
Combinatorial Group Testing

� Much of the current effort of the Human Genome 
Project involves the screening of large DNA 
libraries to isolate clones containing a particular 
DNA sequence(s).  
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DNA sequence(s).  

� This screening is important for disease-gene 
mapping and also for large-scale clone mapping. 

� Efficient screening techniques can facilitate a 
broad range of basic and applied biological 
research.

Combinatorial Group Testing

� When screening DNA libraries, several factors determine 
the cost of identifying desired objects, including: 

� 1) the same library is screened with many different probes. 

� 2) it is expensive to prepare a pool for testing the first time, 
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2) it is expensive to prepare a pool for testing the first time, 
although once a pool is prepared, it can be screened many times 
with different probes.  

� 3) screening one pool at a time is expensive.  Screening pools 
in parallel with the same probe is cheaper.  

� 4) there are constraints on pool sizes.  If a pool contains too 
many different clones, then positive pools can become too 
dilute and could be mislabeled as negative pools.

Combinatorial Group Testing

� In non-adaptive group testing, one must decide exactly which pools 

to test before any testing occurs.  

� A non-adaptive group testing algorithm is sometimes referred to as a 

one-stage algorithm.  Every parallel algorithm is non-adaptive.  
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� An alternative two-stage algorithm is a nearly non-adaptive 

algorithm, in which, an initial batch of simultaneous tests is carried 

out, then using the information from the first stage, the second batch 

of simultaneous tests is computed and carried out.  

� Because of factors 1, 2, and, 3 (see slide 2) weakly-adaptive two-

stage algorithms are generally preferred when screening DNA 

libraries.

Combinatorial Group Testing

� Combinatorial Group Testing refers to the situation in 

which one is given:

� A (very) large set of objects O, and 
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� an unknown (relatively small) subset P ⊆ O.

� The task is to determine the content of P by asking 

minimal number of queries of the type “does P

intersect Q?”, where Q is a subset of O.



Example of Group Testing

� Set of coins 

�O={                                               }
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�O={                                               }

� Set P ⊆ O, where P={              }

� Pool Q ⊆ O ; Query “does P∩∩∩∩Q≠≠≠≠ ∅∅∅∅ ?”

� E.g., for Q={1,3,6}  the answer is YES (1); 

� And for Q={2,4,5} the answer is NO (0);

1          2          3         4        5         6        7

3        7  

Non-Adaptive CGT
� Definition: A d-disjunct matrix, a.k.a, (d,d,n)-selector is defined as 

any n-column binary matrix M, such that:

� For any d columns c1, c2, …, cd in M there exist d rows r1, r2, …, rd, s.t., 
entries in M available on intersection of selected d columns and rows form a 
permutation matrix. I.e., it contains all different unit vectors.
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--------------------------------------------

--------------------------------------------

---------0---------1----------0-------------

--------------------------------------------

--------------------------------------------

---------0---------0----------1-------------

---------1---------0----------0-------------

--------------------------------------------

c1 c2 ………………   cd

r1

r2

rd

2-disjunct matrix - example

� 2-disjunct matrix for n =8 items based on binary 
representation of numbers 0,1,…,7

0 - 0 - 1 - 1 - 0 - 0 - 1 - 1

0 - 0 - 0 - 0 - 1 - 1 - 1 - 1
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1 - 0 - 1 - 0 - 1 - 0 - 1 - 0

1 - 1 - 0 - 0 - 1 - 1 - 0 - 0

1 - 1 - 1 - 1 - 0 - 0 - 0 - 0

0 - 1 - 0 - 1 - 0 - 1 - 0 - 1

0 - 0 - 1 - 1 - 0 - 0 - 1 - 1

� 2-disjunct (d-disjunct) matrix can be used to determine 
P ⊆ O of cardinality 1 (d-1)

Feedback Vector

Population vector, where x stands for elements of P

---------0--------0---------0-----0--------- 0

---------x--------x---------x-----x---------
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Feedback vector

---------1--------0---------1-----0--------- 1

---------0--------0---------0-----1--------- 1

---------0--------0---------0-----0--------- 0

---------1--------1---------0-----1--------- 1

---------0--------0---------0-----0--------- 0

---------0--------1---------0-----0--------- 1

---------0--------0---------0-----0--------- 0



Evidence against P membership

--------------1----------------0------------ 0

-----o---x----o---x----o----x--?--x---------

There is an evidence against membership in P for o items
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-------------------------------1------------ 1

-------------------------------1------------ 1

-----1-------------------------0------------ 0

-------------------------------1------------ 1

-----------------------1-------0------------ 0

-------------------------------1------------ 1

--------------1----------------0------------ 0

Feedback vector

Non-adaptive Group Testing 

� The size of the d-disjunct matrix

� Lower bound Ω(d2log n/log d)

� Upper bound O(d2log (n/d))
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� Upper bound O(d2log (n/d))

� [Dyachkov, Rykov & Rashad (’82, ’89)]

� Theorem: The Combinatorial Group Testing 

problem, with ¦P¦=d-1, can be solved in one stage 

and O(d2log (n/d)) queries/tests.

Fully Adaptive Group Testing

� In contrast there exists fully adaptive Combinatorial 
Group Testing algorithm that uses O(d log (n/d)) tests 
(as well as stages)

The upper bound O(d log (n/d)) matches 
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� The upper bound O(d log (n/d)) matches 
asymptotically the information theory lower bound
for Combinatorial Group Testing with d unknown 

items, which is Ω(log (   ))

� Can we achieve this bound in 2 stages?

n
d

(d,m,n)-selectors
� Definition: (d,m,n)-selectors is defined as any n-

column binary matrix M, such that:

� For any columns c1, c2, …, cd in M there exist m rows r1, r2, 
…, rm, s.t., entries in M available on intersection of selected 
d columns and m rows form m different rows of 
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d columns and m rows form m different rows of 
permutation matrix of size d x d. 

� One can prove that there exist (d,m,n)-selectors of 
size (number of rows) O(d2·log(n/d)/(d-m+1))

� Recall that (d,d,n)-selectors correspond to d-disjunct 
matrices

� However, do far there is not known efficient deterministic  
construction of (d,m,n)-selectors!



Weakly adaptive 2-stage algorithm 

� Stage 1: Apply (2d,d+1,n)-selector on population with ¦P¦< d

� Compute feedback vector

� Generate evidence against membership in P

� The number of the items without the evidence is < 2d
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� The number of the items without the evidence is < 2d

� Stage 2: Check the items without the evidence in < 2d separate 
pools

� Theorem: There is a 2-stage group testing algorithm for that 
works in time O(d·log(n/d)).

Weakly adaptive 2-stage algorithm

� Proof of the Theorem:

� In general the size of (d,m,n)-selector is O(d2·log(n/d)/(d-m+1))
and in particular the size of (2d,d+1,n)-selector is 
O((2d)2·log(n/2d)/(2d-(d+1)+1)) = O(d·log(n/d)).

27/02/2011 Applied Algorithmics - week8 14

O((2d) ·log(n/2d)/(2d-(d+1)+1)) = O(d·log(n/d)).

� Proof by contradiction. Assume that the number of items without 
the evidence is ≥ 2d. And consider any 2d items without the 
evidence and their respective 2d columns in (2d,d+1,n)-selector. 
At least d+1 items (among 2d) will be separated from each other 
in the (2d,d+1,n)-selector, so even if d out of d+1 belong to P
there is at least one item that should’ve gathered the evidence 
against membership in P. Which contradicts the assumption.

Streaming data sources

� Internet traffic monitoring

� Web logs and click streams

� Financial and stock market data

� Retail and credit card transactions� Retail and credit card transactions

� Telecom calling records

� Sensor networks, surveillance

� RFID

� Instruction profiling in microprocessors

� Data warehouses (random access too expensive).
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Internet Traffic Analysis

� Usage trends for engineering, provisioning, 
abuse detection, etc.

� Discover sources of large traffic

Items = IP packets� Items = IP packets

� ID = Flow ID 

� E.g., sender’s IP address

� Frequent items = Heavy hitters

� E.g., report all flows that consume more 
than 1% of the link bandwidth.

� Counting bytes, instead of number of 
occurrence.

Stream of IP-

Packets
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Stream Data

� Rapid, continuous arrival: 

� Several million packets/sec

� Huge volume: 

� > 50 TB of header data per day for � > 50 TB of header data per day for 
Gigabit router

� Real time response

� Small memory: fast but costly SRAM

� In the sea of data, spot unusual traffic 
patterns and anomalies

Stream of IP-

Packets
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Streaming model

� Motivating Scenarios

� Data flowing directly from generating source

� “Infinite” stream cannot be stored

� Real-time requirements for analysis

18

� Real-time requirements for analysis

� Model

� Stream – at each step can request next input value

� Assume stream size n is finite/known (fix later)

� Memory size M << n, possibly O(1) size
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Finding majority in streaming model

� Given a sequence of streamed n items and a 

constant size memory.

� In a single pass, decide if some item in the 

stream is in clear majority (occurs >n/2 times)?stream is in clear majority (occurs >n/2 times)?

939994679992

n = 12, where item 9 is in clear majority 
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Misra-Gries Algorithm

� Adopt a single counter count = 0 and associated ID, and iterate

� if (count>0) then

if (new item = stored ID) count++;

then count ++ 

else  count --;else  count --;

else store the new item with count = 1.

� In the end, if counter > 0, associated ID links to the only candidate.

2 9 9 9 7 6 4 9 9 9 3 9

ID 2 2 9 9 9 9 4 4 9 9 9 9

count 1 0 1 2 1 0 1 0 1 2 1 2
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A generalization: frequent items 

Finding k items, each occurring at least n/(k+1) times.

..count

IDk....ID2ID1ID

� Sketch of the algorithm:

� maintain k items, and their associated counters;

� if next item x is one of the k, increment respective counter;

� else if a zero counter available, associate x with it and set count = 1;

� else (all counters non-zero) decrement all k counters
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Frequent Elements: Analysis

� A frequent item’s counter is decremented if all 

counters are full: it erases k+1 items.

� If x occurs > n/(k+1) times, then it cannot be � If x occurs > n/(k+1) times, then it cannot be 

completely erased.

� Similarly, x must get inserted at some point, 

because there are not enough items to keep it away.
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Problem of False Positives

� False positives in Misra-Gries algorithm 

� It identifies all true heavy hitters, but not all reported items are 

necessarily heavy hitters.

� How can we tell if the non-zero counters correspond to true heavy � How can we tell if the non-zero counters correspond to true heavy 

hitters or not? 

� A second pass is needed to verify.

� False positives are problematic if heavy hitters are used for 

billing or punishment.

� What guarantees can we achieve in one pass?
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Approximation Guarantees

� Find heavy hitters with a guaranteed approximation error

� E.g., Manku-Motwani (Lossy Counting)

� Suppose you want  ϕϕϕϕ-heavy hitters, i.e., items with freq > ϕN

� An approximation parameter ε, where  ε << ϕ.� An approximation parameter ε, where  ε << ϕ.
(E.g., ϕ = .01 and ε = .0001;  ϕ = 1% and ε = .01% )

� Identify all items with frequency  > ϕϕϕϕ N

� No reported item has frequency < (ϕϕϕϕ - εεεε)N

� The algorithm uses   O(1/ε log (εN))  memory
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