
2 1541-1672/10/$26.00	©	2010	IEEE Ieee InTeLLIGenT SySTemS
Published by the IEEE Computer Society

Editor:	Terry R. Payne, University	of	Liverpool,	t.r.payne@liverpool.ac.uk

A G E N T S

Satellite Control
Using Rational Agent
Programming

Louise Dennis, Michael Fisher, and Alexei Lisitsa, University of Liverpool
Nicholas Lincoln and Sandor Veres, University of Southampton

large monolithic platforms, however, in favor of
multiple, smaller satellites working in teams to
accomplish the task of a larger vehicle through
distributed methods. Both fi nancially and func-
tionally motivated, such developments help reduce
launch vehicle constraints and nearly eliminate
ground station personnel costs, while introducing
fault tolerance and redundancy into the system.
Moreover, in some instances, a distributed plat-
form is the only feasible method to accomplish a
particular mission.

Such distributed space missions are not restricted
to the realms of academia. The Cluster mission,
launched by European Space Agency (ESA) in July
2000 (see Figure 1), consists of four satellites work-
ing collaboratively to investigate the interaction of
the Earth’s magnetosphere with the solar wind.
The Cluster mission represents a highly suitable
application of distributed hardware in an Earth or-
bit, namely that of a sensor web. Additional inter-
est in Earth orbiting sensor webs is mainly focused
on Earth observation, which NASA’s EO-1 pro-
gram is currently investigating. More adventurous
multisatellite implementations involve exploration
scenarios, such as the exploration and catalogu-
ing of the asteroid belt between Mars and Jupiter.
ESA’s proposed Apies mission seeks to achieve this
goal via a cluster of spacecraft moving through the
dynamic asteroid fi eld.1 Such a mission clearly re-
quires a high degree of autonomy, not only to en-
able successful navigation of the asteroid environ-
ment, but to dynamically assign specifi c spacecraft
assets to asteroids of particular scientifi c interest.

With the implementation of collaborative space
vehicles, design complexity has moved from being
restricted to the space vehicle’s physical build to
being primarily within satellite operations. That
is, issues such as interdistance regulation and
dynamic navigation are tasks we cannot manage
from a control room due to timeliness constraints.
System autonomy, or at the very least semiautono-
mous action, is required wherein operators provide
a satellite with high-level instructions for a spe-
cifi c task, which it then carries out autonomously.
Introducing such (semi)autonomous behavior into
a multiple satellite systems presents challenges to
the development of appropriate control software
and, in particular, the reliability of such systems.

An ongoing study at the Universities of Liver-
pool and Southampton is looking at using agent
programming technology to control complex auto-
nomous satellites. In this work, we are exploring
how well rational agents cope with autonomous
decision making in continuous systems. The ratio-
nal agent aspect ensures that autonomy, its control,
and its requirements are all clear and explicit.

Control Systems Technology
A fundamental component of control systems tech-
nology is the feedback controller. This measures,
or estimates, a system’s current state through a
dynamic model and produces subsequent feedback
and feed-forward control signals. In many cases,
difference and differential equations can be used
to elegantly manage the process. These equations
of complex dynamics make changes to the input
values of subsystems and monitor the outcomes on
various sensors.

Such controllers are increasingly required to
work in situations where there are areas of dis-
continuity, when the situation requires a distinct

Traditionally a satellite is a large and expen-

sive piece of equipment, tightly controlled

by a ground team with little scope for autonomy.

The space industry has recently sought to abandon

IS-25-03-agents.indd 2 27/04/10 1:27 PM

may/june 2010 www.computer.org/intelligent	 3

change in behavior and
often needs control to
switch to the use of an
alternative model and
alternative control equa-
tions. This kind of hybrid
control system clearly
requires that we integrate
some decision-making
system with the feedback
controller.2–4 It might
also be necessary for a
system to take actions,
such as detecting that a
fuel line has ruptured and
switching valves to bring
an alternative online, that
fall outside the scope of
monitoring and adjust-
ing input and output val-
ues but involve detecting
that thresholds have been
exceeded or making large
system changes. It is by now well
established that using a separate
discrete and logical decision-making
process for this aspect is preferable
to greatly extending the basic control
system.5,6 Overall systems with these
characteristics are often referred to
as hybrid control systems in that
they integrate discrete, logical deci-
sion processes with physical system
dynamics.

Unfortunately, controlling hybrid
systems with traditional program-
ming methods can become increas-
ingly unwieldy. Researchers often
represent the decision process as an
inflexible tree (or graph) of possi-
ble situations. Execution then in-
volves tracing through a branch that
matches the current situation and
then executing the feedback control-
ler (or making other system changes)
found at the relevant leaf of the tree.
Figure 2 illustrates such a hybrid
automaton in StateFlow.

Programming these decisions from
state to state is often time-consuming

and error-prone and can lead to the
duplication of code where the same
actions must be taken in several,
slightly different situations. There
are at least two ways to depart from

this basic programming
decision paradigm within
hybrid systems. One ap-
proach arises out of
the field of subsymbolic
artificial intelligence,
where neural nets or ge-
netic algorithms can be
used to either automati-
cally generate or com-
pactly control such sys-
tems.7,8 However, such
techniques obscure the
decision-making process,
so it is no longer easy to
tell why the system is op-
erating the way it is. This
causes obvious problems
for debugging, diagno-
sis, monitoring, and most
importantly, reliability,
which is a fundamental
requirement in expensive

space missions. Figure 3 illustrates
this approach and highlights that
techniques imitating natural intelli-
gence are used to direct these hybrid
control systems.

Figure 1. Artist’s illustration of the European Space Agency (ESA)
Cluster mission. Multiple, smaller satellites working in (semi)
autonomous teams can help space exploration become more
financially and functionally efficient. (Courtesy of ESA image
archive)

Figure 2. Diagrammatic hybrid system description in StateFlow. This software
is one of a few software systems available that permit graphical editing and
simulation of hybrid systems. Guard conditions are used to define when the
system is to transition into another state within a finite-state machine. The hybrid
system’s actual state includes both continuous and discrete variables. (Courtesy of
Mathworks)

IS-25-03-agents.indd 3 27/04/10 1:27 PM

4	 	 www.computer.org/intelligent	 Ieee InTeLLIGenT SySTemS

An alternative approach to simpli-
fying autonomous decision making
in a hybrid system involves carefully
choosing abstractions that relate the
continuous world with discrete deci-
sion states. Using these abstractions,
we can define basic rules of behav-
ior and then formulate goals to keep
the system within constraints and
set both short- and long-term objec-
tives. This lets us use an agent-based
approach, where goals, plans, and
logical inference are all captured

within a rational agent (see the
“Agent Programming” sidebar).
Using such an approach requires a
carefully constructed set of hierar-
chical abstractions (see Figure 4). It
not only provides clear and coherent
decision making, it also emphasizes
the process’s autonomous nature.
Thus, using an agent-based pro-
gramming approach, the choices the
agent makes are visible and explicit,
as are the reasons it has for taking
them.

Rational Hybrid Agents
Our aim is to produce a hybrid sys-
tem embedding existing technol-
ogy for generating feedback control-
lers and configuring satellite systems
within a decision-making part based
on a high-level agent programming
language. Such languages assume
an underlying imperative program-
ming layer in which an agent’s ac-
tions are executed. Hybrid control
systems appear to be a natural fit for
this programming style in which a
decision-making layer is combined
with a lower-level, dynamic execu-
tion layer.

Decision making tends to rely
on discrete information (such as “a
thruster is broken”), while system
control tends to rely on continuous
information (such as “thruster fuel
pressure is 65.3”). Thus, it is vital
to be able to abstract from the dy-
namic system properties and provide
discrete abstractions for use by the
agent program (see Figure 4). For this
reason, our architecture has an ex-
plicit abstraction layer that translates
between the two information styles
as data flows around the system.
The abstraction engine generates a
stream of incoming sensor and ac-
tion abstractions, using the sEnglish

Figure 3. Neuro/fuzzy solutions for decision and control. These methods can
provide solutions to nonlinear feedback control problems and also help create
abstractions from the continuously sensed world to discrete logic statements.
By their very nature, they are less suitable for declaring goals and maintaining
behavior rules for autonomous systems.

Input

Hidden

Output

Systems	that	combine	aspects	of	autonomy,	concurrency,	
and	 communication	 are	 notoriously	 difficult	 to	 pro-
gram.	Early	attempts	using	conventional	programming	

techniques	 produced	 systems	 that	 were	 complex,	 unclear,	
and	 frequently	 error	 prone.	 The	 agent	 paradigm	 grew	 out	
of	an	attempt	to	find	appropriate	abstractions	for	describing	
and	structuring	these	systems.	Agent	programming	separates	
processes	 into	separate	entities	each	with	its	own	supply	of	
facts	 (or	 beliefs)	 about	 the	 larger	 system	 and	 its	 own	 pro-
cedures	 for	executing	 its	 role	 in	 the	 system.	Rational	agent	
systems	are	a	major	 strand	within	agent	programming	that	
seek	to	put	programming	within	a	framework	of	goals,	de-
liberation,	 and	 explainable	 decision	 making.	 Consequently,	
high-level	 languages	 have	 been	 developed	 to	 support	 this	

programming	style	by	providing	constructs	for	goals,	beliefs,	
and	plans.1,2	Many	of	these	languages	extend	from	work	in	
declarative	 programming,	 so	 a	 rational	 agent	 program	 can	
often	be	viewed	as	a	logical	specification	of	the	desired	be-
havior,	thus	opening	up	the	possibility	for	formal	verification	
of	the	resulting	code.3

References
	 1.	R.H.	Bordini	et	al.,	eds.,	Multi-Agent Programming: Languages,

Platforms and Applications,	Springer,	2005.
	 2.	R.H.	Bordini	et	al.,	eds.,	Multi-Agent Programming: Languages,

Tools and Applications,	Springer,	2009.
	 3.	R.H.	 Bordini	 et	 al.,	 “Model	 Checking	 Rational	 Agents,”	 IEEE

Intelligent Systems,	vol.	19,	no.	5,	2004,	pp.	46–52.

Agent Programming

IS-25-03-agents.indd 4 27/04/10 1:27 PM

may/june 2010 www.computer.org/intelligent	 5

ontology language (see the related
sidebar), which control engineers
already use.

In our system’s architecture, a
traditional feedback controller gov-
erns the real-time satellite control.
This forms a physical engine, which
sends data to an abstraction engine
that filters and discretizes informa-
tion from both the environment
and the physical engine. To achieve
this, the abstraction engine might
also call on a continuous engine to
make calculations involving the con-
tinuous data. Finally, a rational en-
gine uses rational agent technology
to make decisions about both the
system configuration and its parame-
ters that are transmitted to the phys-
ical engine. The rational engine can
call the continuous engine (via the
abstraction engine) to, for instance,
generate new controllers or can send
instructions directly to the physical
engine.

The agent programming language
within the rational engine encour-
ages an engineer to express decisions
in terms of the facts an agent has
on hand, what it wants to achieve,
and how it will cope with any
unusual events. This reduces code
size so engineers need not explicitly

describe how the satellite should
behave in each possible system con-
figuration and can instead focus on
describing the decisions relevant to
particular configurations. The key
aspect of deliberation within agent
programs lets the decision making
part of the hybrid system adapt in-
telligently to changing dynamic sit-
uations, priorities, and uncertain
sensors.

Case Study: Satellite
in Geostationary Orbit
Our first case study involved a single
satellite attempting to acquire and
maintain a geostationary orbit. A geo-
stationary orbit, commonly used for
communications satellites, requires
active maintenance because solar ra-
diation and disturbing gravitational
forces act on the satellite. We could
achieve such maintenance using a

Figure 4. Abstractions processes in the proposed agent-based approach to hybrid
control systems. Such an agent-based programming approach makes the agent’s
choices and reasoning both visible and explicit.

Sensor
network Abstractions

GoalsLogic
based

decision

Plan library

Actuator
network

Human readable sEnglish documents

System	 English	 (sEnglish)	 is	 a	 controlled	 natural	
language—that	 is,	 a	 subset	 of	 English	 with	 meanings	
of	sentences	defined	by	code	 in	a	high-level	program-

ming	language	such	as	Matlab,	GNU	Octave,	SciLab,	Python,	
or	C++.1,2	sEnglish	is	also	an	example	of	natural	language	pro-
gramming;	 correctly	 formulated	 sEnglish	 text	 compiles	 into	
executable	 program	 code	 unambiguously	 so	 long	 as	 pre-
defined	sentence	structures	and	an	ontology	are	defined,	and	
errors	 in	functionality	are	reduced	due	to	the	structures	 in-
herent	within	sEnglish.	This	lets	a	programmer	enjoy	the	con-
venience	of	natural	 language	while	 retaining	 the	usual	de-
terminism	of	digital	programs.	Once	a	database	of	sentences	
and	 ontologies	 have	 been	 generated,	 the	 clarity	 and	 con-
figurability	of	a	system	written	in	sEnglish	becomes	evident.		

Of	particular	 interest,	when	applied	to	agent	system	devel-
opment,	 is	 the	 link	 between	 the	 abstract	 manner	 in	 which	
sEnglish	solutions	are	developed	and	the	abstractions	of	an	
agent	system.	This	enables	a	shared	understanding	to	be	pro-
vided	between	the	satellite	and	its	operator.

References
	 1.	S.M.	 Veres,	 Natural Language Programming of Agents and

Robotic Devices: Publishing for Humans and Machines in
sEnglish,	SysBrain,	2008.

	 2.	L.	Molnar	and	S.M.	Veres,	“Documents	for	 Intelligent	Agents	
in	 English,”	 Proc. IASTED Conf. Artificial Intelligence and
Applications (AIA	 2010),	 Int’l	 Assoc.	 Science	 and	 Technology	
for	Development,	2010,	pp.	674–122.	

sEnglish

IS-25-03-agents.indd 5 27/04/10 1:27 PM

6	 	 www.computer.org/intelligent	 Ieee InTeLLIGenT SySTemS

traditional feedback con-
troller, but a thruster
failure might (due to fuel
venting) rapidly move the
satellite out of its pre-
scribed orbital location.
Diagnostic reasoning about
such occurrences and sub-
sequent reconfiguration
of the control hardware is
necessary to compensate
for such events and allow
for mission continuation
and completion.

In implementation, we
programmed the continu-
ous engine with routines
for calculating bound in-
tersections and produc-
ing a minimum fuel path that would
bring the satellite back to the desired
operational orbit. In the event of a
thruster failure, the reasoning engine
deduces a suitable new hardware
configuration and communicates
this to the physical engine. Concur-
rent with these system diagnostics,
the reasoning engine works with the
continuous engine to determine if the
satellite has strayed “out of bounds.”
Based on this evaluation, the reason-
ing engine triggers the production
and execution of a new fuel optimal
path or switches to a position regu-
latory feedback controller. In all in-
stances, the physical engine executes
control procedures after receiving
direct instructions from the reason-
ing engine.

The rational agent language we
used in the reasoning engine let us
handle these situations (hardware re-
configuration and control implemen-
tation) separately in the code, thus
reducing the programming complex-
ity. The agent technology also per-
mitted the same code to be used to
reason about any of the thrusters,
rather than duplicating the code for
each thruster, something that many

current tools for handling hybrid
systems do not allow.

The simulation injected the satel-
lite into the orbital position with a
bounded error and tasked it with ac-
quiring and maintaining a constant
position relative to the Earth (within
certain bounds) at a geostationary al-
titude. During the operational mode,
the satellite was also subject to po-
tential failures in its thrusters, rang-
ing from short circuits and gain re-
duction to more dramatic scenarios
of burst fuel lines. Upon activation of
the agent system, the simulated satel-
lite was able to recover the desired or-
bital location and regulate this posi-
tion, while concurrently dealing with
thruster failure modes.

Case Study: Multiple
Satellites
The current architecture is being ex-
tended to multiple satellites that com-
municate information among them-
selves while operating in a dynamic
environment. We are interested in
both the techniques required to main-
tain a formation and how groups of
satellites can implement fault tolerance
in the satellite system by switching

team roles and altering
formations to compensate
for equipment failure.
This will let us investigate
the application of agent
techniques for cooper-
ation, coordination, and
teamwork.

This multiple satellite
scenario involves three
low Earth orbiting satel-
lites, as Figure 5 shows.
Each satellite is con-
trolled by the previously
described agent architec-
ture and may experience
thruster failure modes
as in the geostationary
scenario. We tasked the

satellites with completing a scien-
tific mission; the reasoning engine
was responsible for diagnostic tasks
and coordinating satellite activities
to achieve the prescribed scientific
mission.

The software is to be evaluated
on a physical satellite simulation en-
vironment developed at the Univer-
sity of Southampton (see Figure 6).
Although this environment constrains
the satellites to operate with five de-
grees of freedom, it lets us assess the
software in a real physical environ-
ment and evaluate its decision-making
ability outside an entirely virtual
environment.

As this research progresses, we
aim to tackle increasingly more com-
plex and realistic autonomous space
software scenarios. We are also de-
veloping a high-level agent program-
ming language deployable in the Cog-
nitive Agent Toolbox for Matlab (see
www.sysbrain.com) and customized
for implementing autonomous con-
trol in hybrid systems. Abstraction
is clearly important, and we aim to

Figure 5. Virtual reality Matlab Simulink display of three controlled
satellites in a low Earth orbit. Each satellite is controlled by an
agent architecture that must diagnose and react to simulated
thruster failures.

IS-25-03-agents.indd 6 27/04/10 1:27 PM

may/june 2010 www.computer.org/intelligent	 7

provide a principled data-
base query solutions for
flagging the most relevant
abstractions for the ratio-
nal engine.

Based on our previous
work in agent verifica-
tion,9 we aim to address
the formal verification of
both the reasoning en-
gine and various forward-
planning techniques. These
would potentially let agents
reason about the outcome
of possible actions and use
this information in their
decision-making process.
If successful, this work
could theoretically be ex-
tended to agents with the capacity to
learn both new abstractions and new
plans.

Acknowledgments
This research is part of the Engineering
Autonomous Space Software project, which
is supported within the UK by the Engi-
neering and Physical Sciences Research
Council (EPSRC) under grants EP/F037201
and EP/F037570 and supported in part by
the European Space Technology Center of
the European Space Agency.

References
 1. P. D’Arrigo and S. Santandrea,

“The APIES Mission to Explore the

Asteroid Belt,” Advances in Space

Research, vol. 38, no. 9, 2006,

pp. 2060–2067.

 2. M.S. Branicky, V.S. Borkar, and

S. Mitter. “A Unified Framework for

Hybrid Control: Model and Optimal

Control Theory,” IEEE Trans. Auto-

matic Control, vol. 43, no. 1, 1998,

pp. 31–45.

 3. R. Goebel, R. Sanfelice, and A. Teel,

“Hybrid Dynamical Systems,” IEEE

Control Systems Magazine, vol. 29,

no. 2, 2009, pp. 28–93.

 4. P. Varaiya, “Design, Simulation, and

Implementation of Hybrid Systems,”

Proc. 20th Int’l Conf. Application and

Theory of Petri Nets, Springer, 1999,

pp. 1–5.

 5. R. Alur et al., “The Algorithmic

Analysis of Hybrid Systems,” Theoreti-

cal Computer Science, vol. 138, no. 1,

1995, pp. 3–34.

 6. R. Alur et al., “Discrete Abstractions of

Hybrid Systems,” Proc. IEEE, vol. 88,

IEEE Press, 2000, pp. 971–984.

 7. P.J. Fleming and R.C. Purshouse,

“Genetic Algorithms in Control Sys-

tems Engineering,” Proc. 12th IFAC

World Congress, Elsevier

Science, 2001, pp. 383–390.

8. F.W. Lewis, S. Jaganna-

than, and A. Yesildirak,

Neural Network Control

of Robots and Non-linear

Systems, Taylor and Fran-

cis, 1999.

9. R.H. Bordini et al., “Auto-

mated Verification of

Multi-Agent Programs,”

Proc. 23rd IEEE/ACM

Int’l Conf. Automated

Software Engineering

(ASE), IEEE Press, 2008,

pp. 69–78.

Louise Dennis is a researcher at the

University of Liverpool. Contact her at

L.A.Dennis@liverpool.ac.uk.

michael Fisher is a professor at the Univer-

sity of Liverpool. Contact him at MFisher@

liverpool.ac.uk.

alexei Lisitsa is a lecturer at the Univer-

sity of Liverpool. Contact him at lisitsa@

liverpool.ac.uk.

nicholas Lincoln is a researcher at the

University of Southampton. Contact him at

n.k.lincoln@soton.ac.uk.

Sandor Veres is a professor at the Uni-

versity of Southampton. Contact him at

s.m.veres@soton.ac.uk.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

Figure 6. The Autonomous Systems Facility based at the
University of Southampton. This real physical environment lets
the developers test the software and assess its decision-making
ability outside a virtual environment.

IS-25-03-agents.indd 7 27/04/10 1:27 PM

