Verifiable Autonomy

Michael Fisher

University of Liverpool, 11th September 2015
Motivation: Autonomy Everywhere!
Motivation: Autonomous Systems Architectures

Many autonomous system architectures have been devised, e.g: subsumption architectures, hybrid architectures, ...

Increasingly popular approach → hybrid agent architectures.

An agent captures the core concept of autonomy, in that it is able to make its own decisions without human intervention.

But: this still isn’t enough, as we need to know why!

We need the concept of a “rational agent”:

a rational agent must have explicit reasons for making the choices it does, and should be able to explain these if needed
Motivation: Hybrid Agent Architectures

Requirement for *reasoned* decisions and explanations has led on to *hybrid agent architectures* combining:

1. *rational agent* for *high-level* autonomous decisions, and
2. traditional *control systems* for *lower-level* activities,

These have been shown to be easier to *understand*, *program*, *maintain* and, often, much more *flexible*.
Autopilot can essentially fly an aircraft
- keeping on a particular path,
- keeping flight level/steady under environmental conditions,
- planning route around obstacles, etc.

Human pilot makes high-level decisions, such as
- where to go to,
- when to change route,
- what to do in an emergency, etc.

Rational Agent now makes the decisions the pilot used to make.
RECAP: Programming Rational Agents

Programming languages for rational agents typically provide:

- a set of beliefs — information the agent has;
- a set of goals — motivations the agent has for doing something;
- a set of rules/plans — mechanisms for achieving goals;
- a set of actions — agent’s external acts; and
- deliberation mechanisms for deciding between goals/plans.

Almost all of these languages are implemented on top of Java.

A typical agent rule/plan is:

```
Goal(eat) : Belief(has_money), Belief(not has_food)
<- Goal(go_to_shop),
   Action(buy_food),
   Goal(go_home),
   Action(eat),
   +Belief(eaten).
```
We want to verify the rational agent within the system’s architecture.

Importantly, this allows us to verify the *decisions* the system makes, not its *outcomes*.

But: what logical properties shall we verify?
Formal Requirements

Formal Verification

Examples

Closing

Formal Requirements

- SAFETY
- PREFERENCES
- ETHICS
- REGULATIONS
- SECURITY

FORMAL REQUIREMENTS
[typically modal, temporal, probabilistic logics]
Example Logical Specification: Assisting Patients

In realistic scenarios, we will need to combine several logics.

If a patient is in danger, then the controller believes that there is a probability of 95% that, within 2 minutes, a helper robot will want to assist the patient.

\[B_{\text{controller}} \geq 0.95 \]

\[\Diamond \leq 2 \]

\[G_{\text{helper}} \]

\[\text{in_danger}(\text{patient}) \Rightarrow B_{\text{controller}} \geq 0.95 \Diamond \leq 2 G_{\text{helper}} \text{ assist}(\text{patient}) \]
So, once we have
- an *autonomous system* based on rational agent(s), and
- a *logical requirement*, for example in modal/temporal logic,
we have many options of how to carry out formal verification.

Approaches we can use include
- **Proof**: automated deduction in temporal/modal/probabilistic logics over a logical specification of the agent’s behaviour,
- **Traditional Model-Checking**: assessing logical specifications over a model describing the agent's behaviour,
- **Dynamic Fault Monitoring (aka Runtime Verification)**: watching for violations as the autonomous system executes,
- **Program Model-Checking**: assessing logical specifications against the *actual* agent code.

⇒ we are particularly concerned with this last one.
AJPF is essentially JPF2 with the theory of AIL *built in*.

The whole verification and programming system is called MCAPL and is freely available on Sourceforge: sourceforge.net/projects/mcapl
Underlying control system manages distances between vehicles. Rational agent makes decisions about joining/leaving, changing control systems, etc.

Verifying Rational Agent to ensure that convoy operates appropriately.

Ask Maryam/Owen for details
Verification Example: UAV Certification

What’s the core *difference* between a UAV and a manned aircraft?

Obviously: the UAV uses a “rational agent” instead of a pilot!

So, why can’t we verify that the “agent” behaves just as a pilot would? i.e. is the agent *equivalent to* the pilot??

This is clearly *impossible*, but......
Our Approach

- Formal Logic Specification
- Autonomous UAS Design/Model
- "Abstraction"
- "Model Checking"
- "Selection"
- Certification?
- Rules of the Air

Ask Matt/Mike for details
Ethical governor is essentially a rational agent, so verify this agent against ethical requirements/properties.

Ask Dieter/Louise for details
Verification Example: Ethical Decision-Making (2)

In unexpected situations, planners invoked and agent decides between options.

So verify the agent’s decision-making approach against the appropriate ethical ordering.

Ask Louise for details
Concluding Remarks

Key new aspect in Autonomous Systems is that the system is able to *decide for itself* about the best course of action to take.

Rational Agent abstraction represents the core elements of this autonomous decision making:

- (uncertain) *beliefs* about its environment,
- *goals* it wishes wish to achieve and,
- *deliberation* strategies for deciding between options.

Clearly, *formal verification* is needed.

By verifying the rational agent, we verify not *what* system does, but what it *tries* to do and *why* it decided to try!

For this we need appropriate abstractions of the real control, sensing, etc, aspects.
Thanks to many people.....

The work described in this talk is due to many people.....

- Louise Dennis (Computer Science, Univ. Liverpool)
- Matt Webster (Computer Science, Univ. Liverpool)
- Clare Dixon (Computer Science, Univ. Liverpool)
- Maryam Kamali (Computer Science, Univ. Liverpool)
- Rafael Bordini (UFRGS, Brazil)
- Alexei Lisitsa (Computer Science, Univ. Liverpool)
- Sandor Veres (Engineering, Univ. Sheffield)
- Owen McAree (Engineering, Univ. Sheffield)
- Mike Jump (Engineering, Univ. Liverpool)
- Richard Stocker (NASA Ames Research Center, USA)
- Marija Slavkovik (Univ. Bergen, Norway)
- Alan Winfield (Bristol Robotics Lab)

- EPSRC, for funding many of these activities.
Sample Relevant Publications