
A Common Basis for Agent Organisation in BDI Languages⋆

Anthony Hepple, Louise Dennis, and Michael Fisher

Department of Computer Science, University of Liverpool, Liverpool, U.K.
{A.J.Hepple,L.A.Dennis,M.Fisher}@csc.liv.ac.uk

Abstract. Programming languages based on the BDI style of agent model are
now common. Within these there appears to be some, limited, agreement onthe
core functionality of agents. However, when we come to multi-agent organisa-
tions, not only do many BDI languages have no specific organisational structures,
but those that do exist are very diverse. In this paper, we aim to provide a unifying
framework for the core aspects of agent organisation, covering groups, teams and
roles, as well as organisations. Thus, we describe a simple organisational mech-
anism, and show how several well known approaches can be embedded within
it. Although the mechanism we use is derived from the METATEM programming
language, we do not assume any specific BDI language. The organisational mech-
anism is intended to be independent of the underlying agent language andso we
aim to provide a common core for future developments in agent organisation.

1 Introduction

As hardware and software platforms become more sophisticated, and as these are de-
ployed in less predictable environments, so the level ofautonomybuilt into such sys-
tems has increased. This has allowed systems to work effectively without detailed, and
constant, human intervention. However, autonomous systems can be hard to understand
and even harder to develop reliably. In order to help in this area, the concept of anagent
was introduced to capture the abstraction of an autonomously acting entity. Based on
this concept, new techniques were developed for analysing,designing and implement-
ing agents. In particular, several new programming languages were developed explicitly
for implementing autonomous agents.

We can simply characterise an agent as an autonomous software component having
certain goals and being able to communicate with other agents in order to accomplish
these goals [26]. The ability of agents to act independently, to react to unexpected situa-
tions and to cooperate with other agents has made them a popular choice for developing
software in a number of areas. At one extreme there are agentsthat are used to search
the INTERNET, navigating autonomously in order to retrieve information; these are rel-
atively lightweight agents, with few goals but significant domain-specific knowledge.
At the other end of the spectrum, there are agents developed for independent process
control in unpredictable environments. This second form ofagent is often constructed
using complex software architectures, and has been appliedin areas such as real-time
process control [22, 18]. Perhaps the most impressive use ofsuch agents is in the real-
time fault monitoring and diagnosis carried out on NASA DeepSpace One [20].

⋆ Work partially supported by EPSRC under grant EP/D052548.

The key reason why an agent-based approach is advantageous in the modelling and
programming of autonomous systems, is that it permits the clear and concise represen-
tation, not just ofwhat the autonomous components within the system do, butwhythey
do it. This allows us to abstract away from low-level controlaspects and to concentrate
on the key feature of autonomy, namely the goals the component has and the choices it
makes towards achieving its goals. Thus, in modelling a system in terms of agents, we
often describe each agent’sbeliefsandgoals, which in turn determine the agent’sinten-
tions. Such agents then make decisions about what action to perform, given their beliefs
and goals/intentions. This kind of approach has been popularised through the influential
BDI (Belief-Desire-Intention) model of agent-based systems [22]. This representation
of behaviour usingmentalnotions has several benefits. The first is that, ideally, it ab-
stracts away from low-level issues: we simply present some goal that we wish to be
achieved, and we expect it to act as an agent would given such agoal. Secondly, be-
cause we are used to understanding and predicting the behaviour of rational agents, the
behaviour of autonomous software should be relatively easyfor humans to understand
and predict too. Not surprisingly, therefors, the BDI approach to agent modelling has
been successful and has led to many novel programming languages based (at least in
some part) upon this model; these are often termedBDI Languages. Although a wide
variety of such languages have been developed [2] few have strong and flexible mech-
anisms fororganisingmultiple agents, and those that do provide no agreement on their
organisational mechanisms. Thus, while BDI languages haveconverged to a common
core relating to the activity of individual agents [9], no such convergence is apparent in
terms of multi-agent structuring.

Our overall aim is to provide a common logically based framework for BDI style
agent programming (which incorporates organisational aspects) to facilitate agent ver-
ification [4]. As a result a clear goal is to develop a simple, intuitive and semantically
consistent organisation mechanism. In this paper we show how a simple model can,
in BDI languages, encompass many proposed models of multi-agent organisation and
teamwork. The formal semantics of this approach is considered in detail in [10].

Paper Structure Section 2 surveys some of the leading approaches to agent organisa-
tion that have already been proposed and illustrates their diverse nature. In Section 3
we describe the structuring mechanism we propose for unifying the multi-agent con-
cepts. Section 4 demonstrates how our framework can be used to model concepts such
as joint-intentions, roles, etc., which form the basis of the approaches surveyed in Sec-
tion 2. Finally, in Section 5, we provide concluding remarksand outline future work.

2 Approaches to Agent Organisation

In this section we overview some of the key approaches to the organisation of agents
that have been proposed. It is important to note that we are particularly concerned with
rational agents, predominantly using the BDI model of computation. While we have
not listedall approaches, the selection we give covers many of the leadingattempts at
teamwork, organisational structuring and role-based computation. In addition, while we
are primarily interested in developing BDI languages with clear logical semantics and
logic-based mechanisms, we also consider organisational approaches beyond this class.

2.1 Cohen and Levesque:Joint Intentions

Offering a respected philosophical view on agent co-operation, Cohen and Levesque
produced a significant paper ‘Teamwork’ [8] extending previous work [19, 6, 7]. They
persuasively argue that a team of agents shouldnot be modelled as an aggregate agent
but propose new (logical) concepts ofjoint intentions, joint commitmentsandjoint per-
sistent goalsto ensure that teamwork does not break down due to any divergence of
individual team members’ beliefs or intentions. The authors’ proposals oblige agents
working in a team to retain team goals until it is mutually agreed amongst team mem-
bers that a goal has now been achieved, is no longer relevant,or is impossible. This level
of commitment is stronger than an agent’s commitment to its individual goals which are
dropped the moment it (individually) believes they are satisfied. Joint intentions can be
reduced to individual intentions if supplemented with mutual beliefs.

2.2 Tidhar, Cavedon and Rao:Team-Oriented Programming

Tidhar [24] introduced the concept ofteam-oriented programmingwith social struc-
ture. Essentially this is an agent-centred approach that defines joint goals and intentions
for teams but stops short of forcing individual team membersto adopt those goals and
intentions. An attempt to clarify the definition of a ‘team’ and what team formation en-
tails is made using concepts such as ‘mind-set synchronisation’ and ‘role assignment’.
Team behaviour is defined by a temporal ordering of plans which guided (but did not
constrain) agent behaviour. A social structure is proposedby the creation ofcommand
andcontrol teams which assign roles, identify sub-teams and permit inter-team rela-
tionships. In [5], the authors formalise their ideas of social structure with concepts of
commitment expressed using modal logic.

2.3 Ferber, Gutknecht and Michel: Roles and Organisations

Ferberet al. [11] present the case for an organisational-centred approach to the de-
sign and engineering of complex multi-agent systems. They cite disadvantages of the
predominant agent-centred approaches such as: lack of access rights control; inabil-
ity to accommodate heterogeneous agents; and inappropriate abstraction for describing
organisational scenarios. The authors propose a model for designing language indepen-
dent multi-agent systems in terms ofagents, rolesandgroups. Agents and groups are
proposed as distinct first class entities although it is suggested that an agent ought to be
able to transform itself into a group. (We will see later thatthis is close to our approach.)

In [12], Ferber continues to argue for an organisational-centred approach, advo-
cating the complete omission of mental states at the organisational level, defining an
organisation of agents in terms of its capabilities, constraints, roles, group tasks and
interaction protocols. Clearly articulated here is a manifesto of design principles.

2.4 Pynadath and Tambe:TEAMCORE

Pynadathet al. [21] describe their interpretation of ‘team-oriented programming’ that
aims to organise groups of heterogeneous agents to achieve team goals. A framework
for defining teams is given that provides the following concepts:

Team— an agent without domain abilities;
Team-ready— agents with domain abilities that can interface with a teamagent;
Sub-goal— a goal that contributes to the team goal; and
Task— the allocation of a sub-goal to a team-ready agent.

An implementation of their framework, TEAMCORE, provides organisational func-
tionality such as multicast communication between agents,assigning tasks, maintaining
group beliefs and maintaining hierarchies of agents (by role). Heterogeneous agents are
accommodated by wrapper agents that act as proxies for the domain agent.

2.5 Fisher, Ghidini and Hirsch: Groups as Agents

Beginning within the context of executable temporal logics[1], Fisheret al. produced
a eries of papers [15, 14, 16, 13] that developed the METATEM language into a gener-
alised approach for expressing dynamic distributed computations. As we will see more
about this model in Section 3, we just provide a brief outlinebelow.

Organisational structuring within the METATEM language [13] consists of a simple
nested grouping structure where groups comprise communicating elements (objects,
agents, or other software components). The key aspect of this approach is that groups
themselves are also agents, providing a homogeneous, simple, yet expressive, model.
In [14], it is argued that systems composed of components as diverse as objects, web
services and abstract features can be modelled within this general approach.

2.6 Hübner, Sichman and Boissier:Roles and Permissions

Hübneret al.believed that the agent organisational frameworks proposed prior to their
2002 paper [17] overlooked the significant relationship between structural and func-
tional properties of an organisation. Thus, in [17], they propose a three component ap-
proach to the specification of agent organisations that combines independent structural
and functional specifications with a deontic specification,the latter defining, among
other things, the roles (structural) having permission to carry out group tasks (func-
tional). The approach provides a proliferation of constructs for specifying multi-agent
systems, including the ability to concisely express many additional aspects, such as:

– the ability to specifycompatibilityof group membership, akin to the members of a
government expressing a conflict of interest;

– enabling thecardinalityof group membership to be defined and thus defining a well
formed group as a group who’s membership is between its specified minimum and
maximum size;

– the ability to express a variance in the agents’ permissionsover time.

It is argued that such an approach improves the efficiency of multi-agent systems by
focusing agents on the organisation’s goals. However, we note that of all the proposals
discussed in this section this approach applies the most restrictions to agent autonomy.

2.7 Summary

It should be noted that none of the above organisational approaches can comprehen-
sively model all forms of co-operative multi-agent systems. Rather they represent at-
tempts to discover practical and beneficial ways of specifying distributed computational
systems, and facilitating the focus of computation on a system’s main purpose whilst not
compromising the autonomy of the system’s components. In achieving this aim it may
be convenient to categorise groups of agents in terms of cohesion and co-operation.
For instance, agroup of agents may be individually autonomous, existing as a group
solely due to their proximity to one another rather than their co-operation. In contrast,
the wordteam, implies a high degree of co-operation and adhesion with anorganisation
fitting somewhere in between. As Cohen stated in [8]

“teamwork is more than co-ordinated individual behaviour”.

Thus, the more expressive proposals reviewed here enable the specification of more
cohesive groups but often at significant cost to the agents involved.

3 Structuring Mechanisms

The approach we propose is based on that of METATEM described previously [13].
However, we advocate this grouping approach, independent of the underlying language
for agents. The aim of our grouping structure is to provide a simple organisational
construct that enables the definition of a wide range of multi-agent systems — from
unstructured collections of uncoordinated agents to complex systems that are often de-
scribed using the high-level abstractions described in thelast section.

The basic restrictions we put on any underlying language is that, as in most BDI-
based languages, there are logically coherent mechanisms for explicitly describingbe-
liefs andgoals. As in the METATEM framework, the grouping approach involves very
few additional constructs within the language [10]. Specifically, we require just two
additional elements within each agent’s state. We also, as is common, require that first-
class elements, such as beliefs, goals, etc, can be communicated between agents. De-
livery of messages should be guaranteed, though the delay between send and receipt is
not fixed. Finally, we expect asynchronously concurrent execution of agents.

3.1 Extending Agents

Assuming that the underlying agent language can describe the behaviour of an agent,
as has been shown for example in [9], we now extend the conceptof agent with two
sets,Content andContext. The agent’sContent describes the set of agents it
contains, while the agent’sContext describes a set of agents it is contained within.
Thus, the formal definition of an agent is as follows [15].

Agent ::= Behaviour: Specification
Content: P(Agent)
Context: P(Agent)

Here,P(Agent) are sets of agents andSpecification is the description of the
individual agent’s behaviour, given as appropriate in the target BDI language.

On the right, we provide a graphical repre-
sentation of such an agent. The agent (the
circle) resides within aContext and itself
comprises its own behavioural layer and its
Content. ThisContent can again contain
further agents. Note that, for formal develop-
ment purposes, theBehaviour may well be a
logical specification.

Context

Content

Behaviour

The addition ofContent andContext sets to each agent provides significant flexi-
bility for agent organisation. Agent teams, groups or organisations, which might alter-
natively be seen as separate entities, are now just agents with non-emptyContent.
This allows these organisations to be hierarchical and dynamic, and so, as we will see
later, provides possibilities for a multitude of other co-ordinated behaviours. Similarly,
agents can have several agents within theirContext. Not only does this allow agents
to be part of several organisational structures simultaneously, but it allows the agent to
benefit fromContext representing diverse attributes/behaviours. So an agent might
be in a context related to its physical locality (i.e. agentsin that set are ‘close’ to each
other), yet also might be in a context that provides certain roles or abilities. Intriguingly,
agents can be within many, overlapping and diverse, contexts. This gives the ability to
produce complex organisations, in a way similar to multipleinheritance in traditional
object/concept systems. For example, see Fig. 1 for sample configurations.

Fig. 1.A selection of possible organisation structures.

An important aspect is that this whole structure is very dynamic. Agents can move
in and out ofContent andContext sets, while new agents (and, hence, organisa-

tions) can be spawned easily and discarded. This allows for arange of structures, from
the transientto thepermanent. From the above it is clear that there is no enforced dis-
tinction between an agent and an agent organisation. All areagents, all may be treated
similarly. While it may seem counter-intuitive for an organisation to have beliefs and
goals, many of the surveyed systems required team constructs such as tasks or goals that
can naturally be viewed as belonging to a team/group agent. Some also requiredcontrol
agentsto manage role assignment and communication which in this framework can be
handled by the containing agent itself if so desired. On the other hand it is possible to
distinguish between agents (with emptyContent) and organisations (with non-empty
Content) and for a programmer to exclude certain constructs from organisations in
order to allow an organisation-centred approach, if required.

Finally, it is essential that the agent’s internal behaviour, be it a program or a spec-
ification, have direct access to both theContent andContext sets. As we will see
below, this allows each agent to become more than just a ‘dumb’ container. It can con-
trol access to, restructure, and share information and behaviours with, itsContent. In
order to describe fragments of the agent’s behaviour duringthe rest of the paper, we will
use simpleIF ...THEN ...ELSE statements. Again, this does not prescribe any particular
style of BDI language.

3.2 Communication

The core communication mechanism between agents in our model is broadcast mess-
age-passing. The use of broadcast is very appealing, allowing agent-based systems to
be developed without being concerned about addresses/names of the agents to be com-
municated with. The potential inefficiency of broadcast communication is avoided by
the use of the agents’Content andContext structures. By default, when an agent
broadcasts a message, it is sent to all members of the agent’sContext sets with the
message being forwarded to agents within the same context. This, effectively, produces
multicast, rather than full broadcast, message-passing.

This is clearly a simple, flexible and intuitive model, and the system developer is
encouraged to think in this way. However, it is useful to notethat multicast, or ‘broad-
cast within a set’, is actually implemented on top of point-to-point message passing! We
will assume that the BDI language has a communication construct that can be modelled
as the actionsend(recipient,m) which means that the messagem has been sent to the
agentrecipient, and a correspondingreceived(sender,m) which becomes true when
therecipient agent receives the messagem from asender. Let us consider an example
where an agent wishes to broadcast to all other members of oneof its Context sets.
For simplicity, let us term this context set ‘group’. An agent wishing to ‘broadcast’ a
message,m, to members of thegroup sends a message,send(group, broadcast(m)),
to the group agent alone, as illustrated in Fig. 2.

The effect of sending a broadcast message to thegroup agent is that thegroup acts
as a proxy and forwards the message to itsContent, modifying the message such that
the message appears to have originated from the proxy. In this way agents maintain
their anonymity within the group.

IF received(from, broadcast(m))
THEN for each x in {Content \ from} send(x,m)

Fig. 2.Broadcast within a Group.

Being an agent-centred approach to multi-agent organisation there does not exist an
(accessible) entity that referencesall agents in the agent space, thustruebroadcast is not
possible. However a number of recursive group broadcasts can be specified, allowing a
message to be propagated to all agents with an organisational link to the sender.

For example, reaching all accessible agents requires the sending agent to send a
message to all members of itsContext andContent sets and for each first-time re-
cipient to recursively forward that message to the union of theirContext andContent
(excluding the sender). Clearly this is not an efficient method of communication as it is
possible for agents to receive multiple copies of the same message, and so it may not
be practical in very large societies, but what it lacks in sophistication it makes up for in
simplicity and clarity [14].

IF received(from, broadcastAll(m))AND not received(,m)
THEN for each x in {Content ∪ Context} send(x,m) AND send(x, broadcastAll(m))

Perhaps more useful than indiscriminate broadcasting would be the case of an agent
who wants to reach all other members of the ‘greatest’ organisation to which it belongs.
This requires a message to propagate up through the agent structure until it reaches an
agent with an empty context, at which point the message is sent downwards until all
members and sub-members have been reached.

Fig. 3. (a)Nested Organisations (b). Propagation of Messages

To illustrate this, consider the situation of agentE in Fig. 3(a), who wants to send a
message to its entire organisation — the organisation specified byA. A propagateUp(m)
message originates from agentE who sends it to agentB. B’s context is non-empty
so the message continues upwards toA. SinceA is the widest organisation to which
E belongs (it has an emptyContext set), it modifies the message, converting it to
propagateDown(message) and broadcasts it along with the message to all members
of itsContent. Upon receipt of this message, agentsB andG send it to theirContent
and so it continues until the message reaches an agent with anemptyContent as il-
lustrated by Fig. 3(b). This might be specified as follows.

IF received(, propagateUp(m)) AND Context 6= ∅
THEN for each x in {Context} send(x, propagateUp(m))

IF received(, propagateUp(m)) AND Context = ∅
THEN for each x in {Content} send(x,m) AND send(x, propagateDown(m))

IF received(, propagateDown(m)) AND Content 6= ∅
THEN for each x in {Content} send(x,m) AND send(x, propagateDown(m))

3.3 Refining and Restricting Communications

Further restriction of communication is possible by, for example, restricting the type of
communications agents can make. Employing the concept of speech acts [23] we can
use the group agent as a communication filter that restricts intra-group messaging to
those messages that conform to permissible protocols or structures.

Fig. 4.Filtering communication by group.

If, for example, a fact-finding agent contains a number of agents with access to
information resources, it may be necessary to restrict their communication toinform
speech acts. In such circumstances it is possible to modify the default behaviour by
imposing a message filter.

IF received(from, broadcast(m))AND informFilter(m)
THEN for each x in {Content \ from} send(x,m)

See Fig. 4 for an example of this. In this way filters can be adapted for many purposes,
enabling organisations to maintain:

relevance— ensuring communication is relevant to group goal(s), intentions or tasks;
fairness— allowing each member of a group an equal opportunity to speak; and
legality— assigning permissions to group members to restrict communication.

3.4 Communication Semantics

The above variations onbroadcast define varying semantics for a message. A key fea-
ture of the grouping approach is that the semantics of communication is flexible and,
potentially, in the hands of the programmer. Such semanticscan also, potentially, be
communicated between agents in the form of plans allowing anagent to adopt different
semantics for communication as itsContext changes.

Adherence to particular common communication protocols/semantics also allows
groups to establish the extent to which a member is autonomous (e.g., a group can use
a semantics forachievespeech acts which forces recipients to adopt the communicated
goal). This is important because organisational approaches vary from those in which
group behaviour is specified by the organisation and imposedon its members with little
option for autonomy to those in which group behaviour emerges from an appropriate
combination of individual agents without any explicit coordination at all.

4 Common Multi-Agent Structures

In this section we will examine some of the key structuring mechanisms that are either
explicit or implicit within the approaches surveyed in Section 2, and show how each
might be represented appropriately, and simply, using the approach outlined above. Ta-
ble 1 lists the mechanisms identified by our surveyed authorsas being useful in the
specification of agent co-operation. We believe that our approach is flexible enough to
model all of these but for brevity we will only demonstrate a sample of them.

4.1 Sharing Information

Shared beliefs Being a member of all but the least cohesive groups requires that some
shared beliefs exist between its members. Making the contentious assumption that all
agents are honest and that joining the group is both individual rational and group ratio-
nal, let agenti hold a belief setBSi. When an agent joins a group1 j it receives beliefs
BSj from the group and adds them to its own belief base (invoking its own belief revi-
sion mechanism is case of conflicting beliefs). The agent in receipt of the new beliefs
may or may not disseminate them to the agents in its content, depending on the nature
and purpose of the group. Once held, beliefs are retained until contradicted.

1 Let us refer to such an agent as agroupto distinguish it from the agent within itsContent.

Table 1.Multi-agent organisation concepts.

Joint beliefs Joint beliefs are stronger than shared beliefs. To maintainthe levels of
cohesion found in teams each member must not only believe a joint belief but must also
believe that its team members also believe the joint belief.Let us assume the agent is
capable of internal actions such asaddBelief (Belief ,RelevantTo) addingBelief to its
belief base, and recording the context thatBelief is relevant to. Upon joining a group,
an agent is supplied the beliefs relevant to that context, which it stores in its belief base
along with the context in which they hold.

IF received(from,membershipConfirm(beliefSet))
THEN for each b in {beliefSet} addBelief (b, from)

The presence of suchContext meta-information can be used to specify boundaries
on agent deliberation, thus mitigating the complexity caused by introducing another
variable. When leaving aContext an agent might either choose to drop the beliefs
relevant to thatContext or to retain them.

4.2 Sharing Capabilities

Let agentAgi have a goalG, for which a planP exists but thatAgi does not have and
therefore must find an agent that does. Two options availableto Agi are to find an agent
Agj , who hasP , and either: request thatAgj carries out the plan; or request thatAgj

sendsP to Agi so thatAgi can carry out the plan itself. The first possibility suggestsa
closer degree of co-operation between agentsi andj, perhaps even the sub-ordination of
agentj by agenti. Whereas, in the second possibility, agenti benefits from information
supplied byj.

In the first scenario we might envisage a group in which a member (or the group
agent itself) asks another member to execute the plan. In thesecond case, we can en-
visage agentsi andj sharinga plan. This second scenario is typical if groups are to

capture certain capabilities — agents who join theContent of such a group agent are
sent (or at least can request) plans shared amongst the group.

4.3 Joint Intentions

An agent acting in an independent self-interested way need not inform any other entity
of its beliefs, or changes to them. On the other hand, an agentwho is working, as
part of a team, towards a goal shared by itself and all other members of the team has
both an obligation and a rational interest in sharing relevant beliefs with the other team
members [8]. This gives an agent apersistentgoal with respect to a team, such that the
agent must intend the goal whilst it is the team’s mutual belief that the goal is valid
(not yet achieved, achievable and relevant) — it must not give up on a goal nor assume
the goal has been achieved, independently. The implications of this impact on agent’s
individual behaviour when it learns, from sources externalto the group, that the goal is
no longer valid. In such a situation the team/group agent maintains its commitment to
the invalid goal but informs its team members of the antecedent(s) that lead it to believe
the goal is invalid. Only when the agent receives confirmation that the entire team share
its belief does it drop its commitment.

The intuitive implementation of this joint intention is notvia a team construct but
with an extension of an agent’s attributes, but increases inexpressiveness of this sort
are often accompanied by increased complexity. The organisational or team construct
may overcome this problem but we believe that our simple group approach is sufficient
to implement joint intentions, mutual beliefs and common goals. Consider the scenario
given in Fig. 5.

Fig. 5.Communicating Joint Intentions.

Agent A.On joining groupT , agentA accepts goalJI and confirms its adoption of the
goal. WhilstT remains a member ofA’s Context, A informsT of all beliefs that are
relevant toJI. Finally, all communications from agentT must be acknowledged, with
an indication of the agent’s acceptance (or non-acceptance) of the information.

A simple specification of this might be:

IF received(from, jointIntention(JI))
THEN achieve(JI) AND send(from, ack(JI))

IF belief(ϕ) AND there is x in {Context} relevantTo(ϕ, x)
THEN send(x, inform(ϕ))

IF goal(γ) AND there is x in {Context} relevantTo(γ, x)
THEN achieve(γ)

Thus, an agent is obliged to inform its group of beliefs relevant to jointly held intentions
and will maintain a goal whilst it remains relevant to itsContext.

Agent T. Evaluates group beliefs and communicates the adoption, anddropping, of
intentions when mutual agreement is established. SinceT has details of the agents in
its Content and can send messages to interrogate them, it can maintain knowledge of
commoninformation and behaviours, and reason with this.

4.4 Roles

The concept of a role is a common abstraction used by many authors for a variety of
purposes [17, 12, 25], including:

– to define the collective abilities necessary to achieve a global goal;
– to provide an agent with abilities suitable for team activity;
– to constrain or modify agent behaviour for conformance withteam norms; and
– to describe a hierarchy of authority in an organisation of agents and hence create a

permissions structure.

Roles are most obviously integrated into our framework as further agents whoseContent
is those agents fulfilling the role and whoseContext is the organisation to which the
role belongs. However in some cases, in particular strict hierarchies, it may be possible
to associate roles directly with the organisational agent.Below we examine a variety of
such role types and consider in more detail how each could fit into our model.

Ability roles Let planP be a complex plan that requires abilitiesx,y andz if it is to
be fulfilled. An agentA is created (without any domain abilities of its own) to gather
together agents that have the necessary abilities. AgentA might generate a new agent in
itsContent for each of the abilities required to fulfil planP . When agentA encounters
an agent with abilityx, y or z it adds the agent to theContent of the appropriate group
(agent), analogous to assigning roles.

A talented agent might become a member of several ability sets. The ability set,
itself an agent, may be a simple container or could exhibit complex behaviour of its own.
One basic behaviour might be to periodically request (of theagents in itsContent)
the execution of its designated ability. Note that, in the case of an ability that is hard to
carry out, it may be provident to include many agents with that ability. Similarly, the
desired ability might be a complex ability that must be subjected to further planning,
resulting in a number of nested abilities.

Fig. 6.Roles according to abilities.

Roles in society Joining a society, organisation or team of agents commonly involves
the adoption of the norms of that society, organisation or team. Whether these norms
are expressed as beliefs, goals, preferences or communication protocols, our approach
allows them to be transmitted between group members, particularly at the time of join-
ing. For example, if team membership requires that members acknowledge receipt of
messages then each new member of a group might be given the newrule (behaviour)

IF received(ag, θ) THEN send(ag, ack(θ))

A stronger constraint might require an agent to believe all messages received from its
Context:

IF received(ag, θ) AND ag ∈ ContextTHEN addBelief (θ, ag) AND send(ag, ack(θ))

Of course, agents can not be certain that another agent will keep with given constraints
or comply with norms of the society, the most it can do is demand formal acknowledge-
ment of its request and a commitment to do so. Group membership can be denied if an
agent fails to satisfy theentry criteria.

Authority roles None of the structures discussed usefully reflect hierarchies of author-
ity. Each allow almost arbitrary group membership, with transitive and cyclic structures
possible making them unsuitable for expressing a hierarchyof authority, which by its
nature must be acyclic with exactly one root.

A common use for such a hierarchy is for creating channels of communication.
Our approach to grouping enables communication restrictions for free, as agents may
only communicate with their immediate superiors (context), or their direct subordinates
(content). Communication to peers (by multicast) can only be achieved by sending a
singlebroadcast message to the agent common to the contexts of the intended recipi-
ents. The receiving [superior] agent will, if it deems it appropriate, forward the message
to the other agents in its content.

5 Concluding Remarks

In this paper, we have proposed a simple but clear model for multi-agent structuring
in agent languages based on varieties of the logical BDI approach. Although derived
from work on METATEM, we propose this as a general approach for many languages.
To support this, we first show how simple and intuitive the approach is and how the
underlying structures of any appropriate language can be modified. (Note that more
detailed operational semantics for our grouping approach in logic-based BDI languages
is given in [10].) We then showed, in a necessarily brief way,how many of the common
teamwork and organisation aspects can be modelled using ourapproach.

In order to evaluate the approach, we have also implemented it in AgentSpeak (actu-
ally, Jason [3]) and have developed several simple examplesof dynamic organisations.
This simple additional layer has so far proved to be convenient and powerful. Obvi-
ously, theContent/Context approach has also been extensively used in previous
work on METATEM [14–16]. In addition, it has been incorporated in the semantics of
AIL [9], a common semantics basis for a number of languages, including AgentSpeak
and 3APL; see [10] for formal details.

5.1 Future Work

Our immediate aim with this work is to apply the model to larger applications, partic-
ularly in the areas of ubiquitous computing and social organisations. This will give a
more severe test for the approach and will highlight any areas of difficulty.

As mentioned above, the approach is being integrated into the AIL semantics [9],
which provides a common semantics basis for a number of BDI languages. Since trans-
lations from AgentSpeak, 3APL, etc are being produced, we also aim to translate the
organisational aspects used into the above model.

Finally, since the aim of the work on AIL is to provide genericverification tech-
niques for BDI languages (that can be translated to AIL) [4].In extending the AIL
semantics, we also aim to provide verification techniques for teams, roles and organisa-
tions developed within BDI languages.

References

1. H. Barringer, M. Fisher, D. Gabbay, R. Owens, and M. Reynolds,editors. The Imperative
Future: Principles of Executable Temporal Logic. Research Studies Press, 1996.

2. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Springer-Verlag, 2005.

3. R. H. Bordini, J. F. Ḧubner, and R. Vieira.Jason and the Golden Fleece of Agent-Oriented
Programming. In Bordini et al. [2], chapter 1, pages 3–37.

4. R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying Multi-Agent Programs by
Model Checking.Journal of Autonomous Agents and Multi-Agent Systems12(2):239-256,
2006.

5. L. Cavedon, A. S. Rao, and G. Tidhar. Social and Individual Commitment. InProc. PRICAI
Workshop on Intelligent Agent Systems, Theoretical and Practical Issues, pages 152–163.
Springer, 1997.

6. P. R. Cohen and H. J. Levesque. Intention is Choice with Commitment.Artificial Intelli-
gence, 42(2-3):213–261, 1990.

7. P. R. Cohen and H. J. Levesque. Confirmations and Joint Action. InProc. International Joint
Conference on Artificial Intelligence (IJCAI), pages 951–959, 1991.

8. P. R. Cohen and H. J. Levesque. Teamwork. Technical Report 504, SRI International,
California, USA, 1991.

9. L. A. Dennis, B. Farwer, R. H. Bordini, M. Fisher, and M. Wooldridge. A Common Semantic
Basis for BDI Languages. InProc. 7th International Workshop on Programming Multiagent
Systems (ProMAS), 2007. (To appear in LNAI, Springer.)

10. L. A. Dennis, M. Fisher, and A. Hepple. Language Constructs forMulti-Agent Program-
ming. In Proc. 8th Workshop on Computational Logic in Multi-Agent Systems (CLIMA),
2007. (To appear in LNAI, Springer.)

11. J. Ferber and O. Gutknecht. A Meta-model for the Analysis and Design of Organizations
in Multi-agent Systems. InProc. 3rd International Conference on Multi-Agent Systems (IC-
MAS), pages 128–135, 1998.

12. J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizations: An Organizational
View of Multi-agent Systems. InProc. Workshop on Agent-Oriented Software Engineering
(AOSE), volume 2935 ofLNAI, pages 214–230. Springer, 2003.

13. M. Fisher. METATEM: The Story so Far. InProc. 3rd International Workshop on Program-
ming Multiagent Systems (ProMAS), volume 3862 ofLecture Notes in Artificial Intelligence,
pages 3–22. Springer, 2006.

14. M. Fisher, C. Ghidini, and B. Hirsch. Programming Groups of Rational Agents. InProc.
International Workshop on Computational Logic in Multi-Agent Sytems (CLIMA), volume
3259 ofLNAI. Springer-Verlag, 2004.

15. M. Fisher and T. Kakoudakis. Flexible Agent Grouping in ExecutableTemporal Logic. In
Intensional Programming II. World Scientific, 2000.

16. B. Hirsch. Programming Rational Agents. PhD thesis, Department of Computer Science,
University of Liverpool, June 2005.

17. J. F. Ḧubner, J. S. Sichman, and O. Boissier. A Model for the Structural, Functional, and
Deontic Specification of Organizations in Multiagent Systems. InProc. 16th Brazilian Sym-
posium on Artificial Intelligence (SBIA), pages 118–128. Springer, 2002.

18. N. R. Jennings and M. Wooldridge. Applications of Agent Technology. In Agent Technology:
Foundations, Applications, and Markets. Springer, 1998.

19. H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On Acting Together. InProc. 8th American
National Conference on Artificial Intelligence (AAAI), pages 94–99, 1990.

20. N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Remote Agent: To Boldly Go Where
No AI System Has Gone Before.Artificial Intelligence, 103(1-2):5–48, 1998.

21. D. V. Pynadath, M. Tambe, N. Chauvat, and L. Cavedon. Towards Team-Oriented Program-
ming. In Intelligent Agents VI, volume 1757 ofLNAI, pages 233–247. Springer, 1999.

22. A. S. Rao and M. Georgeff. BDI Agents: from Theory to Practice.In Proc 1st International
Conference on Multi-Agent Systems (ICMAS), pages 312–319, San Francisco, USA, 1995.

23. I. A. Smith and P. R. Cohen. Toward a Semantics for an Agent Communications Language
Based on Speech-Acts. InProc. American National Conference on Artificial Intelligence
(AAAI), pages 24–31, 1996.

24. G. Tidhar. Team-Oriented Programming: Preliminary Report. Technical Report 1993-41,
Australian Artificial Intelligence Institute, Melbourne, Australia, 1993.

25. J. Vazquez-Salceda, V. Dignum, and F. Dignum. Organizing Multiagent Systems. Technical
Report 2004-015, Institute of Information & Computing Sciences, Utrecht University, 2004.

26. M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice.The Knowledge
Engineering Review, 10(2):115–152, 1995.

