; B → 100; C → 101; D → 11;

27/02/2011 Applied Algorithmics - week7 2

� Two different encodings of AABDDCAA

� 0000011111100000 (16 bits)

� 00100111110100 (14 bits)

Cost of Huffman Trees

� Let A={a1, a2, .., am} be the alphabet in which each

symbol ai has probability pi

� We can define the cost of the Huffman tree HT as

Σ
m

27/02/2011 Applied Algorithmics - week7 3

C(HT)=Σ pi·ri,

where ri is the length of the path from the root to ai

� The cost C(HT) is the expected length (in bits) of a code

word represented by the tree HT. The value of C(HT) is

called the bit rate of the code.

i=1

Cost of Huffman Trees - example

� Example:

� Let a1=A, p1=1/2; a2=B, p2=1/8; a3=C, p3=1/8; a4=D, p4=1/4

where r1=1, r2=3, r3=3, and r4=2

27/02/2011 Applied Algorithmics - week7 4

D

CB

A

1

1

10

0

0
HT

C(HT) =1·1/2 +3·1/8 +3·1/8 +2·1/4=1.75

Huffman Tree Property

� Input: Given probabilities p1, p2, .., pm for symbols a1, a2,

.., am from alphabet A

� Output: A tree that minimizes the average number of bits

(bit rate) to code a symbol from A

27/02/2011 Applied Algorithmics - week7 5

(bit rate) to code a symbol from A

� I.e., the goal is to minimize function:

C(HT)=Σ pi·ri,

where ri is the length of the path from the root to leaf ai.

This is called a Huffman tree or Huffman code for alphabet A

Huffman Tree Property

� Input: Given probabilities p1, p2, .., pm for symbols a1, a2,

.., am from alphabet A

� Output: A tree that minimizes the average number of bits

(bit rate) to code a symbol from A

27/02/2011 Applied Algorithmics - week7 6

(bit rate) to code a symbol from A

� I.e., the goal is to minimize function:

C(HT)=Σ pi·ri,

where ri is the length of the path from the root to leaf ai.

This is called a Huffman tree or Huffman code for alphabet A

Construction of Huffman Trees

� Form a (tree) node for each symbol ai with weight pi

� Insert all nodes to a priority queue PQ (e.g., a heap)
ordered by nodes probabilities

� while (the priority queue has more than two nodes)

27/02/2011 Applied Algorithmics - week7 7

� while (the priority queue has more than two nodes)

� min1 ← remove-min(PQ); min2 ← remove-min(PQ);

� create a new (tree) node T;

� T.weight ← min1.weight + min2.weight;

� T.left ← min1; T.right ← min2;

� insert(PQ, T)

� return (last node in PQ)

Construction of Huffman Trees

P(A)= 0.4, P(B)= 0.1, P(C)= 0.3, P(D)= 0.1, P(E)= 0.1

A
0.4

BDE
0.10.10.1

C
0.3

27/02/2011 Applied Algorithmics - week7 8

ABDE

AB C

D E

C

0.40.1 0.30.2

Construction of Huffman Trees

B

D E

0.1 0.2

0 1

AC
0.40.3

27/02/2011 Applied Algorithmics - week7 9

AC
0.40.3

0 1

D E

0 1

B

0.3

Construction of Huffman Trees

AC
0.40.3

0 1

B

0.3

A
0.4

C

0.6

0 1

27/02/2011 Applied Algorithmics - week7 10

D E

0 1

B

0 1

D E

0 1

B

C

Construction of Huffman Trees

A
0.4 0.6

0 1
1

A

0

27/02/2011 Applied Algorithmics - week7 11

0 1

D E

0 1

B

C

0 1

D E

0 1

B

C

0 1

A

Construction of Huffman Trees

0 1

1

A

0
A = 0

B = 100

27/02/2011 Applied Algorithmics - week7 12

0 1

D E

0 1

B

C

0 1
C = 11

D = 1010

E = 1011

Huffman Codes

� Theorem: For any source S the Huffman code can

be computed efficiently in time O(n·log n) , where n

is the size of the source S.

27/02/2011 Applied Algorithmics - week7 13

Proof: The time complexity of Huffman coding

algorithm is dominated by the use of priority queues

� One can also prove that Huffman coding creates the

most efficient set of prefix codes for a given text

� It is also one of the most efficient entropy coder

Basics of Information Theory

� The entropy of an information source (string) S built over
alphabet A={a1, a2, .., am}is defined as:

H(S) = ∑ i pi·log2(1/pi)

where pi is the probability that symbol ai in S will occur

27/02/2011 Applied Algorithmics - week7 14

where pi is the probability that symbol ai in S will occur

� log2(1/pi) indicates the amount of information contained
in ai, i.e., the number of bits needed to code ai.

� For example, in an image with uniform distribution of
gray-level intensity, i.e. all pi = 1/256, then the number of
bits needed to encode each gray level is 8 bits. The
entropy of this image is 8.

Huffman Code vs. Entropy

� Entropy:

� 0.4 · log2(10/4) + 0.1 · log2(10) + 0.3 · log2(10/3) +

P(A)= 0.4, P(B)= 0.1, P(C)= 0.3, P(D)= 0.1, P(E)= 0.1

27/02/2011 Applied Algorithmics - week7 15

� 0.4 · log2(10/4) + 0.1 · log2(10) + 0.3 · log2(10/3) +

0.1 · log2(10) + 0.1 · log2(10) = 2.05 bits per symbol

� Huffman Code:

� 0.4 · 1 + 0.1 · 3 + 0.3 · 2 + 0.1 · 4 + 0.1 · 4 = 2.10

� Not bad, not bad at all.

Error detection and correction

� Hamming codes:

� codewords in Hamming (error detecting and error correcting)
codes consist of m data bits and r redundant bits.

� Hamming distance between two strings represents the number

27/02/2011 Applied Algorithmics - week8 16

� Hamming distance between two strings represents the number
of bit positions on which two bit patterns differ (similar to
pattern matching k mismatches).

� Hamming distance of the code is determined by the two
codewords whose Hamming distance is the smallest.

� error detection involves determining if codewords in the
received message match closely enough legal codewords.

Error detection and correction

x xo
oox

o o
oo

A code with poor distance properties A code with good distance properties(a) (b)

27/02/2011 Applied Algorithmics - week8 17

x = codewords o = non-codewords

x

x x

x

x

x

x

o
o

o
o

o
o

o

o
o

o

o
x

x x

x

x

x

x

o
o

oo

o
ooo

o

o

o

code distance

Error detection and correction

� To detect properly d single bit errors, one needs to apply a

d+1 code distance.

� To correct properly d single bit errors, one needs to apply

a 2d+1 code distance.

27/02/2011 Applied Algorithmics - week8 18

a 2d+1 code distance.

� In general, the price for redundant bits is too expensive (!!)

to do error correction for all network messages

� Thus safety and integrity of network communication is

based on error detecting codes and extra transmissions in

case any errors were detected

Recalculate

check bits

Information bits Received information bits

Error-Detection System using Check Bits

27/02/2011 Applied Algorithmics - week8 19

Calculate

check bits

Channel

check bits

Compare

Check

bits

Information

accepted if

check bits

match

Received

check bits

Cyclic Redundancy Checking (CRC)

cyclic redundancy check (CRC) is a popular technique

for detecting data transmission errors. Transmitted

messages are divided into predetermined lengths

27/02/2011 Applied Algorithmics - week8 20

messages are divided into predetermined lengths

that are divided by a fixed divisor. According to

the calculation, the remainder number is appended

onto and sent with the message. When the message

is received, the computer recalculates the remainder

and compares it to the transmitted remainder.

If the numbers do not match, an error is detected.

Error detection --

via parity of subsets of bits

27/02/2011 Applied Algorithmics - week8 21

Note

Check bits occupy
power of 2 slots

12345678 ….

Detection via parity of subsets of bits

P2P1P0

Add 3 parity bits.

? ? ?

Each parity bit computed on a subset of bits

0

Consider 4 bit words.

1 0 1

D3D2D1D0

27/02/2011 Applied Algorithmics - week8 22

Each parity bit computed on a subset of bits

P0= D3 xor D1 xor D0 = 0 xor 1 xor 0 = 1

P1 = D3 xor D2 xor D0 = 0 xor 1 xor 0 = 1

P2= D3 xor D2 xor D1 = 0 xor 1 xor 1 = 0

D3D2D1P2D0P1P0

Use this word bit arrangement

0 11 0 0 1 1

Check bits occupy power of 2 slots!

Detection via parity of subsets of bits -
no error occurred

And computes:

First, we send:

Later, someone gets:

No error occurred. But

how do we know that?

D3D2D1P2D0P1P0

0 11 0 0 1 1

D3D2D1P2D0P1P0

0 11 0 0 1 1

27/02/2011 Applied Algorithmics - week8 23

And computes:

If all B2,B1,B0 = 0

there are no errors!

These equations come from how we computed:

B0= P0 xor D3 xor D1 xor D0 = 1 xor 0 xor 1 xor 0 = 0

B1= P1 xor D3 xor D2 xor D0 = 1 xor 0 xor 1 xor 0 = 0

B2= P2 xor D3 xor D2 xor D1 = 0 xor 0 xor 1 xor 1 = 0

P0= D3 xor D1 xor D0 = 0 xor 1 xor 0 = 1

P1 = D3 xor D2 xor D0 = 0 xor 1 xor 0 = 1

P2= D3 xor D2 xor D1 = 0 xor 1 xor 1 = 0

Detection via parity of subsets of bits -
single bit is twisted

First, we send:

Later, someone gets:

What if a cosmic ray hit D1?

How would we know that?

And computes:

D3D2D1P2D0P1P0

0 11 0 0 1 1

D3D2D1P2D0P1P0

0 01 0 0 1 1

27/02/2011 Applied Algorithmics - week8 24

And what does

101= 5 mean?

The position of the

flipped bit!

To repair, just flip it back

We number the least

significant bit with 1, not 0!

0 is reserved for “no errors”.

And computes:

B0= P0 xor D3 xor D1 xor D0 = 1 xor 0 xor 0 xor 0 = 1

B1= P1 xor D3 xor D2 xor D0 = 1 xor 0 xor 1 xor 0 = 0

B2= P2 xor D3 xor D2 xor D1 = 0 xor 0 xor 1 xor 0 = 1 B2B1B₀ = 101 = 5

0 01 0 0 1 1

7 56 3 4 2 1

D3D2D1P2D0P1P0

For any 4 bit word we add 3 parity bits

Detection via parity of subsets of bits -

magic trick revealed

P2P1P0

? ? ?0 1 0 1

D3D2D1D0

27/02/2011 Applied Algorithmics - week8 25

Observation: The parity bits need to encode “no error” scenario,

plus a number for each bit (both data and parity bits)

For p parity bits and d data bits: d + p + 1 ≤ 2p

? ? ?0 1 0 1

Question: Why do we arrange bits?
Start by numbering,

For any 4 bit word we add 3 parity bits
P2P1P0D3D2D1D0

Detection via parity of subsets of bits -

magic trick revealed

27/02/2011 Applied Algorithmics - week8 26

1 to 7.
With this order,

an odd parity

means an error

in 1,3,5, or 7.

So, P0 is the

right parity bit

to use:

D3D2 D0P1P₀₀₀₀

An odd parity means a mistake

must be in 2, 3, 6, or 7 -- the four

numbers possible if P1 = 1!

D3D2D1P2₁₁₁₁P₀₀₀₀

etc ... each bit

narrows down

the suspect

bits, until it is

certain.

D3D2D1P2D0P1P0

7 56 3 4 2 1

D3 D1 D0 P0

P₀= D3 xor D1 xor D0 P1 = D3 xor D2 xor D0 P2 = D3 xor D2 xor D1

7 bits can code 128 numbers, but only 16
D₃₃₃₃D₂₂₂₂D₁₁₁₁P₂₂₂₂D₀₀₀₀P₁₁₁₁P₀₀₀₀

Detection via parity of subsets of bits -

magic trick revealed

For any 4 bit word we add 3 parity bits
P2P1P0D3D2D1D0

0 0 0 0 0 0 00

27/02/2011 Applied Algorithmics - week8 27

It takes 3 bit flips to move from one legal

number to another (for all 16 numbers)

If only one bit flips, we can always figure out the

“closest” legal number, and correct the number.

7 bits can code 128 numbers, but only 16

of these numbers are legal.

0 0 0 0 0 0 0

0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 0 1 1 1 1 0

0 1 0 1 0 1 0

0 1 0 1 1 0 1

0 1 1 0 0 1 1

0 1 1 0 1 0 0

1 0 0 1 0 1 1

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 0 1 0 1

1 1 0 0 0 0 1

1 1 0 0 1 1 0

1 1 1 1 0 0 0

1 1 1 1 1 1 1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

