
Reducing Code Complexity in Hybrid Autonomous Control Systems

Louise. A. Dennis*, Michael Fisher*, Nicholas K. Lincoln**, Alexei Lisitsa*, Sandor M. Veres**

* Department of Computer Science, University of Liverpool, UK
e-mail: L.A.Dennis@liverpool.ac.uk; mfisher@liverpool.ac.uk; A.Lisitsa@liverpool.ac.uk

** School of Engineering, Univeristy of Southampton, UK
e-mail: S.M.Veres@soton.ac.uk; N.K.Lincoln@soton.ac.uk

Abstract

Modern control systems are limited in their ability
to react flexibly and autonomously to changing situations
by the complexity inherent in handling situations where
many variables are present.

We present an architecture based on a combination
of agent programming and hybrid systems for managing
high level decisions in such systems. Our preliminary
case study concerns satellites maintaining geo-stationary
orbits. This case study suggests that the complexity of the
code of such a system increases much more slowly in the
face of increasing complexity of the scenario, than in a
more traditional approach based on finite state machines
over controller options.

1 Introduction

Modern control systems are limited in their ability to
react flexibly and autonomously to changing situations by
the complexity inherent where many variables are present.
Additional mechanisms are required to select between
low-level controllers when significant changes occur.

We are particularly interested in the control of au-
tonomous satellite systems. Consider the problem of a
single satellite attempting to maintain a geostationary or-
bit. Current satellite control systems maintain orbits using
feedback controllers. These implicitly assume that any er-
rors in the orbit will be minor and easily corrected. In
situations where more major errors occur, e.g. caused by
thruster malfunction, or where changes in mission priori-
ties occur, it is desirable to modify or change the controller
or other aspects of the physical system. The complexity of
this decision task is a challenge to the imperative program-
ming approach.

There is a long standing tradition, pioneered by the
PRS system [14], of using agent languages (and other
logic programming approaches – e.g. [25]) to control and
reason about such systems. We therefore approach the
problem from the perspective of rational agents and hybrid
systems. We consider a satellite to be an agent which con-
sists of a discrete (rational decision making) engine and a
continuous (calculation) engine. The rational engine uses
the Belief-Desire-Intention (BDI) theory of agency [20] to
both generate discrete abstractions from continuous data

and to use these abstractions to govern the high level deci-
sions about when to generate new feedback controllers or
modify hardware. The continuous, calculational engine is
used to derive controllers, perform predictive simulations
and to calculate information from continuous data which
can be used in forming abstractions.

Our particular aim in this paper is to assess whether it is
beneficial to use rational agent languages in such hybrid
systems. Such an approach surely improves clarity, but
does it have other practical benefits? For example, is the
code size/complexity significantly improved through this
approach? This we aim to explore in the rest of the paper.

1.1 BDI Agents
We view an agent as an autonomous computational

entity making its own decisions about what activities to
pursue. Often this involves having goals and commu-
nicating with other agents in order to accomplish these
goals [26]. Rational agents make decisions in an ex-
plainable way, having explicit motivations for the choices
made. This makes debugging, diagnosis and the monitor-
ing processes to account for an agent’s actions at a high
level, much easier to provide.

Following BDI theory [20], we often describe each
agent’s beliefs and goals, which in turn determine the
agent’s intentions (a set of actions it intends to take). Such
agents make decisions about what action to perform next,
given their current beliefs, goals and intentions.

1.2 Control Systems
A fundamental component of control systems tech-

nology is the feedback controller. This measures, or
estimates, the current state of a system through a dy-
namic model and produces subsequent feedback/feedfor-
ward control signals. In many cases difference/differential
equations may be used to elegantly manage the process.
These equations of complex dynamics make changes to
the input values of sub-systems and monitor the outcomes
on various sensors.

We are investigating systems that require some deci-
sion making system to be integrated with such feedback
controller(s). It is by now well established that using a
separate discrete and logical decision making process for
this aspect is preferable to greatly extending the basic con-

Sense

:ABSTRACTION ENGINE

!:PHYSICAL ENGINE " : CONTINUOUS ENGINE

Act

Sense

R :REASONING ENGINE

A

Data Flow
Control Flow

(SIMULATION OF) REAL ENVIRONMENT

Reason

Calculate

Abstract

Continous Query

Abstract Action

Continuous Action

Abstract Query

Sense

Act

Figure 1. Hybrid Agent Architecture

trol system [1, 2]. Overall systems with these charac-
teristics are often referred to as hybrid control systems,
in that they integrate discrete, logical decision processes
with physical system dynamics.

Unfortunately, the control of hybrid systems using
traditional programming methods can become increas-
ingly unwieldy. Often the decision process is represented
as an inflexible tree (or graph) of possible situations. Exe-
cution then involves tracing through a branch of this (po-
tentially infinite) tree that matches the current situation
and then executing the feedback controller (or making
other changes to the system) found at the relevant leaf of
the tree.

Programming these decisions from state to state is of-
ten time-consuming and error prone and can lead to the
duplication of code where the same actions need to be
taken again but in slightly different situations.

2 Architecture

Our aim is to produce a hybrid system embedding ex-
isting technology for generating feedback controllers and
configuring satellite systems within a decision making el-
ement, based upon agent technologies and theories. The
link between the discrete and continuous elements is to
be controlled by an abstraction layer, which converts data
between continuous values appropriate for real time con-
trol and discrete values appropriate for reasoning.

Figure 1 shows the basic architecture of our system.
Real time control of the satellite is governed by a tradi-
tional feedback controller, drawing its sensory input from
the environment. This forms a Physical Engine (Π). This
engine, in turn, communicates with an agent architecture

consisting of an Abstraction Engine (A) that filters and
discretizes information. To do this, the Abstraction En-
gine may a use a Continuous Engine (Ω) to make cal-
culations involving continuous information. Finally, the
Rational Engine (R) contains a “Sense-Reason-Act” loop
typical of rational agents. Actions involve either calls to
the Continuous Engine, for instance to calculate new con-
trollers, or instructions to change the hardware configura-
tion of the Physical Engine. These instructions are passed
through the abstraction layer for translation back to con-
tinuous values.

In this way, R is a traditional BDI system dealing with
discrete information, Π and Ω are traditional control sys-
tems, typically generated by MatLab/Simulink, while A
provides the vital “glue” between all these parts.

3 Scenario: Maintaining Geostationary
Orbit with Thruster Failure

A Simulink model of a satellite in a geostationary or-
bit [18], was implemented. MatLab functions, composed
via English [21, 22, 23], were made available to the con-
tinuous part of the agent. These functions are capable of
completing trivial computations such as whether a given
set of coordinates are within an acceptable distance of
the satellite’s desired orbital position, comp_distance,
as well as more complex processing tasks such as comput-
ing a fuel optimal return path to a desired orbital position,
plan_approach_to_centre.

The satellite was simulated with three thruster in an
orthogonal X, Y, Z arrangement, and each thruster fed by
two fuel lines; one of these fuel lines was redundant en-
abling the agent to switch fuel lines if the other was deter-

mined to be ruptured. Redundant thrusters (up to five in
the X direction) were also introduced, allowing the agent
to switch to a redundant thruster if both fuel lines appeared
broken.

Controls were made available in the Physical En-
gine which could send a particular named activation
plan to the feedback controller, via set_control, switch
thrusters on and off, via set_x1_main, set_x2_main,
set_y1_main, etc., control the valves determining which
fuel line was being utilised by a particular thruster, via
set_x1_valves, etc. and change the thruster being used
in any direction, via set_x_bank, etc.

A BDI-style rational agent language was developed,
based on the Gwendolen programming language [8] and
this was used to program both the abstraction and rea-
soning engines. A key feature of this style of program-
ming is that it allows reactions to several events, or cir-
cumstances, to be handled in an interleaved fashion. This
permits the system to continue monitoring of incoming
data while performing alternative calculations and can re-
act to, in this instance, the malfunction of two thrusters
without needing to specify the precise order in which the
malfunctions are dealt with.

The agent programming language was implemented
in J and communication between the MatLab and J
parts of the system was managed using sockets. MatLab
sent information over the socket consisting of a tag fol-
lowed by a stream of numbers, on the J side this was
constructed into a predicate to be used by the abstraction
engine.

A semantics for interaction between the components
of the system was implemented, based on that outlined
in [9]. This included a set of shared beliefs that were ac-
cessible from both the abstraction and reasoning engines.

3.1 The Abstraction Engine
The Abstraction Engine code consisted of two parts:

a generic part, used in all examples in the case study, and a
specific part, which was modified each time a new thruster
was added.

A (cleaned up) version of the generic code is as fol-
lows:

Code fragment 3.1 Geostationary Orbit:Abstraction Engine

1+ location (L1, L2, L3, L4, L5, L6) : {B bound info(V1)} ←
2calc (comp distance(L1, L2, L3, L4, L5, L6), Val),
3+bound info(Val);
4

5+bound info(in) : {B proximity to centre (out)} ←
6−bound info(out),
7−Σ proximity to centre (out),
8+Σ proximity to centre (in);
9

10+bound info(out) : {B proximity to centre (in)} ←
11−bound info(in),
12−Σ proximity to centre (in),
13+Σ proximity to centre (out);
14

15+!maintain path : {B proximity to centre (in)} ←
16run(set control (maintain));
17+!execute(P) : {B proximity to centre (out)} ←
18run(set control (P));

19

20+! plan approach to centre (P) :
21{B location (L1, L2, L3, L4, L5, L6)} ←
22calc (plan approach to centre (L1, L2, L3, L4, L5, L6), P),
23+Σ plan approach to center (P);
24

25−broken(X) :
26{B thruster bank line (X, N, L),
27B thruster (X, N, C, V, P), P1 < 1} ←
28+Σ(broken(X));
29

30+ thruster (X, N, C, V, P):
31{˜ B broken(X),
32B thruster bank line (X, N, L), P1 < 1} ←
33+Σ broken(X);
34+ thruster (X, N, C, V, P):
35{B broken(X),
36B thruster bank line (X, N, L), 1 < P1} ←
37−Σ broken(X).
38

39+! change fuel line (T, 1) :
40{B thruster bank line (T, B, 1)} ←
41run(set valves (T, B, off , off , on, on)),
42−Σ thruster bank line (T, B, 1),
43+Σ thruster bank line (T, B, 2),
44−Σ broken(T);
45+!change bank(T) : {B thruster bank line (T, B, L)} ←
46B1 is B + 1;
47run(set bank (T, B1)),
48run(set main (T, B, off)),
49run(set main (T, B1, on)),
50−Σ thruster bank line (T, B, L),
51+Σ thruster bank line (T, B1, 1),
52−Σ broken(T);

We here use a standard BDI syntax: +b indicates the addi-
tion of a belief; !g indicates a goal, g, and +!g the commit-
ment to the goal. A plan e : {g} ← b consists of a trigger
event, e, a guard, g, which must be true before the plan
can be executed and a body b which is executed when the
plan is selected. The use of Bb in a plan guard indicates a
test that b is believed by the agent.

In addition to regular BDI syntax we use +Σb and
−Σb to indicate the addition and removal of shared beliefs
which are used by both the Abstraction and the Reasoning
engines. The actions calc and run trigger communica-
tion with the MatLab processes. calc requests the calcu-
lation of a value from the Continuous Engine achieved by
calling an M-file with the appropriate name, while run
activates controls in the physical engine.

The Abstraction Engine performs two functions, con-
verting the data from the Physical Engine and Continuous
Engine into a form suitable for reasoning (e.g. the loca-
tion information is converted into the abstract judgment
of whether the satellite is within bounds in lines 1–13 and
judgments over whether a thruster is broken are made in
lines 30–37) and converting requests from the Reasoning
Engine into instructions for the Physical Engine or Con-
tinuous Engine (e.g. the change_bank request is con-
verted into a sequence of three run instructions in lines
45–52).

Requests from the reasoning engine are modelled as
goal commitments. So +!change_fuel_line(T, 1) in-
dicates that the abstraction engine has received a request
from the reasoning engine to change a fuel line.

For example, the code in lines 45–52, describes how

to change a thruster in bank T following a request from the
reasoning engine, provided the thruster used by the bank
is believed to be B. The Physical engine is instructed to set
the bank to thruster B+1 (set_bank(T, B1)), switch off
thruster B, switch on thruster B + 1, and then change the
shared beliefs such that it no longer believes that the bank
is using thruster B but is using thruster B+ 1. At the same
time it removes any beliefs that the thruster is broken.

The code in fragment 3.1 was the same in all versions
of the system, but for each additional thruster we had to
add code to convert from the input data about that thruster
to a more generic predicate. Below is the code used for
the 1st thruster in the X bank.

Code fragment 3.2 Geostationary Orbit:X Thruster 1 Code

1+xthruster1 (L11, L21, P1, Volt1 , Curr1):
2{˜ B thruster (x, 1, L2, L1, P, V, C)} ←
3+ thruster (x, 1, L11, L21, P1, Volt1 , Curr1);
4+xthruster1 (L11, L21, P1, Volt1 , Curr1):
5{B thruster (x, 1, L2, L1, P, V, C)} ←
6− thruster (x, 1, L2, L1, P, V, C),
7+ thruster (x, 1, L11, L21, P1, Volt1 , Curr1);

As can be seen here, the data coming from the Physical
Engine tags each thruster’s data with a label specific to
the thruster (xthruster1 in this case) but the Abstrac-
tion Engine and Reasoning Engine wish to apply the same
reasoning to all thrusters and so convert this into a pred-
icate, thruster, that is parameterised by the bank (x in
this case) and the thruster within that bank (1 in this case).
Two cases are needed, depending on whether or not the
Abstraction Engine already has a belief about this thruster.

3.2 The Reasoning Engine
The reasoning engine code is as follows and remained

the same for all numbers of redundant thrusters:
Code fragment 3.3 Geostationary Orbit: Reasoning Engine

1+ proximity to centre (out) : {> } ←
2− proximity to centre (in),
3+! get to centre ;
4+ proximity to centre (in) : {> } ←
5− proximity to centre (out),
6perform(maintain path);
7

8+! get to centre : {B proximity to centre (out)} ←
9query(plan approach to centre (P)),
10perform(execute (P)),
11−Σ plan approach to centre (P);
12

13+broken(X): {B thruster bank line (X, N, 1)} ←
14perform(change fuel line (X, N));
15+broken(X): {B thruster bank line (X, N, 2)} ←
16perform(change bank(X, N));

We use the same syntax here as we did for the Abstraction
Engine: the actions ‘perform’ and ‘query’ request that
the Abstraction Engine forward an instruction to the Rea-
soning Engine or a calculation to the Continuous Engine
respectively.

The architecture allows representations of the high-
level decision making aspects of the program in terms
of the beliefs and goals within the rational agent and the
events it observes. Hence, when the Abstraction Engine
observes that the thruster line pressure has dropped inex-

plicably, it asserts a shared belief that the thruster line is
broken. When the Reasoning Engine observes that the
thruster line is broken, it then either changes the fuel line,
or the thruster bank. This is communicated to the Ab-
straction Engine, which then sets the appropriate valves
and switches.

4 Comparison to Traditional Hybrid
Control Systems

As well as constructing a BDI style controller for
thruster malfunction we, in parallel, constructed a tradi-
tional finite state machine controller using MatLab’s state-
flow package. As we added additional redundant thrusters
we were able to compare how the size of the code in-
creased in the two systems, and hence how both the pro-
gramming burden and the probability of error increased.

As can be seen from Figure 2, increase in code size
for the BDI (i.e. rational agent) system is linear (the
additional seven lines of code shown in fragment 3.2
which convert specific thruster predicates into more gen-
eral predicates) while the FSM approach increases expo-
nentially as more redundant thrusters are added.

5 Future Work

The work on hybrid agent systems with declarative
abstractions for autonomous space software is only in its
initial stages and considerable further work remains to be
investigated.

5.1 Further Case Studies.
We are keen to develop a repertoire of case studies

which will provide us with benchmark examples upon
which to examine issues such as more sophisticated rea-
soning tasks, multi-agent systems, forward planning, for-
mal verification and language design.

We have already started work on a more sophisticated
study involving a group of satellites operating coopera-
tively in a low Earth orbit.

5.2 Custom Language.
Currently the BDI language being used for the Ab-

straction Engine is not as clear as we might like and it
may prove that the BDI paradigm is not so appropriate
for this abstraction task, since it is not one based around
decision making. We are investigating the use of stream
processing technologies (from e.g. [3, 15]) and the use of
temporal logic statements as a better mechanism for form-
ing abstractions.

We are also interested in investigating other program-
ming languages for the Reasoning Engine – e.g. lan-
guages such as Jason [6] or 3APL [7] are similar to that
currently employed, but are more highly developed and
better supported. Alternatively it might be necessary to
extend the custom language with, for instance, the concept
of a maintain goal. This is because much of a satellite’s

 10

 100

 1000

 10000

 2 2.5 3 3.5 4 4.5 5

Co
de

 S
ize

Number of Thrusters

Code Size Increase against Number of Thrusters

Lines in BDI Code
States in FSM
Entries in FSM

Figure 2. Comparing how Code complexity scales (Logscale on y axis)

operation is most naturally expressed in terms of main-
taining a state of affairs (such as a remaining on a partic-
ular orbital path).

5.3 Planning and Model Checking.
At present the M-file employed to create a new con-

troller that will return the satellite to the desired orbit uses
a technique based on hill-climbing search [17]. We are
interested in investigating the use of temporal logic and
model-checking based approaches to this form of plan-
ning for hybrid automata, for example based upon the
work of Kloetzer and Belta [16]. We are also interested
in the use of simulation as a form of predictive modelling
that can assist in the agent’s decision making.

Model checking techniques also exist [5] for the veri-
fication of autonomous agent programs which could con-
ceivably be applied to the Reasoning Engine. Abstraction
techniques would then be required to provide appropriate
models of the Continuous Engine and Physical Engine and
it might be possible to generate these automatically from
the abstraction engine.

There is also a large body of work on the verification
of hybrid systems [1, 12] which would allow us to push
the boundaries of verification of such systems outside the
limits of the Reasoning Engine alone.

5.4 Multi-Agent Systems.
We are interested in extending our work to multi-

agent systems and groups of satellites that need to col-
laborate in order to achieve some objective. For instance,
there are realistic scenarios in which one member of a
group of satellites loses a particular functionality, meaning
that its role within the group must change and the group
itself must adapt accordingly. We believe this also pro-
vides an interesting application for multi-agent work on

groups, teams, roles and organisations [10, 13, 11, 19].
Such instances also provide an interesting test bed for us-
ing forward planning and simulation techniques to inform
the decision making process.

5.5 Implementation in Hardware

We aim to evaluate our software on a physical satel-
lite simulation environment developed at the University of
Southampton [24]. Although this environment constrains
the satellites to operate with 5 degrees of freedom, it per-
mits the software to be tested in a real physical environ-
ment and thus assess its ability to handle decision-making
outside of an entirely virtual implementation. This will be
of particular interest when evaluating the predictive sim-
ulation aspects of the system, since the ability to handle
differences between the simulated result of some action
and the actual result of some action, will be a key require-
ment.

6 Conclusion

This paper has presented a hybrid-style architecture
for the autonomous control of satellite systems.

A simple case study is presented demonstrating how
this style of programming copes with the increasing com-
plexity of the underlying system better than more tradi-
tional approaches to hybrid system programming, based
on finite state machines. This reduced complexity follows
from the system’s ability to make use of parameterised
sub-tasks and to specify that sub-tasks are triggered by
specific system states and to allow several sub-tasks to be
executed in an interleaved fashion.

6.1 Acknowledgment
This work was funded by EPSRC through research

grants EP/F037201/1 and EP/F037570.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Hen-
zinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. The Algorithmic Analysis of Hybrid
Systems. Theor. Comput. Sci., 138(1):3–34, 1995.

[2] R. Alur, T. A. Henzinger, G. Lafferriere, George, and
G. J. Pappas. Discrete abstractions of hybrid sys-
tems. In Proceedings of the IEEE, pages 971–984,
2000.

[3] A. Arasu, S. Babu, and J. Wisdom. The CQL Con-
tinuous Query Language: Semantic Foundations and
Query Execution. Technical Report 2003-67, Stan-
ford, 2003.

[4] R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni, editors. Multi-Agent Program-
ming: Languages, Platforms and Applications.
Springer, 2005.

[5] R. H. Bordini, L. A. Dennis, B. Farwer, and
M. Fisher. Automated Verification of Multi-Agent
Programs. In Proceedings of the 23rd IEEE/ACM
International Conference on Automated Software
Engineering (ASE), pages 69–78, L’Aquila, Italy,
September 2008.

[6] R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and
the Golden Fleece of Agent-Oriented Programming.
In Bordini et al. [4], chapter 1, pages 3–37.

[7] M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer.
Programming Multi-Agent Systems in 3APL. In
Bordini et al. [4], chapter 2, pages 39–67.

[8] L. A. Dennis and B. Farwer. Gwendolen: A BDI
Language for Verifiable Agents. In B. Löwe, editor,
Logic and the Simulation of Interaction and Reason-
ing, Aberdeen, 2008. AISB. AISB’08 Workshop.

[9] L. A. Dennis, M. Fisher, N. K. Lincoln, A. Lisitsa,
and S. M. Veres. Declarative abstractions for agent
based hybrid control systems. In A. Omicini,
S. Sardina, and W. Vasconcelos, editors, Declara-
tive Agent Languages and Technologies (DALT’10),
May 2010.

[10] J. Ferber and O. Gutknecht. A Meta-model for the
Analysis and Design of Organizations in Multi-agent
Systems. In Proc. Third International Conference
on Multi-Agent Systems (ICMAS), pages 128–135,
1998.

[11] M. Fisher, C. Ghidini, and B. Hirsch. Programming
Groups of Rational Agents. In Proc. International
Workshop on Computational Logic in Multi-Agent

Sytems (CLIMA), volume 3259 of LNAI. Springer,
November 2004.

[12] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi.
HYTECH: A Model Checker for Hybrid Systems.
International Journal on Software Tools for Technol-
ogy Transfer, 1(1-2):110–122, 1997.

[13] J. F. Hübner, J. S. Sichman, and O. Boissier. A
Model for the Structural, Functional, and Deontic
Specification of Organizations in Multiagent Sys-
tems. In Proc. Sixteenth Brazilian Symposium on
Artificial Intelligence (SBIA), pages 118–128, Lon-
don, UK, 2002. Springer.

[14] F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An
Architecture for Real-Time Reasoning and System
Control. IEEE Expert: Intelligent Systems and Their
Applications, 7(6):34–44, 1992.

[15] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke,
J. Widom, H. Balakrishnan, U. Aetintemal,
M.Cherniack, R. Tibbetts, and S. Zdonik. Towards
a Streaming SQL Standard. In Proceedings of Very
Large Databases, pages 1397–1390, Auckland,
New Zealand, August 2008.

[16] M. Kloetzer and C. Belta. A Fully Automated
Framework for Control of Linear Systems From
Temporal Logic Specifications. IEEE Transactions
on Automatic Control, 53(1):287–297, 2008.

[17] N. Lincoln and S. Veres. Components of a Vision
Assisted Constrained Autonomous Satellite Forma-
tion Flying Control System. International Journal
of Adaptive Control and Signal Processing, 21(2-
3):237–264, October 2006.

[18] M.J. Sidi. Spacecraft Dynamics and Control: A
Practical Engineering Approach. Cambridge Uni-
versity Press, 2002.

[19] D. V. Pynadath, M. Tambe, N. Chauvat, and L. Cave-
don. Towards Team-Oriented Programming. In
Intelligent Agents VI — Proc. Sixth International
Workshop on Agent Theories, Architectures, and
Languages (ATAL), volume 1757 of LNAI, pages
233–247. Springer, 1999.

[20] A. S. Rao and M. Georgeff. BDI Agents: From The-
ory to Practice. In Proc. First International Confer-
ence on Multi-Agent Systems (ICMAS), pages 312–
319, San Francisco, USA, June 1995.

[21] S.M. Veres. Natural Language Programming of
Agents and Robotic Devices: Publishing for Humans
and Machines in sEnglish. SysBrain Ltd, 2008.

[22] S. Veres and N. Lincoln. Sliding Mode Control of
Autonomous Spacecraft — in sEnglish . In Proc. To-
wards Autonomous Robotics Systems (TAROS), Ed-
inburgh, UK, 2008.

[23] S. Veres and L. Molnar. Publishing Documents on
Physical Skills for Intelligent Agents in English. In
Proc. Tenth IASTED International Conference on
Artificial Intelligence and Applications (AIA), Inns-
bruck, Austria, 2010.

[24] S. M. Veres, N. K. Lincoln, and S. B. Gabriel.
Testbed for satellite formation flying control system
verification. In Proceedings of the AIAA InfoTech in
Aerospace 2007, Rohnert Park, CA, USA, 2007.

[25] R. Watson. An Application of Action Theory to the
Space Shuttle. In G. Gupta, editor, Proceedings of
Practical Aspects of Declarative Languages, First
International Workshop (PADL ’99), volume 1551
of Lecture Notes in Computer Science, pages 290–
304. Springer, 1999.

[26] M. Wooldridge and N. R. Jennings. Intelligent
Agents: Theory and Practice. The Knowledge En-
gineering Review, 10(2):115–152, 1995.

