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Abstract

Purpose — The purpose of this paper is to consider the logical specification, and automated
verification, of high-level robotic behaviours.

Design/methodology/approach — The paper uses temporal logic as a formal language for
providing abstractions of foraging robot behaviour, and successively extends this to multiple robots,
items of food for the robots to collect, and constraints on the real-time behaviour of robots. For each of
these scenarios, proofs of relevant properties are carried out in a fully automated way. In addition to
automated deductive proofs in propositional temporal logic, the possibility of having arbitrary
numbers of robots involved is considered, thus allowing representations of robot swarms. This leads
towards the use of first-order temporal logics (FOTLs).

Findings — The proofs of many properties are achieved using automatic deductive temporal provers
for the propositional and FOTLs.

Research limitations/implications — Many details of the problem, such as location of the robots,
avoidance, etc. are abstracted away.

Practical implications — Large robot swarms are beyond the current capability of propositional
temporal provers. Whilst representing and proving properties of arbitrarily large swarms using
FOTLs is feasible, the representation of infinite numbers of pieces of food is outside of the decidable
fragment of FOTL targeted, and practically, the provers struggle with even small numbers of pieces of
food.

Originality/value — The work described in this paper is novel in that it applies automatic temporal
theorem provers to proving properties of robotic behaviour.
Keywords Modeling, Robotics, Control applications, Control technology

Paper type Technical paper

1. Introduction

Here, we are concerned with the formal analysis of the high-level behaviour of robots.
Our target is to consider swarm behaviour within robotic systems, but from a logical
point of view, automatically verifying the behaviour of robot swarms. However, this
objective is extremely challenging for practical verification technology due to the large
state spaces involved. To allow practical verification we abstract away from some
details and begin with a small number of robots and consider their behaviour.

This work was partially supported by EPSRC (UK) Grant EP/D052548. Abdelkader Behdenna
was partially supported by the Department of Computer Science at the University of Liverpool.



These simple foraging robots explore a fixed space, searching for “food”, then
returning to their “nest” with the food, before embarking on further searching. We
analyse such behaviour and then extend the approach to increasing numbers of robots,
increasing items of food and real-time considerations. Previous work by some of the
authors (Winfield et al., 2005) concentrated on the specification of swarm algorithms,
1e. the formalisation of the steps each robot carries out relating to its movement and
direction that should ensure that the group of robots remains clustered together. As
mentioned above, the work described here focuses on the specification and verification
of a swarm of foraging robots and concentrates on formalising the scenario of robots
searching for food and applying temporal deduction methods to these formalisations.

To carry out the specification and verification of swarms of foraging robots we
utilise propositional and then first-order linear-time temporal logics (LTLs). In
particular, we assume a discrete linear model of time with finite past and infinite
future. Thus, models can be viewed as a sequence of propositional logic domains (for
propositional temporal logic) or a sequence of first-order domains (for first-order
temporal logic (FOTL)). The computational complexity of satisfiability for
propositional LTL is PSPACE (Sistla and Clarke, 1985). We target the monodic
fragment of FOTL (essentially any subformula occurring in the scope of a temporal
operator can have at most one free variable) which is decidable for underlying
decidable fragments of first-order logic (Hodkinson ef al, 2000). The first-order
formulae we obtain are within either the monodic monadic or monodic two variable
fragments which both have complexity of satisfiability of EXSPACE (Hodkinson et al.,
2003). Having specified the foraging robots in the given temporal logic we try to prove
a number of properties about the behaviour of the robots. We use a deductive
resolution-based approach which is applicable both to propositional and FOTLs and
has implemented provers, e.g. TRP++ and TSPASS, which carry out the proofs
automatically. TRP++ (Hustadt and Konev, 2003) is a resolution prover for
propositional LTL based on a sound, complete and terminating calculus (Fisher et al,
2001). TSPASS (Ludwig and Hustadt, 2009/2010) is a resolution prover for first-order
LTL based on a sound and complete calculus (Konev et al., 2005). The contribution of
the paper is the application and analysis of fully automatic temporal deductive provers
to the behaviour of foraging robot swarms.

Before describing our formal model in more detail, we briefly review some
necessary background.

1.1 Robots and robot swarms

A robot swarm is a collection of (usually simple, often identical) robots working
together to carry out some task (Bonabeau ef al., 1999; Beni, 2005; Sahin and Winfield,
2008). Each robot has a simple set of behaviours and may be able to interact with each
other and the environment. It is non-trivial for designers to formulate individual robot
behaviours so that the emergent behaviour of the swarm as a whole achieves the task
of the swarm, and that the swarm does not exhibit any undesirable behaviour (Spears
et al., 2004).

Rather than using, say, one or two highly complex robots, the use of robot swarms
is appealing. This is because if a small number of robots fail then this should not affect
the overall behaviour of the swarm, building in fault tolerance. However, it is often
difficult to predict the overall behaviour of the swarm. Given the behaviour of
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individual robots and their interaction with each other and the environment, we would
like to be sure that the swarms do actually behave as the designer intended. This is
often investigated by experimenting with real robot swarms or by simulating robot
swarms. Both have the disadvantage that experimentation or simulation may help
show that the desired behaviour is possible, but does not ensure that it occurs under all
circumstances or rule out the possibility that undesirable behaviour may also occur in
some situations. An alternative is to formally verify that robot control algorithms, for a
swarm of robots, do exhibit the required behaviour. This is the approach we will take
in this paper by considering the formal specification and verification of a robot swarm
using temporal logics. While we do not model low-level control aspects, we model the
behaviour of robots at a sufficiently high level to describe relevant scenarios.

This work is based on a robot foraging scenario and high level control systems
described in Liu ef al. (2007). There are a number of robots that must search for food in
a finite arena. Robots may be searching for food (involving one of several modes such
as random walking, scanning the arena), returning home, or resting (i.e. the robot is in
the nest). Parameters relating to maximum searching time (Kj,;), maximum resting time
(Kj») and maximum scanning time (Kj;) control how long the robots can remain in
one particular phase. In Liu et al. (2007), the authors are interested in examining the
number of robots foraging as compared to the number of robots resting, with respect to
several parameters. These parameters are split into three groups: internal, i.e. whether
the robot has retrieved food recently itself or not; environmental, 1.e. whether it collided
with other robots whilst searching; and social, whether other robots have been
successful in finding food or not. These parameters can be used to adjust the maximum
resting and searching times, dynamically affecting the numbers of robots foraging and
resting. Additionally, the purpose of foraging for food is to provide energy for the robot
swarm. However, searching for food, bringing food back to the nest and even resting
all require energy so the overall energy of the swarm is considered.

Formalising robot control is complex, involving potentially large numbers of robots,
each located at a particular point in the arena, numbers of pieces of food located in the
arena, algorithms relating to robot movement, avoidance, searching for food and
moving home, and parameters relating to the current and maximum times each robot
can spend in each phase. To enable us to be able to formulate the problem in a logic
that is decidable, and to allow automatic provers to carry out proofs within a
reasonable time, we must abstract away from some of this detail. For example, we
avoid representing low level control relating to explicit movement in the arena but do
formalise the basic state structure shown in Figure 1 of Liu ef al (2007). This shows the
robot’s activity as one of the previously mentioned phases, e.g. scanning the arena,
random walk, moving home, etc.

1.2 Propositional LTL

Propositional temporal logic (Emerson, 1990; Fisher, 2007) is an extension of classical
propositional logic with operators that deal with time. Propositions are true or false at
each moment in time. For example, some proposition might be true now, but false in
every future moment in time. To define a temporal logic, we must be precise about this
underlying temporal structure and so, for simplicity, we consider a discrete, linear
model of time, isomorphic to the natural numbers (Gabbay et al, 1980). Within this
model, there is an initial moment in time, called “0”, and, for any particular moment in



time, 7, the successor moment (or next moment in the linear sequence) is termed “z + 1”
(Gabbay et al., 1980; Pnueli, 1981). Thus, we consider models as infinite sequences of
states where propositions may or may not hold in each state.

The syntax of such a propositional LTL is based on a set PROP of proposition
symbols. Let:

PROP = {plaPQapga .- }

be a countably infinite set of propositional variables. In addition to the usual Boolean
operators, A (“and”), Vv (“or”), and — (“not”), we have the future-time temporal
operators, O (“in the next moment”), [J (“always”) and < (“eventually”). Formulae in
LTL are constructed recursively as follows (where ¢ and ¢ are LTL formulae):

Formulae == p;| = dld A Pl Vv YOO O

Turning to the semantics for LTL, a structure (or model) for LTL is an infinite
sequence of sets of propositions which hold at each moment in time. We define an
interpretation function o that takes some moment in time (a natural number N)
and returns the set of propositions which hold at that moment, o : N — P(PROP)
(where P denotes the powerset). The satisfaction relation, “ E ”, relates a model of the
above form and a specific moment in time, say ¢, to formulae in LTL. For elements of
PROP the semantics is straightforward:

oikFEp f pE o).

Assuming the usual semantics of =, A and Vv, we now give the semantics for the
three principal temporal operators:

aiFQd i oit+lE¢
i EOG iff F=iojE b
oiEO¢ iff Yj=iojE ¢
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Typically we consider the satisfiability of a formula within a model, when assessed at
the first moment in time, i.e. “0”. Thus, we often write “o- F ¢” instead of “o,0 F ¢”. A
formula ¢ is LTL-satisfiable if, and only if, there exists a o such that o E ¢. A formula
¢ is LTL-valid if, and only if, for all structures o, o F ¢.

We also define a literal be either a proposition or its negation.

1.3 Automated deduction in LTL

Rather than experimentation with, or simulation of, robot swarms we propose to
specify the swarms using temporal logic and verify that the swarms do satisfy the
required properties. This has the advantage of being able to verify properties about the
swarm algorithms before they are actually implemented in real robots or simulations.
Further, logical verification captures all specified behaviours rather than just
considering one path through the behaviours as the experimentation/simulation
approach would do. Obviously trying to carry out such proofs by hand would be time
consuming and prone to error so we use an automatic prover for the logic LTL.

In this paper, we will consider deductive verification in LTL, in particular, based on
a temporal resolution calculus (Fisher ef al, 2001). The idea is as follows. Given a
specification of a system in LTL, S, and a property, P, we wish to prove of that
specification we will try to show that S = P is a valid formula. Since the resolution
calculus we use is a refutation process, we actually negate the formula we wish to show
valid, obtaining — (S = P) or equivalently SA = P, and try to show the negated
formula is unsatisfiable. That is, if we add the negation of the property we wish to
prove to the specification, once we establish inconsistency, then we know that the
non-negated property is a logical consequence of the original specification. In this
paper, S corresponds to the logical representation of the foraging robots and P
corresponds to something that we want to prove about this, for example, infinitely
often a robot deposits food, or a piece of food will eventually be found.

Asisusual with resolution calculi, given any LTL formula we must first translate it into
aparticular normal form. Thus, using the terminology from the above paragraph, we must
translate SA — P into a normal form. The normal form we translate to is known as SNF
(Fisher et al, 2001). This provides formulae that hold in the initial moment of time (known
as initial clauses), disjunctions of literals which hold everywhere (known as global
clauses), formulae which define what must hold in the next moment given what holds now
(step clauses) and formulae which define what must hold in the future given what hold
now (sometime clauses). For the purposes of the normal form we introduce a symbol start
such that start holds only at the initial moment in time, i.e.:

o,i Estart iff 1=0.

Formulae in SNF[1] are of the general form [J A; C; (recall (J means “always” and A
denotes “and” or “conjunction”) where each C; is known as a clause and must be one of the
following forms:
,
start = \/ I, (annutial clause)
b=1

I, (aglobal clause)

,
true =

b=1



g ,
/\ k, = Ob\_/1 I, (astep clause)

a=1

g
/\ k, = <Ol (asometime clause)
a=1

Here, k,, [, and [ are literals. Any LTL formula, ¢, can be translated into SNF, 1(¢), such
that ¢ is satisfiable if and only if 7(¢) is satisfiable (Fisher et al., 2001).

Next, we repeatedly apply a number of resolution rules which add additional initial,
step and global clauses to the clause-set. If we can derive a contradiction, i.e. start =
false then this means that the set of clauses derived from the negation of the original
formula 1s unsatisfiable and the original formula is valid.

TRP++ (Hustadt and Konev, 2003; TRP++, 2002) is a theorem prover for LTL
which is implemented in C 4+ 4 and based on the temporal resolution calculus (Fisher
et al., 2001; Konev et al, 2005). Input again uses the SNF normal form but has a
different syntax to that given above which is more amenable to mechanisation. The
input syntax of TRP + + is given below.

TRP++ input syntax:

FORMULA ::= and (LIST_OF_SNFCLAUSES).
LIST_OF_SNFCLAUSES ::= []|[SNFCLAUSE, ..., SNFCLAUSE]
SNFCLAUSE ::= always(TEMPORALCLAUSE)
IPROPOSITIONALCLAUSE
TEMPORALCLAUSE ::= PROPOSITIONALCLAUSE|GLOBALCLAUSE
ISOMETIMECLAUSE
PROPOSITIONALCLAUSE ::= or ([LITERAL, ..., LITERAL])
GLOBALCLAUSE ::= or ((LITERAL, ..., LITERAL,
next(LITERAL), ..., next(LITERAL)])
SOMETIMECLAUSE ::= or([LITERAL, ..., LITERAL, sometime(LITERAL)])
LITERAL ::= not(DENTIFIER)|IDENTIFIER
IDENTIFIER ::= [a — 20 — 0]+

Examples of translating initial, global, step and sometime clauses (on the left) into the
syntax for TRP + + input (on the right) are given below:

start = p1 V po or([ p1, p2])
true = (p1 V pa2 V p3) always(or([ p1, p2, p3]))
D1 Ap2= O(p3V ps) always(or([not(pl), not(p2), next(p3), next(p4)]))

D1 AP = Ops always(or([not(pl), not(p2), sometime(p3)]))
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Finally, note that we could have chosen other methods for carrying out verification
within LTL. For example, rather than using a resolution-based approach we could have
used a tableau-based system for LTL (Wolper, 1985; Schwendimann, 1998; Janssen,
1999). Implementations based on tableau for LTL are available from The Logics
WorkBench (Balsiger et al., 1998) and the Tableau Workbench (Abate and Goré, 2003).
Alternatively model checking (Clarke et al,, 2000) is a popular technique for showing
the satisfiability of a temporal formula given model of the system it should be checked
on. These areas are discussed further in Section 7.

2. A simple model of robotic behaviour
We base our model of foraging robotic behaviour on that given by Liu ef al (2007).
There a swarm of foraging robots is considered, with all robots having identical
behaviour. The behaviour is quite simple, consisting of a series of phases as the robot
attempts to find food and return to its “nest”. The transition system in Figure 1 shows
the high level behaviour of each robot. This is adapted from the transition system in
Liu et al (2007), explicitly representing transitions from a state to itself where
necessary and representing the conditions on transitions using propositions as
discussed below. To explain the elements within Figure 1, we consider first the
states/phases, then the transitions.

Phases. Each robot moves through a series of phases. Within the model, each state
represents such a phase and the different possible phases are described as follows:

Re  (Resting) the robot stays in the nest without moving, and rests within the
resting time.

L  (Leaving the nest) the robot makes a movement and leaves the nest.
Ra (Random walk/move) the robot makes successive random moves.

Mf  (Move to food) when the robot has found some food, it moves forward until it
can access it.

S (Scanning) if the food is lost, the robot will stop moving and will scan the
arena in order to find food.

H  (Homing) when the searching time is over, and if the robot has not found food,
then it comes back to the nest.

G (Grab) the robot has reached food and grabs it.
Mh (Move to home) the robot brings the food home (the “nest”).
D  (Deposit) the robot deposits the food in the nest.

Transitions. The robot takes transitions to move between phases. These transitions
correspond to edges within Figure 1 and, while many transitions are straightforward,
some have conditions, such as Pr or Ff. To explain such conditions, we must first
mention some of the key constants within the underlying robotic model (Liu ef al,
2007):

K;, (Resting time) the maximum time a robot can stay in the nest — this relates to
K,, the variable representing the actual resting time.



Kjs  (Searching time) the maximum time a robot can look for food — this relates to
K, the variable representing the actual searching time.

Ky, (Scanning time) the maximum time a robot can scan the arena without
moving — this relates to K;, the variable representing the actual scanning
time.

We define the propositions Pr, Ps and Pt relating to each of these timing constraints
and a proposition Ff which together provide the conditions on transitions, namely:

Pr K, = K),, meaning that the resting time is over.

Ps K, = Kj;, meaning that the searching time is over.

Pt K; = Kj;, meaning that the scanning time is over.

Ff  (Foundfood), meaning that the robot has located some food.

Consider the transition from Mf to S labelled by — Ps and — Ff. This transition
represents a change of phase/state from moving towards food to scanning the arena
when the searching time (Ps) is not yet over but the robot has, for some reason, lost the
food it was moving towards. Maybe this robot has lost sight of the food or another
robot has collected the food, etc. Similarly, from the state Mf when — Ps and Ff hold, i.e.
the searching time is not yet over and the robot has found food, the robot may either
stay in the state Mf by following the transition to itself or may move to the state where
it can grab the food, G. This allows us to model the robot remaining differing lengths of
time in the move to food state before being able to grab food. Something similar
happens with the transitions from move to home, Mh, and itself and move to home and
deposit food, D. There are no additional conditions on these transitions allowing us to
represent different numbers of cycles round the move to home state before the robot
takes the transition into the deposit state. The number of states in the transition system
could perhaps be reduced, for example the removal of the state L (leaving the nest).
However, we chose to leave the transition system as close to the original presentation
in Liu et al. (2007) as possible.

In Sections 2.1 and 2.2 we provide temporal formulae to represent this behaviour.
Section 2.1 defines logical formulae representing the transitions from Figure 1. Section
2.2 presents logical formulae required to remove paths through the transition that
allow undesirable behaviour, for example, robots staying in the nest forever. Also they
are used to enforce conditions on the underlying structure, for example, that a robot
can be in exactly one state at at any moment. The formulae in Section 2.2 we term
constraints as the representation from Section 2.1 is further constrained by these
formulae. Both the sets of formulae from these two sections are part of the specification
of the system (termed S in Section 1.3).

2.1 Temporal specification of the transitions

Given the above definitions of the phases and conditions on transitions, we can
represent the phases as propositions and the transitions themselves as sets of LTL
formulae, as follows. We assume each of the following implications is within the scope
of a [J operator. This is so that they must hold at every moment in time:

(Re APr)= OL 1)
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(ReA = Pr)= ORe 2)

L= ORa 3)

(Raa = PsA = Ff) = ORa @
(Ra A Ps) = OH 5)

(Ran = Ps A Ff) = OMf (6)
(MfA = Ps A Ff) = OMf v G) )
(MfA = PsA = Ff) = OS )
(Mf A Ps) = OH ©)
(SAPs)= OH 10)

(SA = Ps AFf) = OMf 1y

(SA = PsA = PtA = Ff) = OS 12)
(SA = Ps A PtA = Ff) = ORa 13)
H= OMHVRe) 14)

G = OMh (15)

Mh = OMh v D) (16)

D= ORe 17

This set of temporal formulae describes the basic structure as in Figure 1. Each clause
defines one or more transitions where clauses (1) and (2) represent transitions from the
state resting (Re), clause (3) represents the transition from the state leaving nest (L),
clauses (4)-(6) represent transitions from the state random move (Ra), clauses (7)-(9)
represent transitions from the state move to food (Mf), clauses (10)-(13) represent
transitions from the state scanning (S), clause (14) represents the transitions from the
state homing (H), clause (15) represents the transition from the state grab (G), clause
(16) represents the transitions from the state move to home (Mh), and clause (17)
represents the transition from the state deposit (D).

For example, clause (1) (relating to resting) states that it is always the case that if the
robot is resting and the resting time is over then in the next moment the robot is
leaving the nest. This corresponds to the edge labelled with Pr between the states Re
and L in Figure 1. However, we need to provide additional constraints, primarily to
avoid unwanted infinite behaviour (e.g. looping forever in one phase).

2.2 Constraints on robot behaviours

In this section, we provide the definitions and the descriptions for the additional
constraints we have imposed. In order to be able to prove some useful properties of
potentially infinite behaviours, particularly the absence of unwanted infinite loops or
the certainty of finding food, we must add further constraints. We note that these are
still part of the system specification (termed S in Section 1.3) but they constrain the



robot behaviours to what we would usually expect, hence the terminology constraints.
These correspond to acceptance conditions which take the state-machine towards more
complex Biichi Automata (Sistla et al., 1987).

We can define several types of constraint: those related to the structure of the
transition system, those modelling the numeric values, and others which are used to
avoid unwanted infinite loops. We will describe these below.

2.2.1 Structural constraints. The first pair of constraints are “construction”
constraints specifying that, at each moment, just one state is occupied while the others
are empty (i.e. a robot is in exactly one current phase):

ORevLvRavMfvSVHVGvVMhvVD) (18)
VX, Y. X #Y,€ {Re,L,Ra,Mf,S,H,G,Mh,D} .00(—= XV —=7Y) 19)

The formula (18) ensures that one or more of the propositions representing states hold
at every moment and equation (19) represents that for every pair of (state) propositions
at least one must be false, i.e. at most one of these propositions must be true.

2.2.2 Modelling numeric constraints. The next constraints are the ones relating to
the numeric variables and parameters such as searching time, resting time and
scanning time. To reduce complexity and remain decidable, we try to simplify our
formalisation as much as possible. One way to do this is to find an abstract way to
represent the numeric values present in the original system (Liu et al, 2007). As
mentioned earlier, rather than allowing explicit numeric values we use propositions to
represent the facts that the searching, resting and scanning times are over (Ps, Pr, Pt,
respectively). Related to this we impose the next six constraints (20)-(25).

Assume we begin with initial values of K, K, and K;, and that those values will
increase as the time progresses, and may eventually exceed the constants Ky, K;,, and
Kj;. Abstracting away from the numeric values we add constraints ensuring that the
searching, resting and scanning times are over infinitely often (i.e. there cannot be
some execution where at some point in time, in the future, the maximum searching,
resting and scanning times are never reached):

CIOPr (20)
OOPs 1)
OOPt (22)

From constraint (20), for example, if we have Pr initially false, then it will become true
in the future, until the instant when we reach the state L, where it becomes false
equation (23). Similarly for equation (21) and, by analogy, for equation (22). This means
that we initially have K, < K, then K,=Kj,, in the future (the resting time is over; the
robot has to go out of the nest and begin searching) until we reach the state L. The
following three constraints force Pr, Ps and Pt to become false in states L, L and Ra,
respectively, and disallow infinite paths though these states where Pr, Ps and Pt
remain true forever:

O@L =—Pr) (23)
(L = — Ps) (24)
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24 These formulae effectively represent a reset of the underlying numerical counters.
2.2.3 Avoiding infinite looping. We now consider other constraints that will be useful
in proving properties of our transition system and stop a robot from remaining forever
in one state (e.g. H, Mh), for instance. Here, is the list of those constraints:

614 H= ORe If wereachthe state H, then at sometime in the future we will be resting
(26)

Mh = OD  If we reach the state Mh, then at sometime in the future, we will

27
deposit some food in the nest @n

Ra = ORa A FfA = Ps)  If arobot begins a random move, then at sometime in the
Sfuture, it will find food before the end of the searching time
(23)

Mf = OG  If we begin to move to food, then at sometime in the future, we will grab it
(29)

Constraints (26) and (27) avoid infinite looping on the corresponding states. Constraint
(28) models the fact that if we are in the state Ra at some point now or in the future we
will again reach state Ra and be able to take the transition to the state Mf, i.e. now or in
the future the robot will reach the state Ra before the end of its searching time (so
K; < K, and — Ps) and it will find food (Ff becomes true) allowing the transition to Mf
in the next moment. This avoids infinite looping on the state Ra itself and an infinite
loop around the states Re, L, Ra, and H. Finally, equation (29) guarantees that, if at a
particular moment a robot reaches the state move to food (Mf), then it will grab food at
some point in the future.

Note, the above makes the assumption that food can be found infinitely often in the
arena. The constraints imposed on the transition system mean that we cannot loop
infinitely on the state Re (constraint (20)), Ra (constraint (21)), Mf (constraint (21) or
(29)), S (constraint (21) or (22)), H (constraint (26)), or Mh (constraint (27)). Thus, from
any point in the transition system we can reach state Ra. The constraint (28) ensures
that we must be able to find food (before searching time runs out) in the future.

2.2.4 Alternative constraints. Above we have defined several additional constraints
to be added to the basic transition system. However, there are a wide variety of such
constraints available. The set that is chosen most likely corresponds to the abstract
view of the system behaviour that we wish to adopt. Below we will consider one
particular alternative view and show that such views can also be captured as temporal
logic formulae.

Let us again examine Figure 1. As we have seen, there are several states with
self-loops. In the above section we added temporal constraints to avoid perpetually
looping on one of these states. But these self-loops essentially correspond to one of
three things:

(1) abstractions of real-time characteristics, for example “we can stay in this state,
but for at most N time steps”;



(2) abstractions of probabilistic characteristics, for example “we have a P% chance
of finding food”; and

(3) a combinations of (1) and (2).
Thus, real-time constraints can be characterised by simple “¢” formulae saying that

the looping state will be left at some point in the future (thus abstracting away from the
particular timing concerns):

H=<¢-H (30)
Mh = <& = Mh (31)
Re = & —=Re (32)

S=<¢=-S 33)

Now, as we do not have any purely probabilistic characteristics, we must consider the
option (3) above, namely states with combined probabilistic and real-time
characteristics. In particular, let us examine states Ra and Mf. Both have a real-time
aspect, in that we can only loop on these states for a bounded length of time, and so
must move off eventually. Thus, we could happily add:

Ra= < —Ra (34)

Mf = & = Mf (35)

However, there is the probabilistic aspect to consider. When we leave either of these
states there are at least two possible next states. One option corresponds to having
achieved something (e.g. found food) while the others correspond to failure, e.g. the
searching time is over or the food has been lost. We could, given all the constraints
added so far in this section, happily navigate through the state machine without ever
finding or depositing any food. However, we really wish to add a constraint
corresponding to the non-zero probability of achieving what we want. Thus, if we keep
on searching/trying then this non-zero probability means that we will eventually
achieve what we require. Thus, we instead add:

Ra = OMf (36)
Mf = ©G 37

Thus, for equation (36) if we keep on randomly searching, then eventually we will
move to some food, and for equation (37) if we move to food then we will eventually be
able to grab it. Note that due to the constraint (19) these imply equations (34) and (35),
respectively.

Now, given the temporal constraints in this section plus equations (18) and (19) from the
previous section we can, prove the constraints (20), (26)-(29), from the previous section.

We could also remove some of the constraints and see what properties hold. For
example, if we remove the “probabilistic” constraints (36) and (37) above, we can
establish that:

OCReAd =D

is satisfiable, i.e. we can return to the nest infinitely often, but never with food.
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The choice of constraints is really a matter for the specifier, as the constraints
should correspond with the abstractions required. An alternative choice to the
constraints (20)-(29) would be the single constraint such as [JG. This would mean
that any of the infinite loops, previously discussed, could not occur and replaces
constraints (20)-(22) and (26)-(29) by just one. However, we chose not to do this in the
propositional case as we felt the seven constraints were more easily justified and closer
to the description of the foraging robots. In the next section, we will consider
automated verification and, for simplicity, will use the constraints from the previous
section. Later in this paper we will abstract away from these details within one robot’s
state machine and simply use CIOG.

3. Verifying properties

Since we have defined our transition systems (1)-(17) and a complete set of constraints
(18)-(29), together providing the system specification, we are now able to prove some
properties. These are things we want to show holding (i.e. are satisfiable or valid) given
the specification from Section 2 and represent P mentioned in Section 1.3. We will begin
by examining a selection of properties that will be first justified informally and will
then move on to the use of a prover for LTL to carry out automated proof. Using the
constraints we specified we tried to remove the possibility of the robot remaining in an
unwanted infinite loop (for example forever resting). Thus, one of the properties we aim
to prove is that the robot deposits food infinitely often [JOD.

3.1 Looping behaviours
Property 1. There is no infinite path in the transition system which does not visit the
state D infinitely often.

Proof (sketch). We will prove this by examining all infinite loops in the transition
system. Below is a summary of each of the infinite loops, characterised by a particular
temporal formula, together with a sketch of how a contradiction is reached:

* An infinite loop remaining in the state Re: characterised by ¢GORe. This implies
OO = Pr, 1.e. that at some point in the future we will always have — Pr, which
contradicts equation (20).

* An infinite loop remaining in the state Ra: characterised by ©[JRa. This implies
OO(— PsA — Ff), contradicting equation (21).

* An infinite loop remaining in the state S: characterised by <OS. This implies
OLO(— PsA = PtA — Ff), i.e. that at some point in the future we will always have
— Ps, which contradicts equation (21) and sometime in the future we will always
have — Pt, which contradicts equation (22).

* An infinite loop remaining in the state H: characterised by <©OH. This
contradicts equations (19) and (26).

* An infinite loop remaining in the state Mf: characterised by GCIMS. This implies
OO(— Ps A Ff), which contradicts equation (21).

* An infinite loop remaining in the state Mh: characterised by <OMh,
contradicting equations (19) and (27).

* An infinite loop through the states Re, L, Ra and H. This implies &(Ra A (—

(O(Ra A FfA = Ps)))) which leads to a contradiction with equation (28) since we
will never reach the state Mf from Ra.



 Finally, consider all the loops involving the states {Re, L, Ra, Mf, S, H} with at
least one occurrence of Mf. The infinite loops in the states Re, Ra, Mf, S or H have
been dealt with above. As this category of loops visits Mf at least once, the
constraint (29) means at some point in the future we must move to G which
contradicts our assumption of infinite looping in this set of state. For example,
consider infinite sequences of states (constructed from the following state names
where Re” means 7 repetitions of state Re where 7 = 0) (Re” - L-Ra” - Mf* - H')
repeated infinitely. These loops do not involve any occurrence of D. Sequences
that do not include the state Mf have already been considered above, the
remaining loops/paths contradict (29).

Thus, we have proved the following property: [JD. This means that, from every state
we will always reach the state D at some point in the future. So as a conclusion, if there
is food in the arena, it will be always found and deposited in the nest. O
Property 2. [OCRa.
Proof.  Since we have shown [1CD, and — OLRe, from the temporal representation of
the transition system (i.e. from equations (17), (1), (3), (19) and (20)) it follows that (JORa.
We have already shown that there is no infinite loop that does not contain the state
D. So, we can be sure that a path will always lead to the state Re:

If there is food, we can be sure that a robot will find it and bring it to the nest within a finite time.

And so on. We can continue developing proofs in this way. However, manually carrying
out such proofs is tedious and error prone. So, we next move towards automating this
process of proof. O

3.2 An automatic proof for our properties
Now we carry out some of the proofs using a resolution-based theorem prover for LTL,
called TRP++ (Hustadt and Konev, 2003). We will formalise our transition system in
the syntax of TRP++ in order to be able to use it to confirm the proofs of the previous
part. First we should ensure that a robot is in exactly one state at each moment using
equations (18) and (19). For example, the clause below formalises that we cannot be in
the states Rest and Deposit at the same time (with the corresponding temporal formula
on the right):

always(or([not(re), not(d)])) (—Rev — D)
The following clause ensures that we are in one of the prescribed states at every
moment:

always(or([re,1,ra,mf,s,h,g, mh,d])) OORevLVRavMf{vSVHVGvVMhvVD)

Then we just translate the transition systems (1)-(17) before adding the constraints
(19)-(29). Below are three examples:
(1) The clause, (1), that formalises the transition between the states Re and L using
the condition Pr:

always(or([not(re), not(pr), next(1)])) O((Re A Pr) = QL)
(2) How the constraints, (20) and (23), relating to Pr are formalised:
always(or([sometime(pr)])), O(<COPr)

always(or([not(l), not(pr)])) OL =-= Pr)
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(3) If we reach the state H then, at sometime in the future, we will get out of this
state, (26):

always(or([not(h), sometime(re)])) OH = <©Re)

And so on for the translation of the system into the syntax of TRP+ +. Finally, we add
a formula representing the negation of the property to be proved. For example, if we
wish to prove ©D, then we add its negation [J — D stating that “the state D is never
reached”, 1.e. “always(or((not(D)])”. Once executed, TRP+ -+ answers that this set of
formulae is unsatisfiable, so we can conclude that the state D will be eventually
reached.

The tests have been performed on a PC with a 2.13 GHz Intel Core 2 Duo E6400
processor, 3GB main memory, and 5GB virtual memory running Fedora release 9 with
a 32-bit Linux kernel.

3.3 Some results
Next, we will consider what we can prove with TRP+ +, and what time it takes to do
this automatically.

We leave consideration of multiple robots, and multiple pieces of food, until Section
4 and here just address the basic case discussed above. Here, we assume that there is
always at least one piece of food in the arena. The aim is to prove, as we did by hand in
Section 3.1, that the robot will deposit food infinitely often. We write the formalisation
for TRP + + for one robot, as we have just explained, and then add a variety of
formulae, in order to see if they are satisfiable or not.

In the following if we state a formula X is satisfiable it means that S A X is
satisfiable (i.e. it has a model) where S is the conjunction of formulae representing the
specification of the robot (here the formulae representing the transitions system for one
robot (equations (1)-(17)) plus the constraints we introduced (equations (20)-(29)). If it is
stated that a formula X is unsatisfiable it means that S A X is unsatisfiable (i.e. it does
not have a model) and that (S =— X) is a valid formula (i.e. it is true for all models).

We have considered the results and timings for several properties:

* The formula [ — X (i.e. “we never reach the state X”) is satisfiable if, and only if,
X = Sor X = H. This means that we are sure that during an infinite path any
robot will reach every state, except S and H, which are “optional”.

+  We show that, given the constraints, it is not possible to remain in some state for
ever by proving that [1X is not satisfiable for any state X. Thus, (S = ¢ = X) is
valid.

* For every state X, the formula (JOX is satisfiable. Thus, for each state it is
possible, reach that state in the system infinitely often.

* For every state X except X = S or X = H, the formula ¢ — X is unsatisfiable.
Thus, for the states X other than S or H, (S = [O<$X) is valid. In particular,
F (S = OOD), 1.e. the system reaches the deposit state infinitely often.

Thus, we have carried out automated analysis of the above, for only one robot and
ignoring the number of pieces of food. Sample results are given in Table I. As can be
seen, deciding on these properties is quite quick.



4. More robots and more food

In this section, we expand upon the above robotic model. While we have automatically
proved simple properties of our previous model, using the temporal resolution prover
TRP + + we have, up until now, made several simplifying assumptions implicit in the
model. In particular, we have assumed that there is always food in the arena without
taking care of how it is grabbed and any potential conflict with other robots over this
food. We will now try to show how we can have a specific number of robots and items
of food and that, in our formalisation, those pieces of food will be always grabbed.
Since we have more than one piece of food and more than one robot, we will use the
same propositions as in the previous model, but we will add an integer index (over a
finite range) to distinguish each robot or piece of food. Thus, for example, Re; denotes
that the ith robot is resting. In addition, we assume that all pieces of food have to be in
the nest before any are re-generated in the arena. However, later we relax this
assumption.

The underlying representation of each robot and each piece of food is a transition
system which will then be represented by temporal logic formulae. The combination of
these is synchronous, i.e. every robot or piece of food will make a move (follow a
transition) at the same time.

4.1 The formalisation: a transition system for each piece of food

To identify pieces of food we will define a transition system which deals with the state
of a piece of food, and will later allow this to interact with transition systems for other
robots/food. Within this transition system there are three types of states:

(1) IM;: (In Arena) the food item 1 is in the arena.
(2) Ghy: (Grabbed) the food item 1 is grabbed by robot k.
(3) IN;: (In Nest) the food item i has been deposited in the nest.

To illustrate the food transition systems, we will just begin with the case of two pieces
of food and two robots in the system, as shown in Figure 2. As we can see, both are
similar and contain conditions (D; and Ds) on some transitions relating to states in
the robot transition systems. The robots have no way to communicate or to “know” the
situation of the whole system.

Similar to our formalisation of the transition system relating to robot phases, we
must formalise that each piece of food can only be in one of the four states at any
moment. In particular, this disallows a piece of food being grabbed by more than one

Property Meaning Satisfiable? Time (s)
O-D We never reach the state Deposit No 0.022
0-S We never reach the state Scan Yes 0.015
D We remain forever in the state Deposit No 0.001
aob We can infinitely often reach the state Deposit Yes 0.023
OCRe We can infinitely often reach the state Rest Yes 0.021
oO0-D Sometime we do not visit the state Deposit again No 0.084
OO =S Sometime we do not visit the state Scan again Yes 0.022

OO —Ff Sometime Foundfood is always false No 0.066
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Figure 2.
Transition systems for
two pieces of food

robot. Additionally, we must formalise that a robot can only grab one piece of food at a
time as follows. This adds conditions between the food transition systems:

always(or([not(gbl11l), not(gh12)])) (- Gby1V — Ghys)
always(or([not(gh21), not(gb22)])) (= Gba1V — Gby)

Further, we must link the transition systems for robots to the transitions systems for
food. In particular, robot 1 can be in the states G; or Mh; or Dy if, and only if, some
piece of food has been grabbed by robot 1, i.e.:

O(Gy vV Mhy v Dy) <(Gbyp Vv Gbyy)) (38)
This can be represented by the following TRP + + clauses:
always(or([not(gl), gh11, gb12])),

always(or([not(mhl), gbl1, gb12])),
always(or([not(dl), gh11, gh12])),

always(or([gl, mhl, d1, not(gh11)])),

always(or([gl, mhl, d1, not(gb12)])).

Likewise, for robot 2 we have:
O({(Gy V Mhy V D9) <( Gba; V Gbg)) (39)
and their TRP + + representation.

Turning to the general case, with r robots and f pieces of food, we get a more general
transition system, as shown in Figure 3. Here we consider just the transition system for
one piece of food k = f. Note to take the transition from INj to IMj requires that all the
other pieces of food are back in the nest. So a piece of food can only be returned to the
arena if all the other pieces of food have been returned to the nest too.

Now we examine the translation of the transition system for food item k into

temporal formulae:
M, = O (IMk v ( \/ijk) ) (40)
l=s/=r

Note: In the context of two robots
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Figure 3.
‘ V- IN; Transition systems for

Jjsfj=k piece of food k with r
robots and f pieces of food

Piece of food k, total of f pieces of food and r robots

(ijk/\ - Dj) = Oijk Vi e [I1;1] (41)
(Gbjy ADj) = QOIN,  Vj € [IL;1]] (42)
IN;, A \V - | =0l (43)

l=j=fj#k
1<j=f

In the above equation (40) represents the transitions out of the state in arena IMj,
equations (41) and (42) represent transitions out of each state grabbed Gby and
equations (43) and (44) represent the transition out of the state in nest INy.

The following formulae ensure that each piece of food can only be in one state at any
moment. The first formula (45) ensures that the food must be in at least one of the
states and the other equations (46)-(49) show that for any pair of states both cannot be
true together, i.e. at least one must false:

O (IMk VIN, v'\/ sz«k> (45)

i=1
O(= Gbjpv = Gby)  Vj,i € [[L;x]],7 # ¢ (46)
(= IMkV - Gbik) V: € [|1,r|] (47)
O 1IN,v =Gby) Vie [|1,r|] (48)

O(= IM,Vv = IN;) (49)
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Finally, we add further formulae connecting the different transition systems:

O(— (Gb;; AGby)) V) € [|L;1]1, Vi, s € [IL;1]],i # s (50)

D((Gj v D;v Mf]) = (ij] V...V ijf) Vi e |11 (51)

The first of these, equation (50), disallows a robot being able to grab more than one
piece of food at any moment. The second, equation (51), links the robot transition
systems with the transition systems for food. In particular, robot j can be in one of the
states Grab, Movetohome or Deposit if and only if some item of food is being grabbed
by robot J.

4.2 Analysis using TRP+ +

Next we provide results of what we can prove with TRP+ +, and how long the proofs
will take. We would like to see whether our specification is detailed enough to deal (in
principle) with an arbitrary number of robots, and so we will see how TRP + + deals
with increasing numbers of robots and food. The following corresponds to different
cases: first, varying the number of robots and pieces of food in Sections 4.2.1-4.2.3 and,
in Section 4.2.4, regenerating any piece of food as soon as it has been brought to the
nest (without waiting for the other pieces of food to arrive).

4.2.1 One robot, two pieces of food — Table II. First we consider one robot and two
pieces of food. In this case, we want to know if the robot will grab every piece of food.
As we can see in Table II, with the help of TRP++, the formula (1 — D; is not
satisfiable, so the robot will at least grab one piece of food in order to be able to reach
the state D; (since we need to go through the state Gp, and it implies the grabbing of
one piece of food). Then the tests for In Nest and In Arena show that each piece of
food cannot have an infinite path in its transition system without reaching those states
(for example the formula [J — IN; is not satisfiable). Finally, we show that infinitely
often the robot grabs the first piece of food, infinitely often the robot grabs the second
piece of food, (by showing the negation of infinitely often Gby; and infinitely often Gbys
is unsatisfiable) and infinitely often the robot grabs each piece of food.

4.2.2 Two robots, two pieces of food — Table III. In this case we add a further robot
(Table III). The conclusions for the food items are the same: each piece of food will be
grabbed infinitely often. Furthermore, the results for the robots are also interesting.
Since we have already proved that any robot is forced to reach the state G infinitely
often, then we can easily conclude that the robots will grab a piece of food. The tests
O(— Gbin A = Gbyo) (“it is always the case that robot 1 doesn’t grab food 1 and doesn’t
grab food2”) and [J(— Gba; A = Gbsy) and their unsatisfiability show this. Then the
tests OJ(— Gby1 A = Gbyp) (“it is always the case that food 1 is not grabbed by any
robot”) and CJ(— GbiaA — Gbay) and their unsatisfiability prove that each piece of food
is grabbed at some point. We also show that both robot 1 grabs food infinitely often
and robot 2 grabs food infinitely often.

Comparing these results with those in Table II, we see an increase in the time
required for the automated proofs. Thus, the complexity of checking such properties is
very dependent on the number of robots and pieces of food.

4.2.3 Two robots, three pieces of food — Table IV. Finally, we now add a third piece
of food. The results of analysing properties are the same as in the previous section:



Property Meaning Satisfiable? Time (s)
O-Dy The robot never deposits food No 0.039
aob, The robot can infinitely often deposit food Yes 0.056
OOCINg Food 1 can be infinitely often in the nest Yes 0.082
OOIN, Food 2 can be infinitely often in the nest Yes 0.133
O-1IN; Food 1 is never in the nest No 0.170
00— 1INy Food 2 is never in the nest No 0.179
OV, Food 1 can be infinitely often in the arena Yes 0.143
OCIM, Food 2 can be infinitely often in the arena Yes 0.132
0O - 1M, Food 1 is never in the arena No 0.98
00— 1M, Food 2 is never in the arena No 0.103
OOGbyy Food 1 can be infinitely often grabbed Yes 0.130
OOGhyy Food 2 can be infinitely often grabbed Yes 0.110
O = Gbyy Food 1 is never grabbed No 0.368
O = Gbyo Food 2 is never grabbed No 0.385
= OOGhy It is not the case that food 1 is grabbed infinitely ~ No 0.757
often
= OOGhys It is not the case that food 2 is grabbed infinitely ~ No 0.853
often
= (OOCGby; A OOGhy,) Its not the case that the robot grabs each piece of ~ No 1.754

food infinitely often
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each piece of food will be grabbed infinitely often and each robot will grab food
infinitely often.

In Table IV, different tests were made to model various situations. Within the
results, the “CJ” sign means that the analysis takes more than 10 min. As can be seen, in
certain cases the prover takes more than 10 min to finish the proof. This is because
increasing the number or robots and food items means that the underlying transition
system representing the combination (product) of the robot and food transition systems
increases rapidly in size. In Table V, the number of propositions required for each of
the problems discussed and the maximum number of states in the product of the
transition system. However, it should be noted that not all these states are legal
because of the conditions imposed between transition systems.

4.2.4 One robot, two pieces of food, food is directly regenerated — Table VI. We
conclude this section with a final interesting case — the case where food is
automatically regenerated in the arena as soon as it has been brought in the nest (i.e.
the system does not wait until all the food is found and brought to the nest before
regenerating a piece of food) (Table VI). As we could foresee, the scenario where only
one piece of food is brought in the nest (infinitely many times) becomes possible, and so
one piece of food can stay infinitely in the arena without ever being grabbed.

4.2.5 Comment. As we can see from Table IV, it takes a long time to prove some of
these properties, beyond the 10 min threshold is certain cases.

In Section 6, we consider using a more powerful approach to tackling larger
numbers of robots or items of food. Before we move on, there are several points to note
about this:
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Applying TRP++ to the
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Property Meaning Satisfiable? Time (s)
O-D; Robot 1 never deposits food No 0.325
O-=Dy Robot 2 never deposits food No 5.336
Oehy Robot 1 infinitely often deposits food Yes 1.944
00D, Robot 2 infinitely often deposits food Yes 1.985
O-1IN; Food 1 is never in the nest No 0.990
0 —=1INy Food 2 is never in the nest No 1.058
OCINg Food 1 is infinitely often in the nest Yes 6.158
OCIN, Food 2 is infinitely often in the nest Yes 15.016
0 -1V Food 1 is never in the arena No 5.342
00— 1M, Food 2 is never in the arena No 7.103
OCIM, Food 1 is infinitely often in the arena Yes 21.337
OCIM, Food 2 is infinitely often in the arena Yes 10.208
O = Gbyy Robot 1 never grabs food 1 Yes 1.495
0 = Gbyo Robot 1 never grabs food 2 Yes 2.714
0 = Ghyy Robot 2 never grabs food 1 Yes 0.882
O = Ghye Robot 2 never grabs food 2 Yes 2.668
O(—= Gbyjy A = Gbyo) Robot 1 never grabs anything No 0.045
(= Gboy A = Gby) Robot 2 never grabs anything No 0.288
(= Gbyjy A = Gbyy) Food 1 is never grabbed No 1.760
(= GbiaA = Ghy) Food 2 is never grabbed No 1.796
= OO(Gbyy V Ghyy) It is not the case that food 1 is grabbed infinitely No 12.891
often
= OO(Gbyg V Ghy) It is not the case that food 2 is grabbed infinitely No 13514
often
= OO(Gbyy V Gbyo) It is not the case that robot 1 grabs food infinitely =~ No 4.026
often
= OO(Ghgy V Gbao) It is not the case that robot 2 grabs food infinitely ~ No 10.773
often
= (OO(Gbyy V Ghgp)A It is not the case that both food 1 is No 24.640

OO(Gbyg V Gbgy))

grabbed infinitely often and food 2 is grabbed
infinitely often

TRP++ is just a prototype and more sophisticated and efficient temporal
resolution provers will appear in the future — thus larger numbers of
robots/items will be able to be practically verified.

We are currently investigating deductive calculi which allow the input of
constraints (such as the robot is in exactly one of states/phases at any moment)
which provide improved complexity results (Dixon et al., 2007a, b) and would be
applicable here.

The most expensive part of the temporal resolution calculus is the part which
deals with formulae of the form < ¢. We have introduced many of these formulae
to represent some of the constraints about the system, namely equations (20)-(22)
and (26)-(29). We may be able to complete the proofs in less time and even allow
proofs of greater numbers of robots and pieces food by using a smaller number of
alternative constraints for example some of those discussed in Section 2.2.4.

We have only intended this automated proof analysis as a way to explore
whether the models we have are realistic and to verify interesting properties of



Property Meaning Satisfiable? Time (s)

d-Dy Robot 1 never deposits food No 0.835

O-D, Robot 2 never deposits food No 83.834

OoD, Robot 1 deposits food Yes 13.793
infinitely often

OCD, Robot 2 deposits food Yes 15.136
infinitely often

O—1IN; Food 1 is never in the nest No 11.932

0 = 1INy Food 2 is never in the nest No 12.530

0 —1IN3 Food 3 is never in the nest No 11.440

O0IN; Food 1 is infinitely often in Yes 23.988
the nest

OCIN, Food 2 is infinitely often in Yes 79.434
the nest

COOINg Food 3 is infinitely often in Yes 72.742
the nest

0 - 1M, Food 1 is never in the arena No 286.533

00— 1M, Food 2 is never in the arena No 393.277

00— 1IM; Food 3 is never in the arena No 358.187

OOIM, Food 1 is infinitely often in Yes %)
the arena

OCIM, Food 2 is infinitely often in Yes 230.038
the arena

OOCIM; Food 3 is infinitely often in Yes 256.435
the arena

0 = Gbyy Robot 1 never grabs food 1 Yes 11.440

O = Gbyo Robot 1 never grabs food 2 Yes 25.364

O — Gbys Robot 1 never grabs food 3 Yes 23.089

O = Gby Robot 2 never grabs food 1 Yes 13.084

O = Gbye Robot 2 never grabs food 2 Yes 40.984

O = Gbys Robot 2 never grabs food 3 Yes 34.564

O(— Gbjy A = GbyaA — Robot 1 never grabs No 0.057

Gb13) anything

(= Gbgy A = GhgypA — Robot 2 never grabs No 0.398

Gbas) anything

(= Gbjy A = Ghgy) Food 1 is never grabbed No 39.090

(= GbiaA = Ghy) Food 2 is never grabbed No 42.452

(= GbizA = Gbag) Food 3 is never grabbed No 42.160

= OO(Gbyy Vv Gby) It is not the case that food 1 No 198.809
is grabbed infinitely often

= OO(Gbyy V Gba) It is not the case that food 2 No 201.716
is grabbed infinitely often

= OO(Gbyz Vv Gbag) It is not the case that food 3 No 205.435
is grabbed infinitely often

= OO(Gbyg V Gbys Vv Gbys) It is not the case that robot 1 No 23.421
grabs food infinitely often

= [OO(Gbgy V Ghag V Gbas) It is not the case that robot 2 No 69.784
grabs food infinitely often

= (OO(Gbyy V Gbay) A It is not the case that each No %)

DO(GblZ V Gby) A
OO(Gbyg V Gbeg))

piece of food is grabbed
infinitely often
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“two robots, three pieces
of food” model
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Table V.

Size of combined
transition system and
number of propositions

relatively small numbers of robots/items — to tackle arbitrarily sized swarms, we
must turn to first-order temporal representation (Section 6).

In the next section, however, we increase the sophistication of the basic model.

5. Introduction of time

The next natural step in our formalisation is to introduce the notion of explicit time.
Indeed, it would be very useful to be able to represent some kind of counter which
would bound the number of movements used by a robot to search, grab and then to
bring a piece of food to the nest. For that, we will proceed as we have done for
introducing the pieces of food — we will create two transition systems and we will link
them to the transition system for the robot.

5.1 The transition systems
First we have to define a strategy to represent our movement/time counters. We chose
two transition systems: the first one being a general counter which counts all the
movements of the robot; the other one being a more specific counter, that counts (in a
loop) the movement done for searching and then (in a second loop linked to the first
one) the movements carried out in order to bring the found food to the nest. The
corresponding graphs are shown in Figure 4.

Here are some explanations about the transition systems in Figure 4. First, there are
four types of states:

* “dead” which is a “shaft-state”, 1.e. a robot in this state is lost — it has no more

energy to move in the arena;

+ en; means that there remains ¢ movements to the robot before it has no more
energy — it bounds the total number of movements by en,,,, (here, en,,,, is 20);
and

* in the same way, st; and ht; represent the searching and the homing time, 1.e.
they, respectively, bound the time a robot has to search and to bring back a piece

Number of robots Number of pieces of food Number of propositions Maximum states

1 0 13 9
1 2 19 81
2 2 34 1,296
2 3 38 5,184

Table VI.

Applying TRP++ to the
“one robot, two pieces of
food”, regeneration model

Property Meaning Satisfiable? Time (s)

(= GbiA = Ghy) No food is grabbed No 0.019
O(—= Ghy) Food 1 is never grabbed Yes 0.035
O(— Ghy) Food 2 is never grabbed Yes 0.031
C(OGby A OGhg) Foods 1 and 2 are infinitely grabbed Yes 0.098




csmove Simple foraging

robotic
back v zmove :
behaviours
—smove
=hmove
smove
—hmove 627
—=smove
—hmove
SMOVve
—hmove
smove,~hmove
- smove
— hmove
Figure 4.

Transitions systems
relating to energy and
time

of food to the nest. As for the total energy, the maximum searching time is St;,;qx
(here 10) and the maximum homing time is ht,,,, (also 10).

Similarly, there are two types of transitions:

” o«

(1) The transitions “move”, “smove” and “hmove” correspond to a movement
carried out by the robot in the arena. This can be a searching
movement (corresponding to the states L, Ra, Mf) for “smove”, or homing
movement (corresponding to the states H, G, Mh) for “hmove”. Finally, “move”
refers to either a homing move or a searching move. Remaining in the state S
does not require movement to another place in the arena so we assume that in
this state the robot consumes no energy. However, alternatively, if we require
that scanning the arena does consume energy it is easy to make scanning the
arena a searching movement smove similar to L, Ra and Mf.

(2) The transition “back” corresponds to the states Re and D and means that the
robot is either going back to the nest, or is already in it.

The first transition system in Figure 4. This represents general movement. At the
beginning, the energy of the robot is maximal and so the robot is in state en,,,.. Every
time the robot moves, the energy decreases and it moves to the successive energy state.
If the robot is in the state S (scanning) then there is no move — represented by a
transition back to the same energy state. Finally, if the robot reaches the state Re or D,
then it is back at the nest, and so its energy goes back up to en,,,,,. If it reaches the state
“dead” (i.e. it has no more energy and is not yet back at the nest) then the robot is lost.

The second transition system in Figure 4. This represents specific movement
(concerning searching and homing) with two counters. At the beginning, the robot is in
the state st,,,.,. If it makes a searching move (to the states L, Ra and Mf) then it takes an
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“smove” transition (i.e. the searching time decreases). If it is in state S, then it makes no
movement. If it reaches the states H, G or Mh, then it takes the “hmove” transition and
begins to deal with the homing process, beginning in ht,,,.. From any one of those
states, it can move back to the nest and so would revert to the initial state st,,,,,. The
state “dead” has exactly the same function as in the first transition system, except for
the fact that it is now reached from searching or homing.

Now that we have defined two counters for the time, we only need to link this with
the transition system for the robot, in order to assess its movements.

5.2 Linking robot transition systems with the new transition systems

The best way to link the robot and the counters is to define, as we explained
(intuitively) above which proposition is true in each state. For example, in state Ra, the
proposition smove is true (since the robot moves to search for a piece of food) but the
proposition hmove is false (it is not homing) and vice versa. These links can be given
directly as follows, where each formula is in the scope of a [J operator (as they hold
everywhere):

L = (smove A —back) (Therobotissearching) (52)

Ra = (smove A —back) (Therobotissearching) (53)

Mf = (smove A —back) (Therobotissearching) (54)

S = (—smove A —=hmove A —back) (Therobotisscanning) (55)
G = (hmove A —back) (Therobotishoming) (56)

H = (hmove A —Dback) (Therobotishoming) (57)

Mh = (hmove A —back) (Therobotishoming) (58)

D = (back A = move) (Therobotisinthe nest) (59)

Re = (back A = move) (Therobotisinthe nest) (60)

We complete the specification by writing some simple logical laws capturing movement:
0 = (smove A hmove) (61)

C((smove V hmove) < move) (62)

Now each state of the robot defines a behaviour in the new graphs, since it covers every
transition.

5.3 Simplifving the system

As we have explicitly encoded the time spent searching and homing within the
transition systems in Figure 4 we do not now require the proposition Ps, which was
used in the original specification to capture the fact that the searching time is over.
Further, we remove the propositions Pr and Pt and provide alternative constraints to
avoid the infinite loops discussed in Section 2.2. Here, is the new set of formulae
representing the transition system, where each formula is in the scope of a [J operator
(as they hold everywhere):
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As we can see, these formulae represent a simple transition system with no labels on
the transitions. We again need the structural constraints (18) and (19). It is clear that we
again need some additional constraints in order to avoid undesirable infinite loops
discussed in Section 2.2. These constraints are:

* Re = & = Re - this constraint replaces equation (20) (OOPr ensuring that a
robot cannot stay infinitely in the nest.

+ S= <& — S - this constraint replaces equation (22) J<OPt ensuring that a robot
cannot scan the arena infinitely.

+ Ra = OMIf — this constraint replaces the constraint (28) ensuring that, if a robot
makes an infinite number of random moves then it will find food sometime in the
future and so it will reach the state M.

« Mf = OG — arepeat of constraint (29).

Apart for the structural constraints (18) and (19) we now only have four additional
constraints instead of the ten constraints (20)-(29) provided earlier in this paper.
Further, we do not need the propositions Ps, Pt and Pr representing the fact that the
searching, scanning and resting times are over.

5.4 Some results with TRP++

Adding the notion of time, via the new formulae, makes analysis of the overall set of
formulae quite complex. Consequently, we have carried out an analysis of just the
simplest variety, i.e. with only one robot and ignoring the number and position of
pieces of food (Table VII).

An interesting result concerns the minimum time necessary to make a loop, i.e. to go on
the arena, grab some food and bring it back to the nest. In our formalisation (where
Styar = D, htyer = 4and en,,, = 10), the minimal number of steps to get a piece of food is
3 since [J — s¢2 is unsatisfiable whereas (] — sf1 is satisfiable. The minimal number of
steps to bring food to the nest is 2 since [ — /4¢3 is unsatisfiable whereas (1 — 22 is
satisfiable (we have to add 1 to the result because of the transition between the searching
part of the second graph and its homing part is not recorded as a movement though it is
one). Testing the first graph leads us to conclude that the general minimal number of steps
to get and bring the piece of food is 5 since [J — enb is unsatisfiable whereas [1 — en4 is
satisfiable. Calculating the sum: “2 + 3 = 5” we get the required result.

These results can be related to the transition system. A robot needs a minimum of
three steps between the states Re and Ra (so three steps to get a piece of food) and it
needs to take two transitions from the state G to the state D (so two steps to bring it to
the nest). Therefore, these results are as expected. In conclusion, the inequality:
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Table VII.
Adding time and
movement — some
TRP++ results

Property Meaning Satisfiable? Time (s)
O-D Robot never deposits food No 4.632
aob Robot can infinitely deposit food Yes 0.233
OCst0 Robot can grab food using st steps Yes 1.392
O =st0 Robot always grabs food using <st,,,, steps Yes 0.175
O-stl Robot always grabs food using <st,,,, — 1 step Yes 0.196
0O —st2 Robot always grabs food using <st,,.;, — 2 steps No 0.843
0= nt0 Robot always grabs food using <ht,,,, steps Yes 0.196
O - ntl Robot always brings food using <ht,,,, — 1 step Yes 0.199
O=-hnt2 Robot always brings food using <ht,,,, — 2 steps Yes 0.194
0= nt3 Robot always brings food using <ht,,,, — 3 steps No 0.798
O —=end Robot always grabs and brings food using Yes 0.305
<en,; — 4 steps
O—enb Robot always grabs and brings food using < No 4.810

enmax — 5 steps
Addition of two pieces of food

O-D Robot never deposits food No 0.397

0= Ghby Food 1 is never grabbed No 6.329

0 = Ghy Food 2 is never grabbed No 7.821

O —end Robot always grabs and brings food using Yes 1.501
<eN. — 4 steps

O —enb Robot always grabs and brings food using No 37.883

<eNyr — O steps

Mgz + Stipax = €Myax

which intuitively captures the energy requirements in order to find and retrieve food, is
now confirmed via TRP++.

6. Arbitrary sized swarms and FOTL

As we have seen, fixed numbers of finite-state transitions systems are a convenient
way to represent small, fixed numbers of robots and/or items of food. We have verified
the properties of such swarms by formalising the transition systems as propositional
temporal formulae and utilising the TRP + + clausal resolution prover. However, we
have also seen that this approach is not feasible for larger swarms. So, what are we to
do if we have 100 robots? Or 1,000? Or we have arbitrarily many?

In the latter case, this problem corresponds to that of formalising infinite-state
systems, particularly where there are arbitrarily many finite-state components, each
with similar behaviour. While such problems are difficult to verify either using
propositional methods or using model checking, it has been shown that FOTL is a
strong and viable formalism for describing and analysing such systems (Fisher ef al.,
2006). The idea here is to have a single transition system to represent robot behaviour
(as earlier), but then to parameterise this with the particular robot under consideration.
Thus, while we might have states such as D and Re, these are translated into unary
predicates within our temporal representation. Similarly Robot(X) denotes that X is a
robot. The single argument to each such predicate represents the particular robot.
Thus, D(R1) is true if robot R1 is in state D, D(R2) is true if robot R2 is in state D, and
so on. This addition of a parameter then allows us to reason about full, unbounded sets.



For example, we might wish to say that “at least one robot is in state D”. This would be
represented by JX.Robot(X) A D(X).

We note from the above that we ideally would like a first-order temporal language,
which at least has unary predicates. Fortunately, this is exactly the language utilised in
Fisher et al. (2006) and is also a variety extensively studied and developed over the last
decade (Hodkinson et al., 2000). In particular, this logic is a fragment of FOTL termed
monodic FOTL which is expressive yet in many cases decidable (Wolter and
Zakharyaschev, 2002). We will define the temporal basis below.

6.1 First-order temporal logic
Syntax. Let:
+ VAR = {x,y,...} be an infinite countable set of variables.
« CONS = {cy,c1,...} be a countable supply of constants symbols, possibly
empty.
* Vn € N,PRED" = {P;,P{,P;,...} be an infinite supply of #n-ary predicates
symbols also called relation symbols of arity 7.

* Vn € N,FUN" = {f{.f1,f5, ...} bea countable set of z-ary functions symbols,
possibly empty.

The set TERM of terms is the smallest set defined by the following rules:
* Vx € VAR,x € TERM.
* Yc¢ &€ CONS,c € TERM.
« Vh,to, ... .1, € TERM Nf € FUN" f(t1, ... ,t,) € TERM.

Now we can give the syntax of FOTL. The set FORM of the formulae of FOTL is the
smallest set defined by the following rules:

- If P € PROP", and Vh, s, ... ,t, € TERM,P(t1, ...,t,) € FORM.
- IfA,B € FORM, then — A, AV B, A A B, OA, A, A, 3xA, VxA € FORM.

Semantics. We now consider interpretations for statements in the above logic. For our
particular purposes we will not use any function symbols. However, we will use a
restricted variety of the full FOTL called the monodic fragment.

Definition 1. Monodicity (Wolter and Zakharyaschev, 2002). A formula ¢ in a
FOTL language without equality and function symbols (constants are allowed) is
called monodic if any subformula of ¢ of the form O, O, $if contains at most one
free variable.

To ascribe meaning to all sentences of a first-order language, the following
information (called a realisation) is needed:

+ A domain of discourse D, usually required to be non-empty.
+ For every constant symbol an element of D as its interpretation.

+ For every n-ary predicate symbol an n-ary relation on D, 1.e. a subset of D", as its
interpretation, which is equivalent to a function D" — {True, False}.

Let M be a realisation of L a FOTL language. An interpretation [ for M and L is a
function VAR — D.
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Now we can define the semantics of the language in a way similar to that given to
LTL earlier. Thus, the semantics relates a realisation, M, a temporal sequence, o and a
moment in time, 7, to each formula in the logic. It does this through the satisfaction
relation “E” and the specific satisfaction relation corresponding to an interpretation,
[ ':I”:

M, o0 Er P(ty, ...ty iff (h,...,t,) EP
the usual semantics for =, Aand Vv ...
M,o,iFrx¢p iff Ac€ D.M, 0,5 Fr Plx/c]
M,o,i E1¥x¢ iff VYe€ D.M,o,jFr ¢lx/c]
Mao-vi':]Od) fo M,O',Z.—Fl':](l)
M,oiF O iff F=iM,ojF ¢
M,o.iF O¢ off Vj=iM,0,jF ¢

The notion of satisfiability is the same as for LTL.

6.2 Robotic swarms and FOTL

We can now extend the work described in Sections 2 and 3, essentially using the same
model but translating to FOTL, rather than LTL. Using the same model will avoid us
again having to describe behaviours relating to robots, etc.

The principle of this extension is simple. Every state of each transition system is
translated into FOTL as a unary (or monadic) predicate. We also define the additional
predicate Robot which will be used to declare any robot. We will simply re-write the
logical representation of the transition system for LTL, parameterising it with respect
to the robot considered.

Thus, we begin with the FOTL description of robot behaviours where the formulae
below are in the scope of a (J operator:

VX - (Robot(X) A Re(X) A Pr(X)) = QLX) (63)

VX - (Robot(X) A Re(X)A = Pr(X)) = ORe(X) (64)

VX - (Robot(X) A L(X)) = ORa(X) (65)

VX - (Robot(X) A Ra(X)A = Ps(X)A = Ff(X)) = ORa(X) (66)
VX - (Robot(X) A Ra(X) A Ps(X)) = OH(X) (67)

VX - (Robot(X) A Ra(X)A = Ps(X) A Ff(X)) = OMI(X) (68)
VX - (Robot(X) A ME(X)A = Ps(X) A Ff(X)) = OMIX) Vv G(X)) (69)
VX - (Robot(X) A ME(X)A = Ps(X)A = Ff(X)) = OSX) (70)
VX - (Robot(X) A Mf(X) A Ps(X)) = OH(WX) (71)

VX - (Robot(X) A S(X) A Ps(X)) = OHWX) (72)

VX - (Robot(X) A S(X)A = Ps(X) A Ff(X)) = OMI(X) (73)

VX - (Robot(X) A S(X)A = Ps(X)A = PH(X)A = Fi(X)) = OSX) (74)
VX - (Robot(X) A S(X)A = Ps(X) A P((X)A = Ff(X)) = ORa(X) (75)



VX - (Robot(X) A H(X)) = OMHX) V Re(X)) (76)
VX - (Robot(X) A G(X)) = OMh(X) )

VX - (Robot(X) A Mh(X)) = OMh(X) v D(X)) (78)
VX - (Robot(X) A D(X)) = ORe(X) (79)

As previously we need to specify that a robot can be in only one state at a time, e.g.:

VX .Robot(X) = (Re(X) v L(X) v Ra(X) v Mf(X) v S(X) v HX)

(80)
VvV G(X) v Mh(X) v D(X))
and for each pair of states (e.g. for Re and L):
VX Robot(X) = (= Re(X)v = L(X)) (81)

Further we can translate the constraints from Section 2.2 in a similar way. We note that
equations (63)-(81) and the first-order translations of equations (20)-(29) only involve
unary or monadic predicates so these formulae fall within the decidable, monodic
monadic fragment of FOTL.

If we try to follow the same route for the food transition systems using a unary
predicate Food(X) representing X is a piece of food and a binary predicate “Gb(Y’, Z)”
representing robot Y grabs food Z we obtain the following:

OVX - (Food(X) A IM(X)) = OIM(X) Vv (37 - (Robot(Z) A Gb(Z, X)))) (82)
OVX, VY - (Food(X) A Robot(Y) A Gb(Y, X)A = D(Y)) = OGb(Y, X) (83)
OVX, VY - (Food(X) A Robot(Y) A Gb(Y,X) A D(Y)) = OINX) (84)
OVX - (Food(X) A IN(X) A (Y - (Food(Y)A = IN(Y)))) = OINX) (85)
OVX - (Food(X) A (VY - (Food(Y) A IN(Y))) = OIM(X) (86)

In the above equation (82) represents the transitions out of the state In Arena,
equations (83) and (84) represent transitions out of each state Grabbed and equations
(85) and (86) represent the transition out of the state In Nest.

However, the clause (83) is not monodic. To address this we use multiple copies of
the food transition system, similar to what we did for the propositional case, where
Gb;(Z) is a unary predicate representing that piece of food 7 is grabbed by robot X. The
following represent formulae for the ith piece of food:

OIM; = OAM, V (3Z - (Robot(Z) A (Gbi(Z))))) (87)
VY - (Robot(Y) A Ghi(Y)A = D(Y)) = OGb;(Y) (88)
OVY - (Robot(Y) A Gbi(Y) A D(Y)) = OIN; (89)

7

OIN; A (\/ - INj) = OIN; (90)
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O ( /\INj> = OIMV; @1
J

Again we need to specify that a piece of food can be in exactly one of the food states at
any moment. As we do not allow equality we must introduce a binary predicate
NE(X,Y) to denote that X and Y are not the same and explicitly state for every pair of
robots introduced that they are not the same using this. Now to represent that a piece of
food 7 can only be in one of the food states we have the following:

O (VX.Robot(X) = (INi VIM; v \/Gbl«(X)> ) (92)

C(VX, Y - (Robot(X) A Robot(Y) A NE(X, ¥)) = (= Ghi(X)v = Gby(Y)))  (93)
OVX . Robot(X) = (= IN;Vv = Gb;(X)) (94)

OVX . Robot(X) = (= IM;V = Gb;(X)) (95)

(= IN,'V - IM,) (96)

Finally, to link the robot transition system and the pieces of food and the food
transition systems with each other we have:

U (VX' (Robot(X) = ((G(X) vV DX) v Mf(X)) < (\/ij(X)> ) ) ) 97)
j

O(VX.Vi,j,i # j(Robot(X) = (= Gb(X)V = Gh;(X)))) (98)

We have “translated” the different transition systems we have developed in the
previous parts. Now when we prove formulae if we explicitly introduce more than one
robot we must remember to state that they are different (with the predicate “NE”) and
we have a model of a system with an arbitrary number of robots. For example, for two
robots we would need to declare:

Robot(R1), Robot(R2), NE(R1, R2)

We now have a model of our system in monodic FOTL. For each robot declared, we can
consider a “copy” of the transition system in LTL; whereas for each piece of food we
must explicitly represent each transition system. The FOTL formulae we have
constructed fall within the decidable, monodic two-variable fragment of FOTL.

6.3 TSPASS: a temporal monodic prover

Next we will consider automated proof over this temporal model. Just as a clausal
resolution prover was developed for LTL, there are also clausal resolution provers for
monodic FOTL (Konev et al., 2005), called TeMP (Hustadt et al., 2004) and TSPASS
(Ludwig and Hustadt, 2009/2010). TeMP is the first automatic theorem prover for the
monodic fragment of FOTL and TSPASS a new implementation with a different
underlying architecture. As previously discussed, our model of a system (with an



arbitrary number of robots and a fixed number of pieces of food) is monodic, and it is
obviously in FOTL. So we can translate it as input for TeMP or TSPASS and prove
some properties of it.

The syntax of both TeMP and TSPASS is very simple:

+ I[X] corresponds to V.X;
+ ?[X] corresponds to AX;
+ ~ corresponds to —;
| corresponds to V;

+ & corresponds to A; and

” o«

+ “next”, “always” and “sometime” correspond to (), (J and <, respectively.

We have carried out automated analysis of the above in TSPASS, for an infinite
number of robots while ignoring the number of pieces of food. Sample results are given
in Table VIII. As can be seen, deciding on these properties is quite quick.

Next in Table IX we provide results for an infinite number of robots and two pieces
of food which are regenerated when all pieces of food are back in the nest. To reduce
the number of constraints we replace the first-order version of the constraints (20)-(27)

from Section 2.2 with:
Robot(X) = OOG(X) (99)

In Table IX @ in the “Time” column denotes the prover did not solve the problem
within ten min and “??”. In the column “satisfiable” denotes that we have not shown the
problem to be satisfiable or otherwise.

Here, the problems that are unsatisfiable finish quite quickly but the satisfiable
problems do not finish within 10 min.

6.4 Comment

Using FOTLs we can model the robot transition system representing infinite numbers
of robots without having to explicitly describe each robot as we did in the propositional
case. The formulae (63)-(81), the first-order translations of equations (20)-(29), and

Time

Property Meaning Satisfiable? (s)

AX(robot(X) AD—=D(X))  There is a robot that never reaches the state ~ No 0.340
Deposit

AX (robot(X) A O = S(X)) There is a robot that never reaches the state Scan  Yes 0.424

AX (robot(X) A OD(X)) There is a robot always in the state Deposit No 0.064

AX (robot(X) A OOD(X)) There is a robot that can infinitely often reach Yes 0.544
the state Deposit

AX(robot(X) A OCRe(X))  There is a robot that can infinitely often reach Yes 0.436
the state Rest

AX(robot(X) A OO0 = D(X)) There is a robot that sometime does not visit the No 0.856
state Deposit again

AX (robot(X) A OO0 = S(X)) There is a robot that sometime does not visit the Yes 0.448
state Scan again

AX(robot(X) A O = Ff(X)) There is a robot where sometime Foundfood is No 0.580

always false
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Table VIII.

Sample tests from use of
TSPASS on the infinitely
many robots model
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Table IX.

Sample tests from use of
TSPASS on the “at least
one robot, two pieces of
food” model

Time

Property Meaning Satisfiable?  (s)

AX (robot(X) A O = D(X))) There exists a robot that never ~ No 0.461
deposits food

X (robot(X) A OO = D(X))) There exists a robot that No 0.573
sometime in the future never
deposits food again

AXrobot(X) A O(D A OO = D(X))) There is a robot and at some point No 1.125
in the future it deposits food and
from the next moment onwards
does not deposit food again

X (robot(X) A OOD(X)) There exists a robot that can ?? (%)
infinitely often deposit food

VX (robot(X) = OCDX)) All robots infinitely often deposit ?? 6]
food

JXrobot(X) A OCIN; There is a robot and food 1 can be ?? 6]
infinitely often in the nest

AXrobot(X) A OOOCIN, There is a robot and food 2 can be ?? 6]
infinitely often in the nest

IAXrobot(X) A O = IN; There is a robot and food 1 is No 1.148
never in the nest

IXrobot(X) A 0 —IN, There is a robot and food 2 is No 1.119
never in the nest

IXrobot(X) A OCIM, Food 1 can be infinitely often in ~ ?? %]
the arena

JXrobot(X) A OCIM, Food 2 can be infinitely often in  ?? %]
the arena

AXrobot(X) A 0 — IM; There is a robot and food 1 is No 1.033
never in the arena

AXrobot(X) A O = IM; There is a robot and food 2 is No 1.024
never in the arena

X (robot(X) A OO = Gby (X)) There is a robot that never grabs ?? 6]
food 1

IAXrobot(X) A O = Ghy(X) There is a robot that never grabs ?? 1G]
food 2

AXrobot(X) A (= Gby(X)A = Ghy(X)) There is a robot that does not No 0.164
grab any food

(3Xrobot(X) A O(VXrobot(X) == Gby(X))) There is a robot and food 1 is No 0.227
never grabbed by any robot

(AXrobot(X) A L(VXrobot(X) =— Gbs(X))) There is a robot and food 2 is No 0.272
never grabbed by any robot

(3Xrobot(X) A CO(— Gby(X)A = Ghy(X))  There is a robot that at some No 0.180

point in the future does not Grab
Food 1 or 2 any more pieces of
food infinitely often

properties proved all fall into the monodic monadic fragment of FOTL which is
decidable (Hodkinson et al, 2000). The properties we tried to prove with TSPASS
finished fairly quickly. When trying to add the representation for food things become
more difficult. Introducing a predicate Food(X) to allow infinite pieces of food, as we
did with robots, causes us to move out of the monodic fragment. To avoid this we have



to explicitly represent each piece of food as we did in the propositional case. The
resulting formulae lie within the decidable monodic two variable fragment of FOTL.
We can see from the results from Table IX that now TSPASS does not finish within
10 min for several cases even though we simplified the number of constraints using
just constraint (99) (plus equations (80) and (81)). We note that the cases that do not
finish in the time limit we expect to be satisfiable. Essentially we have a conjunction of
formulae as input to the prover. In the case of an unsatisfiable set of formulae, the
prover may be able to find a contradiction, and declare the formulae as unsatisfiable
fairly quickly without having to explore the full search space. With satisfiable sets of
formulae, however, we need to explore the whole search space before being able to
declare the formulae are satisfiable. The improvement of techniques to try and reduce
the search space without affecting the satisfiability of formulae may help with this.

7. Related work

Previously, we have formally specified the alpha algorithm for a wireless connected
swarm (Nembrini et al., 2002) using temporal logics. Each robot has range limited
wireless communication and can only receive and broadcast messages to robots within
range. A robot moves forward, periodically broadcasting “I am here” messages to its
neighbours. If, at some point, the number of robots within range falls below some
threshold (i.e. the robot is assumed to be moving out of the swarm) it turns 180° and
moves in the new direction. When the number of neighbours rises above the threshold
(i.e. the robot has regained the swarm) the robot executes a random turn to avoid the
swarm collapsing in on itself. In Winfield ef al (2005) we specified this swarm
algorithm using propositional LTL. In Chen (2005) this temporal specification of
swarm algorithms was used to explore ways to generate implementations from a
formal specification.

In Kloetzer and Belta (2007) a model checking approach is adopted to considering
the motion of robot swarms. A hierarchical framework is suggested to abstract away
from the many details of the problem. First, a continuous abstraction is used to capture
the main features of the swarm’s position and size. An example considered is using the
centroid and variance of robot positions. Next the continuous abstraction is discretised,
to which model checking can be applied. That approach differs in a number of ways to
this paper. First, it concentrates on robot motion and behaviour such as obstacle
avoidance, swarm cohesion, and collision avoidance. Our work has abstracted away
from considerations of robot movement. Second, we are interested in the emergent
behaviour of the swarm so model individual robots whereas in that paper the
descriptions of individual robots are abstracted away from. Third, that paper assumes
a centralised communication architecture, which is not assumed in our work. A related
paper is (Fainekos et al., 2005) which again considers robot motion but does not discuss
robot swarms. That again produces a discrete representation of the continuous space of
movement producing a finite state transition system. A model checker is used to
produce traces that satisfy particular properties (e.g. visiting regions in a particular
order, eventually visiting a region but avoiding other regions on the way). These are
then used to produce a continuous movement plan whilst maintaining the required
property. The differences between that work and ours are that they focus on motion
and do not mention robot swarms.
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In this paper, we chose to carry out the automatic proof of properties of the temporal
specifications in our foraging robots scenario using the propositional and first-order
linear-time temporal resolution provers TRP 4+ + and TSPASS. An alternative would
have been to use a tableau-based prover. To show a property P follows from a
specification S, i.e. S = P is a valid formula, tableau algorithms, similar to resolution,
would try to show that SA — P is unsatisfiable. A graph is constructed with nodes
containing sets of temporal formula. The graph is extended by applying a series of
tableau rules to the main operator of some formula. These deconstruct temporal
formulae into formulae that must hold now and conditions on future moments.
Deletions are carried out to remove parts of the graph, which cannot be used to
construct a model. If applying the tableau algorithm to a formula ¢ results in the
underlying structure constructed being empty then this means that ¢ is unsatisfiable.
Alternatively if applying the tableau algorithm to ¢ results in the underlying structure
being non-empty then this can be used to construct a model for ¢, so ¢ must be
satisfiable. Tableau calculi are described in Wolper (1985), Schwendimann (1998),
Janssen (1999) and implementations of tableau algorithms for LTL can be found at The
Logics WorkBench (Balsiger ef al., 1998) and the Tableau Workbench (Abate and Goré,
2003). Calculi for tableau for monodic FOTL were given in Kontchakov et al. (2004).

We chose to use a resolution rather than tableau-based approach as the
representation of the underlying transition systems are close to the normal form our
resolution systems are based on. Also implemented resolution-based reasoners for both
propositional temporal logics and monodic FOTLs were available whereas the only
implemented temporal tableau-based reasoners we know of are propositional.

Model checking (Clarke ef al, 2000) is a popular technique for showing the
satisfiability of temporal formulae given a model of the system over which the
formulae are to be checked. Implemented model checkers that allow properties
specified in LTL include NuSMV (Cimatti ef al., 2002) and Spin (Holzmann, 1997). We
chose to consider a deductive, resolution-based approach due to the fact that there is a
chance of extending this to infinite state systems by using FOTL whereas standard
model checking must be finite state. As mentioned previously, model checkers have
been applied to the verification of the motion robot swarms in Kloetzer and Belta
(2007), however many details are abstracted away.

Other formalisms have been considered to specify and verify aspects of robot
swarms. In Rouff et al. (2007) four formal methods were selected to specify part of the
Autonomous Nano Technology Swarm mission which will send small swarms of small
spacecraft to study the asteroid belt. The chosen formal methods are communicating
sequential processes, weighted synchronous calculus of communicating systems,
X-machines and unity logic. These are being used alongside techniques from Agent
Oriented Software Engineering. The authors conclude the need to develop new formal
techniques alongside specialised sets of models and software processes based on a
number of formal methods and other areas software engineering.

In Lerman ef al (2005) the authors use distributed stochastic processes to model
swarm robots. The modelling is macroscopic, 1.e. it directly describes the collective
behaviour of the swarm. These models are compared with simulations and experiments
on real robots with good agreement between the models and simulations or experiments.
The paper (Martinoli ef al., 2004) also develops a stochastic approach.



Robot swarms have been studied using Lyapunov stabilty (Harper and Winfield,
2006). The underlying behaviour is represented by state vectors and the change of state
is modelled as a state trajectory. Different categories of behaviour are specified which,
if proven, show the systems will converge on some equilibrium condition, is
sufficiently close to this, or otherwise. This differs from the approach we take in this
paper as we focus on a logical rather than numerical/dynamic representation. Also
there are many other approaches for analysing and modelling complex swarm
architectures (Gordon-Spears and Kiriakidis, 2004).

8. Conclusions and future work

8.1 Concluding remarks

We have taken the case study of a swarm of robots foraging for food and specified this
in both propositional and monodic first-order LTLs. We have abstracted away from
details about robot movement in the physical world, i.e. we have not recorded its
location co-ordinates, but focused on representing its phases of activity, e.g. scanning
the arena or moving homewards. The different phases of the robots were originally
represented by a state transition system and we suggested a number of constraints to
avoid unwanted infinite loops in the systems. We then introduced a transition system
representing food and have proved a number of properties with varying (small)
numbers of robots and pieces of food. As the original paper (Liu ef al., 2007) this case
study was based on was concerned with energy levels of the robots we introduced
another transition system to represent this and again proved several properties.

The proofs have been carried out using TRP++ a temporal resolution theorem
prover for propositional temporal logics. TRP++ has completed almost all of the
proofs in the scenarios we have tried with up to two robots and three pieces of food.
The formulae taking the longest times (or not completing) concerned properties of the
form infinitely often. Table V gives an indication of why the times taken by TRP++
increase by considering the number of propositions required. For example, the case of
two robots and three pieces of food requires 38 propositions which involves 2%
different interpretations with the product of the transition systems having at most
5,184 states.

The most expensive part for these type of temporal resolution provers is dealing
with sometime clauses (whose right hand sides are of the form </). The way we have
formalised the additional constraints in Sections 2.2 have introduced several formulae
of this type. We may get improved results and be able to deal automatically with larger
number of robots and food by reducing such formulae to a minimum. Further, when
representing the transition system we must explicitly state that the system can only be
in exactly one state or phase at any moment in time. This produces many temporal
clauses and we believe slows down the system. An alternative would be to use a
temporal prover that deals with such constraints as part of the input. We have been
investigating such logics and associated calculi in Dixon ef al (2007a, b, 2008).

One disadvantage of this approach is that to increase the number of robots we must
add the formulae representing the robot transition system to the input file and update
the formulae linking the robot and food transition systems. Seeking for a better way to
proceed we utilised FOTLs where variables could represent robots and pieces of food.
We saw that we could use this approach to represent robots thus potentially modelling
swarms of arbitrary size. However, this did not extend also to items of food because
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representing information that some robot had grabbed some food in the next moment
in time was outside the decidable fragment we targeted.

The prover TSPASS managed to prove all the properties of the robot transition
system but struggled with the satisfiable properties when combined with two pieces of
food. Nevertheless, this work shows that propositional deductive temporal verification
is viable for small numbers of robots, while first-order deductive temporal verification
1s possible for arbitrary sized swarms.

8.2 Future work
Our aims for future work are as follows:

+ as temporal prover technology develops, we will address more complex and
sophisticated variations of the verification problems tackled here;

+ while we have initially considered the problem of representing real-time issues
on the robotic behaviour, this needs to be explored further, perhaps using a more
powerful, specifically real-time, temporal framework;

+ similarly, the behaviour of a robot is essentially probabilistic, with actions and
sensor reading being fuzzy, and so extension to probabilistic temporal logics will
be explored,;

+ while we have considered some aspects of arbitrarily sized swarms, we would
like to develop this much further, particularly considering properties of numbers
of robots; and

+ to address the problem of specifying and verifying fault tolerance within such
arbitrarily sized swarms of robots (Winfield and Nembrini, 2006; Fisher et al., 2009).

Note

1. The original version of SNF did not include global clauses but, as global clauses can be
re-written as an initial clause and a step clause, this version is equivalent.
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