Applied Algorithmics COMP526 - tutorial 8

L.A. Gąsieniec and D. Cartwright

1 Questions

1.1 Combinatorial group testing

Consider an instance of the Combinatorial Group Testing (CGT) Problem, where a collection C of 8 items $I_{1}, I_{2}, \ldots, I_{8}$ is tested for having a property P. The results of 6 tests performed on subsets of items in \mathcal{C} are represented as the feedback vector in Figure Explain which two items from the collection are still suspected to possess the property P on the conclusion of the round of 6 tests.

Test\# Items: $\begin{array}{llllllllll} & I_{1} & I_{2} & I_{3} & I_{4} & I_{5} & I_{6} & I_{7} & I_{8} & \text { Feedback vector }\end{array}$

1	0	0	1	1	1	0	0	0	$\mathbf{1}$
2	1	1	0	0	1	0	0	0	$\mathbf{0}$
3	0	1	0	1	0	1	0	0	$\mathbf{0}$
4	0	0	1	0	0	0	1	1	$\mathbf{1}$
5	0	1	0	0	1	0	0	1	$\mathbf{0}$
6	0	1	1	0	1	1	0	1	$\mathbf{1}$

Figure 1: The round of 5 tests and the feedback vector. M

1.2 Error detecting codes

Consider a sequence of bits $D=D_{3} D_{2} D_{1} D_{0}=0110$ that is to be sent across a noisy communication channel.

- Compute parity bits P_{2}, P_{1} and P_{0} and interleave them with the bits of the sequence D according to the rules error detection (via parity of subsets of bits) mechanism.
- Explain also how one can discover that one bit of the code, e.g., P_{1}, flipped during traversal through the communication channel.

2 Solutions

2.1 Combinatorial group testing

Consider the results of 6 tests performed on subsets of the collection \mathcal{C}. Although we get a reasonable feedback from every single test, we usually focus on the tests during which the result is negative (represented by 0 in the feedback column). This allows us to eliminate candidates that do not possess a desired property P. And indeed, we can eliminate the elements I_{1}, I_{2} and I_{5} on the basis of the $2^{\text {nd }}$ test, the elements I_{2}, I_{4} and I_{6} on the basis of the $3^{r d}$ test, and the elements I_{2}, I_{5} and I_{8} on the basis of the $5^{\text {th }}$ test. Since we eliminated elements $I_{1}, I_{2}, I_{4}, I_{5}, I_{6}$ and I_{8} the only items still suspected to posses the property P are I_{3} and I_{7}.

2.2 Error detecting codes

Since the length d of the sequence D is 4 we need $p=3$ parity bits suffice, since the inequality $d+p+1 \leq 2^{p}$ (in our case $4+3+1=2^{3}$). Parity bit P_{i} is responsible for parity in alternating blocks of size 2^{i}, and it is placed at position 2^{i} (counting from the left) in the interleaved sequence as follows:

$$
D_{3} D_{2} D_{1} P_{2} D_{0} P_{1} P_{0}
$$

The parity bits P_{2}, P_{1}, P_{0} are calculated as follows:

$$
\begin{aligned}
& P_{2}=D_{3} \text { xor } D_{2} \text { xor } D_{1}=0 \text { xor } 1 \text { xor } 1=0 \\
& P_{1}=D_{3} \text { xor } D_{2} \text { xor } D_{0}=0 \text { xor } 1 \text { xor } 0=1 \\
& P_{0}=D_{3} \text { xor } D_{1} \text { xor } D_{0}=0 \text { xor } 1 \text { xor } 1=1
\end{aligned}
$$

thus

$$
D_{3} D_{2} D_{1} P_{2} D_{0} P_{1} P_{0}=0110011 .
$$

When the single bit P_{1} gets twisted from 1 to 0 (hit, e.g., by a cosmic ray), i.e., $D_{3} D_{2} D_{1} P_{2} D_{0} P_{1} P_{0}=$ 0110001 we recompute values of P_{i}^{*} on the basis of the current status of bits in the sequence D and read expected parity bits P_{i} directly from the transmitted sequence.

$$
\begin{aligned}
& P_{2}^{*}=D_{3} \text { xor } D_{2} \text { xor } D_{1}=0 \text { xor } 1 \text { xor } 1=0 \\
& P_{1}^{*}=D_{3} \text { xor } D_{2} \text { xor } D_{0}=0 \text { xor } 1 \text { xor } 0=1 \\
& P_{0}^{*}=D_{3} \text { xor } D_{1} \text { xor } D_{0}=0 \text { xor } 1 \text { xor } 1=1
\end{aligned}
$$

where $P_{2}=0, P_{1}=0$ and $P_{0}=1$. Now we create binary vector $B=B_{2} B_{1} B_{0}$, where $B_{i}=P_{i}$ xor P_{i}^{*}, for $i=0,1,2$, obtaining $B=010$, which represent 2, i.e., the position (counting from right) of the flipped bit P_{1} in the interleaved sequence.

