A Common Basis for Agent Organisation in BDI Language$

Anthony Hepple, Louise Dennis, and Michael Fisher

Department of Computer Science, University of Liverpool, Livaipt).K.
{A.J. Heppl e, L. A. Denni s, M Fi sher }@sc.liv.ac. uk

Abstract. Programming languages based on the BDI style of agent model are
now common. Within these there appears to be some, limited, agreem#g on
core functionality of agents. However, when we come to multi-agentnisga
tions, not only do many BDI languages have no specific organisatibnatsres,
but those that do exist are very diverse. In this paper, we aim to @ravihifying
framework for the core aspects of agent organisation, coveringpgréeams and
roles, as well as organisations. Thus, we describe a simple organiatienh-
anism, and show how several well known approaches can be esthedthin

it. Although the mechanism we use is derived from themreM programming
language, we do not assume any specific BDI language. The orjanéanech-
anism is intended to be independent of the underlying agent languag® avel
aim to provide a common core for future developments in agent ordemmsa

1 Introduction

As hardware and software platforms become more sophisticand as these are de-
ployed in less predictable environments, so the levellwbnomybuilt into such sys-
tems has increased. This has allowed systems to work &féctivithout detailed, and
constant, human intervention. However, autonomous systambe hard to understand
and even harder to develop reliably. In order to help in trésathe concept of aagent
was introduced to capture the abstraction of an autonomaasing entity. Based on
this concept, new techniques were developed for analydegjgning and implement-
ing agents. In particular, several new programming langaagere developed explicitly
for implementing autonomous agents.

We can simply characterise an agent as an autonomous seftearponent having
certain goals and being able to communicate with other agerdrder to accomplish
these goals [26]. The ability of agents to act independgtatiseact to unexpected situa-
tions and to cooperate with other agents has made them agpawalice for developing
software in a number of areas. At one extreme there are atfgitare used to search
the INTERNET, navigating autonomously in order to retrieve informatithrese are rel-
atively lightweight agents, with few goals but significamingain-specific knowledge.
At the other end of the spectrum, there are agents develapaddependent process
control in unpredictable environments. This second forragent is often constructed
using complex software architectures, and has been agpliaeas such as real-time
process control [22, 18]. Perhaps the most impressive useabf agents is in the real-
time fault monitoring and diagnosis carried out on NASA D&gace One [20].

* Work partially supported by EPSRC under grant EP/D052548.

The key reason why an agent-based approach is advantagetbesnodelling and
programming of autonomous systems, is that it permits tha cnd concise represen-
tation, not just ofvhatthe autonomous components within the system dowbytthey
do it. This allows us to abstract away from low-level contepects and to concentrate
on the key feature of autonomy, namely the goals the compdrasnand the choices it
makes towards achieving its goals. Thus, in modelling aesysh terms of agents, we
often describe each agenisliefsandgoals which in turn determine the agentrgen-
tions Such agents then make decisions about what action to perfiren their beliefs
and goals/intentions. This kind of approach has been pdpeththrough the influential
BDI (Belief-Desire-Intention) model of agent-based systg22]. This representation
of behaviour usingnentalnotions has several benefits. The first is that, ideally, -t ab
stracts away from low-level issues: we simply present sooa that we wish to be
achieved, and we expect it to act as an agent would given sgdalaSecondly, be-
cause we are used to understanding and predicting the loein@firational agents, the
behaviour of autonomous software should be relatively éaslgumans to understand
and predict too. Not surprisingly, therefors, the BDI agmio to agent modelling has
been successful and has led to many novel programming lgeguzased (at least in
some part) upon this model; these are often terBBtl LanguagesAlthough a wide
variety of such languages have been developed [2] few hawegsand flexible mech-
anisms fororganisingmultiple agents, and those that do provide no agreementsan th
organisational mechanisms. Thus, while BDI languages hawgerged to a common
core relating to the activity of individual agents [9], nahlconvergence is apparent in
terms of multi-agent structuring.

Our overall aim is to provide a common logically based framewfor BDI style
agent programming (which incorporates organisationa¢etsp to facilitate agent ver-
ification [4]. As a result a clear goal is to develop a simphdlitive and semantically
consistent organisation mechanism. In this paper we shawéhsimple model can,
in BDI languages, encompass many proposed models of ngédtitaorganisation and
teamwork. The formal semantics of this approach is conedtlar detail in [10].

Paper Structure Section 2 surveys some of the leading approaches to ageanisag
tion that have already been proposed and illustrates thedrse nature. In Section 3
we describe the structuring mechanism we propose for ungfthe multi-agent con-
cepts. Section 4 demonstrates how our framework can be aseddel concepts such
as joint-intentions, roles, etc., which form the basis ef éipproaches surveyed in Sec-
tion 2. Finally, in Section 5, we provide concluding remaaksl outline future work.

2 Approaches to Agent Organisation

In this section we overview some of the key approaches to ta@nisation of agents
that have been proposed. It is important to note that we ateplarly concerned with
rational agents predominantly using the BDI model of computation. While wavd
not listedall approaches, the selection we give covers many of the leadiampts at
teamwork, organisational structuring and role-based caatjn. In addition, while we
are primarily interested in developing BDI languages wittac logical semantics and
logic-based mechanisms, we also consider organisatippabaches beyond this class.

2.1 Cohen and Levesquedoint I ntentions

Offering a respected philosophical view on agent co-opmratCohen and Levesque
produced a significant paper ‘Teamwork’ [8] extending poesi work [19, 6, 7]. They
persuasively argue that a team of agents shoatde modelled as an aggregate agent
but propose new (logical) conceptsjoint intentions joint commitmentsndjoint per-
sistent goal€¢o ensure that teamwork does not break down due to any diveegef
individual team members’ beliefs or intentions. The authproposals oblige agents
working in a team to retain team goals until it is mutuallyegp amongst team mem-
bers that a goal has now been achieved, is no longer relerasimpossible. This level
of commitment is stronger than an agent’s commitment tod#&/idual goals which are
dropped the moment it (individually) believes they aresetd. Joint intentions can be
reduced to individual intentions if supplemented with nalifoeliefs.

2.2 Tidhar, Cavedon and Rao:Team-Oriented Programming

Tidhar [24] introduced the concept tdam-oriented programmingith social struc-
ture. Essentially this is an agent-centred approach tHatedgoint goals and intentions
for teams but stops short of forcing individual team membersdopt those goals and
intentions. An attempt to clarify the definition of a ‘teanmicawhat team formation en-
tails is made using concepts such as ‘mind-set synchrimisaind ‘role assignment’.
Team behaviour is defined by a temporal ordering of plans kvgidded (but did not
constrain) agent behaviour. A social structure is propdsethe creation oEommand
and control teams which assign roles, identify sub-teams and perndt-ietam rela-
tionships. In [5], the authors formalise their ideas of abstructure with concepts of
commitment expressed using modal logic.

2.3 Ferber, Gutknecht and Michel: Roles and Organisations

Ferberet al. [11] present the case for an organisational-centred apprtmthe de-
sign and engineering of complex multi-agent systems. Tliteydisadvantages of the
predominant agent-centred approaches such as: lack odsadghts control; inabil-
ity to accommodate heterogeneous agents; and inappm@pbatraction for describing
organisational scenarios. The authors propose a mode¢figiming language indepen-
dent multi-agent systems in termsajents roles andgroups Agents and groups are
proposed as distinct first class entities although it is eatggl that an agent ought to be
able to transform itself into a group. (We will see later tiinés is close to our approach.)
In [12], Ferber continues to argue for an organisationakiesl approach, advo-
cating the complete omission of mental states at the orgamiwl level, defining an
organisation of agents in terms of its capabilities, caists, roles, group tasks and
interaction protocols. Clearly articulated here is a mestid of design principles.

2.4 Pynadath and Tambe.TEAMCORE

Pynadathet al.[21] describe their interpretation of ‘team-oriented prgming’ that
aims to organise groups of heterogeneous agents to ack@wegoals. A framework
for defining teams is given that provides the following cqstse

Team— an agent without domain abilities;

Team-ready— agents with domain abilities that can interface with a tem®@nt;
Sub-goal— a goal that contributes to the team goal; and

Task— the allocation of a sub-goal to a team-ready agent.

An implementation of their framework, TEAMCORE, providegjanisational func-
tionality such as multicast communication between ageastigning tasks, maintaining
group beliefs and maintaining hierarchies of agents (bg)réleterogeneous agents are
accommodated by wrapper agents that act as proxies for thaidagent.

2.5 Fisher, Ghidini and Hirsch: Groups as Agents

Beginning within the context of executable temporal lodids Fisheret al. produced
a eries of papers [15, 14, 16, 13] that developed tlerMEM language into a gener-
alised approach for expressing dynamic distributed coatjmuts. As we will see more
about this model in Section 3, we just provide a brief outhetow.

Organisational structuring within the &®ATEM language [13] consists of a simple
nested grouping structure where groups comprise commingcalements (objects,
agents, or other software components). The key aspectoafiroach is that groups
themselves are also agents, providing a homogeneous esiygil expressive, model.
In [14], it is argued that systems composed of componentsvasse as objects, web
services and abstract features can be modelled within émisrgl approach.

2.6 Hubner, Sichman and Boissier:Roles and Permissions

Hubneret al. believed that the agent organisational frameworks prappser to their
2002 paper [17] overlooked the significant relationshipMeein structural and func-
tional properties of an organisation. Thus, in [17], thegpgarse a three component ap-
proach to the specification of agent organisations that amestindependent structural
and functional specifications with a deontic specificatiihr, latter defining, among
other things, the roles (structural) having permissionaoycout group tasks (func-
tional). The approach provides a proliferation of congsdor specifying multi-agent
systems, including the ability to concisely express margitamhal aspects, such as:

— the ability to specifycompatibilityof group membership, akin to the members of a
government expressing a conflict of interest;

— enabling thecardinality of group membership to be defined and thus defining a well
formed group as a group who’s membership is between itsfsg@oninimum and
maximum size;

— the ability to express a variance in the agents’ permissiogstime.

It is argued that such an approach improves the efficiencyufi+agent systems by
focusing agents on the organisation’s goals. However, vie that of all the proposals
discussed in this section this approach applies the mdsictems to agent autonomy.

2.7 Summary

It should be noted that none of the above organisationaloggpes can comprehen-
sively model all forms of co-operative multi-agent systeiRather they represent at-
tempts to discover practical and beneficial ways of spewifiistributed computational
systems, and facilitating the focus of computation on aesys main purpose whilst not
compromising the autonomy of the system’s components. hireging this aim it may
be convenient to categorise groups of agents in terms ofstmihe@nd co-operation.
For instance, group of agents may be individually autonomous, existing as agrou
solely due to their proximity to one another rather thanrthetoperation. In contrast,
the wordteam implies a high degree of co-operation and adhesion wittrganisation
fitting somewhere in between. As Cohen stated in [8]

“teamwork is more than co-ordinated individual behaviour”

Thus, the more expressive proposals reviewed here enablgptcification of more
cohesive groups but often at significant cost to the agentdvied.

3 Structuring Mechanisms

The approach we propose is based on that éffTMEM described previously [13].
However, we advocate this grouping approach, independen¢ ainderlying language
for agents. The aim of our grouping structure is to providenapke organisational
construct that enables the definition of a wide range of ragént systems — from
unstructured collections of uncoordinated agents to cexgystems that are often de-
scribed using the high-level abstractions described ifa$iesection.

The basic restrictions we put on any underlying languaghés s in most BDI-
based languages, there are logically coherent mechanaraglicitly describingoe-
liefs andgoals As in the METATEM framework, the grouping approach involves very
few additional constructs within the language [10]. Spealfy, we require just two
additional elements within each agent’s state. We als@ esmmon, require that first-
class elements, such as beliefs, goals, etc, can be comarenhicetween agents. De-
livery of messages should be guaranteed, though the detay®e send and receipt is
not fixed. Finally, we expect asynchronously concurrentatien of agents.

3.1 Extending Agents

Assuming that the underlying agent language can descrébbehaviour of an agent,
as has been shown for example in [9], we now extend the comdéeggent with two
sets,Cont ent andCont ext . The agent'sCont ent describes the set of agents it
contains, while the agentBont ext describes a set of agents it is contained within.
Thus, the formal definition of an agent is as follows [15].

Agent ::=Behavi our: Specification
Content : P(Agent)
Cont ext : P(Agent)

Here,P(Agent) are sets of agents ar@peci fi cati on is the description of the
individual agent’s behaviour, given as appropriate in Higat BDI language.

On the right, we provide a graphical repre-
sentation of such an agent. The agent (the
circle) resides within &ont ext and itself
comprises its own behavioural layer and its
Cont ent . ThisCont ent can again contain
further agents. Note that, for formal develop-
ment purposes, theehaviour may well be a
logical specification.

Context

Behaviour

Content

The addition ofCont ent andCont ext sets to each agent provides significant flexi-
bility for agent organisation. Agent teams, groups or oiggions, which might alter-
natively be seen as separate entities, are now just agetitsran-emptyCont ent .
This allows these organisations to be hierarchical and mjzeand so, as we will see
later, provides possibilities for a multitude of other aalioated behaviours. Similarly,
agents can have several agents within t@eint ext . Not only does this allow agents
to be part of several organisational structures simultasigpbut it allows the agent to
benefit fromCont ext representing diverse attributes/behaviours. So an aget m
be in a context related to its physical locality (i.e. agentthat set are ‘close’ to each
other), yet also might be in a context that provides certaligsror abilities. Intriguingly,
agents can be within many, overlapping and diverse, cant&kiis gives the ability to
produce complex organisations, in a way similar to multipleeritance in traditional
object/concept systems. For example, see Fig. 1 for saropfeggarations.

Fig. 1. A selection of possible organisation structures.

An important aspect is that this whole structure is very dyitaAgents can move
in and out ofCont ent andCont ext sets, while new agents (and, hence, organisa-

tions) can be spawned easily and discarded. This allowsHrange of structures, from
thetransientto thepermanentFrom the above it is clear that there is no enforced dis-
tinction between an agent and an agent organisation. Athgeats, all may be treated
similarly. While it may seem counter-intuitive for an orgsaiion to have beliefs and
goals, many of the surveyed systems required team corstuich as tasks or goals that
can naturally be viewed as belonging to a team/group agente&lso requiredontrol
agentsto manage role assignment and communication which in thiséwork can be
handled by the containing agent itself if so desired. On therchand it is possible to
distinguish between agents (with em@ynt ent) and organisations (with non-empty
Cont ent) and for a programmer to exclude certain constructs fronarisgtions in
order to allow an organisation-centred approach, if resglir

Finally, it is essential that the agent’s internal behaxibe it a program or a spec-
ification, have direct access to both tGent ent andCont ext sets. As we will see
below, this allows each agent to become more than just a ‘doamtainer. It can con-
trol access to, restructure, and share information andvimina with, itsCont ent . In
order to describe fragments of the agent’s behaviour duhiegest of the paper, we will
use simpldF.. THEN .. ELSE statements. Again, this does not prescribe any particular
style of BDI language.

3.2 Communication

The core communication mechanism between agents in ourlrisob®adcast mess-
age-passing. The use of broadcast is very appealing, alijpagent-based systems to
be developed without being concerned about addressesgradrtiee agents to be com-
municated with. The potential inefficiency of broadcast ommication is avoided by
the use of the agent€ont ent andCont ext structures. By default, when an agent
broadcasts a message, it is sent to all members of the a@amttsext sets with the
message being forwarded to agents within the same conteist. dffectively, produces
multicast rather than full broadcast, message-passing.

This is clearly a simple, flexible and intuitive model, ané #ystem developer is
encouraged to think in this way. However, it is useful to ribegt multicast, or ‘broad-
cast within a set’, is actually implemented on top of poHsbint message passing! We
will assume that the BDI language has a communication cocistnat can be modelled
as the actiosend(recipient, m) which means that the messagehas been sent to the
agentrecipient, and a correspondingceived(sender, m) which becomes true when
therecipient agent receives the messagdrom asender. Let us consider an example
where an agent wishes to broadcast to all other members affdteCont ext sets.
For simplicity, let us term this context sefr'oup’. An agent wishing to ‘broadcast’ a
messagern, to members of theroup sends a message;nd(group, broadcast(m)),
to the group agent alone, as illustrated in Fig. 2.

The effect of sending a broadcast message tgthep agent is that theroup acts
as a proxy and forwards the message t&€asat ent , modifying the message such that
the message appears to have originated from the proxy. $natlly agents maintain
their anonymity within the group.

IF received(from,broadcast(m))
THEN for each z in {Cont ent \ from} send(x,m)

>

<X >
= [Op=
gl ©

Fig. 2. Broadcast within a Group.

Being an agent-centred approach to multi-agent orgaaisdtiere does not exist an
(accessible) entity that referenadkagents in the agent space, thiuse broadcast is not

possible. However a number of recursive group broadcastbeapecified, allowing a
message to be propagated to all agents with an organisiiidnto the sender.

For example, reaching all accessible agents requires tidingeagent to send a
message to all members of @ent ext andCont ent sets and for each first-time re-
cipient to recursively forward that message to the unioheiftCont ext andCont ent
(excluding the sender). Clearly this is not an efficient rodtbf communication as it is
possible for agents to receive multiple copies of the samssage, and so it may not
be practical in very large societies, but what it lacks intgsfication it makes up for in
simplicity and clarity [14].

IF received(from,broadcast All(m))AND not received(_, m)
THEN for each z in {Cont ent U Cont ext } send(z, m) AND send(x, broadcastAll(m))

Perhaps more useful than indiscriminate broadcastingdvbelthe case of an agent
who wants to reach all other members of the ‘greatest’ oggaioin to which it belongs.
This requires a message to propagate up through the agectusé until it reaches an
agent with an empty context, at which point the message iscsmmnwards until all
members and sub-members have been reached.

Fig. 3. (a)Nested Organisations (b). Propagation of Messages

To illustrate this, consider the situation of agé&in Fig. 3(a), who wants to send a
message to its entire organisation — the organisationfpabiyA. A propagate Up(m)
message originates from agdhtwho sends it to agerB. B's context is hon-empty
so the message continues upward#\t&@inceA is the widest organisation to which
E belongs (it has an empt@ont ext set), it modifies the message, converting it to
propagateDown(message) and broadcasts it along with the message to all members
of its Cont ent . Upon receipt of this message, agaBtndGsend it to theiCont ent
and so it continues until the message reaches an agent widmpty Cont ent as il-
lustrated by Fig. 3(b). This might be specified as follows.

IF received(-, propagateUp(m)) AND Cont ext # ()
THEN for each z in {Cont ext } send(z, propagateUp(m))

IF received(_, propagateUp(m)) AND Cont ext =0
THEN for each z in {Content } send(x,m) AND send(z, propagateDown(m))

IF received(_, propagateDown(m)) AND Cont ent # ()
THEN for each z in {Cont ent } send(xz,m) AND send(x, propagateDown(m))

3.3 Refining and Restricting Communications

Further restriction of communication is possible by, foamwle, restricting the type of
communications agents can make. Employing the concepteafcspacts [23] we can
use the group agent as a communication filter that restrtta-group messaging to
those messages that conform to permissible protocolsuatstes.

Fig. 4. Filtering communication by group.

If, for example, a fact-finding agent contains a number ofnégevith access to
information resources, it may be necessary to restrict t@hmunication tanform
speech acts. In such circumstances it is possible to moydefault behaviour by
imposing a message filter.

IF received(from,broadcast(m))AND informFilter(m)
THEN for each z in {Cont ent \ from} send(x,m)

See Fig. 4 for an example of this. In this way filters can be tathfor many purposes,
enabling organisations to maintain:

relevance— ensuring communication is relevant to group goal(s) ntibes or tasks;
fairness— allowing each member of a group an equal opportunity tolspzad
legality — assigning permissions to group members to restrict conoation.

3.4 Communication Semantics

The above variations o-oadcast define varying semantics for a message. A key fea-
ture of the grouping approach is that the semantics of congation is flexible and,
potentially, in the hands of the programmer. Such semantcsalso, potentially, be
communicated between agents in the form of plans allowinaggmt to adopt different
semantics for communication as @ent ext changes.

Adherence to particular common communication protocetsémtics also allows
groups to establish the extent to which a member is autonsrfeg., a group can use
a semantics foachievespeech acts which forces recipients to adopt the commaicat
goal). This is important because organisational appraaghgey from those in which
group behaviour is specified by the organisation and imposéts members with little
option for autonomy to those in which group behaviour emeffgem an appropriate
combination of individual agents without any explicit cdration at all.

4 Common Multi-Agent Structures

In this section we will examine some of the key structuringchanisms that are either
explicit or implicit within the approaches surveyed in Seat2, and show how each
might be represented appropriately, and simply, using pipeceach outlined above. Ta-
ble 1 lists the mechanisms identified by our surveyed authsrseing useful in the
specification of agent co-operation. We believe that our@gagh is flexible enough to
model all of these but for brevity we will only demonstratesanple of them.

4.1 Sharing Information

Shared beliefs Being a member of all but the least cohesive groups requisgsbme
shared beliefs exist between its members. Making the ctiatenassumption that all
agents are honest and that joining the group is both indalicational and group ratio-
nal, let ageni hold a belief se3S;. When an agent joins a grolp it receives beliefs
BS; from the group and adds them to its own belief base (invokimgwn belief revi-
sion mechanism is case of conflicting beliefs). The agenédeipt of the new beliefs
may or may not disseminate them to the agents in its contepgrding on the nature
and purpose of the group. Once held, beliefs are retaineéiccontradicted.

! Let us refer to such an agent agraupto distinguish it from the agent within iGont ent .

$
% IS N Sy S
& > c}) 9
2] o S /& 2/3 s S
& S/ /8/8)e /SIS /§ 2/3/>
9 F/'o/&/L/e/8/ 8 & S/ S/ 9
S 1&/8/F/SS/SI SIS e/ s /SIS
o/ N N
& §/8/8/S/8/8/5/8/5/8)s /8/8/S
S/ /S/S/S/§/T/F/ N/ RF ST/
SISSISISISISS/S/8/8/5/8/8/8/&
S/C/S/S/CG/C/ONS /D0)LD /)% /T /K /O /T
Cohen & Levesque v v v v v
Ferber v v v v v v
Pynadath & Tambe v o v v
Hubner v v v lvilvilviv v |
Cavedon v v v v v v
Vazquez, Dignum & Dignum v % % v v/ |
Fisher et al. v v v
Tidhar v | v v v v lv|v v/

Table 1. Multi-agent organisation concepts.

Joint beliefs Joint beliefs are stronger than shared beliefs. To mairitegrievels of
cohesion found in teams each member must not only believietebjelief but must also
believe that its team members also believe the joint bdlief.us assume the agent is
capable of internal actions such@giBelief (Belief , RelevantTo) addingBelief to its
belief base, and recording the context tBatief is relevant to. Upon joining a group,
an agent is supplied the beliefs relevant to that contexigiwibstores in its belief base
along with the context in which they hold.

IF received(from, membership Confirm (beliefSet))
THEN for each b in {beliefSet} addBelief (b, from)

The presence of sudBont ext meta-information can be used to specify boundaries
on agent deliberation, thus mitigating the complexity emliby introducing another
variable. When leaving @ont ext an agent might either choose to drop the beliefs
relevant to tha€Cont ext or to retain them.

4.2 Sharing Capabilities

Let agentdg; have a goals, for which a planP exists but thatdg; does not have and
therefore must find an agent that does. Two options avaitabdg; are to find an agent
Ag;, who hasP, and either: request thatg, carries out the plan; or request thég;
sendsP to Ag; so thatAg; can carry out the plan itself. The first possibility suggests
closer degree of co-operation between ageatsl;, perhaps even the sub-ordination of
agentj by agent. Whereas, in the second possibility, agebénefits from information
supplied byj.

In the first scenario we might envisage a group in which a mertdrethe group
agent itself) asks another member to execute the plan. Isgbend case, we can en-
visage agents andj sharinga plan. This second scenario is typical if groups are to

capture certain capabilities — agents who join@wat ent of such a group agent are
sent (or at least can request) plans shared amongst the group

4.3 Joint Intentions

An agent acting in an independent self-interested way netthform any other entity
of its beliefs, or changes to them. On the other hand, an agkatis working, as
part of a team, towards a goal shared by itself and all otheninees of the team has
both an obligation and a rational interest in sharing raleteliefs with the other team
members [8]. This gives an agenparsistengoal with respect to a team, such that the
agent must intend the goal whilst it is the team’s mutualdfehat the goal is valid
(not yet achieved, achievable and relevant) — it must na gjvon a goal nor assume
the goal has been achieved, independently. The implicatiéthis impact on agent’s
individual behaviour when it learns, from sources extetadhe group, that the goal is
no longer valid. In such a situation the team/group agenhtaais its commitment to
the invalid goal but informs its team members of the antecgdpthat lead it to believe
the goal is invalid. Only when the agent receives confirnmetiat the entire team share
its belief does it drop its commitment.

The intuitive implementation of this joint intention is neih a team construct but
with an extension of an agent’s attributes, but increasexjmessiveness of this sort
are often accompanied by increased complexity. The orgaoigl or team construct
may overcome this problem but we believe that our simplegepproach is sufficient
to implement joint intentions, mutual beliefs and commoalgoConsider the scenario
given in Fig. 5.

T

e
O

Fig. 5. Communicating Joint Intentions.

Agent A.On joining groupl’, agentA accepts goal I and confirms its adoption of the
goal. WhilstT remains a member of’s Cont ext , A informsT of all beliefs that are
relevant toJ . Finally, all communications from agefit must be acknowledged, with
an indication of the agent’s acceptance (or non-accep}arftiee information.

A simple specification of this might be:

IF received(from, jointIntention(JI))
THEN achieve(JI) AND send(from,ack(JI))

IF belief(p) AND there is 2 in {Cont ext } relevantTo(p, x)
THEN send(z, inform(y))

IF goal(~y) AND there is x in {Cont ext } relevantTo(vy, x)
THEN achieve(vy)

Thus, an agent is obliged to inform its group of beliefs ratemo jointly held intentions
and will maintain a goal whilst it remains relevant to@snt ext .

Agent T. Evaluates group beliefs and communicates the adoptiondemgping, of
intentions when mutual agreement is established. SIhbas details of the agents in
its Cont ent and can send messages to interrogate them, it can maintairiddge of
commorinformation and behaviours, and reason with this.

4.4 Roles

The concept of a role is a common abstraction used by manypiautbr a variety of
purposes [17,12, 25], including:
— to define the collective abilities necessary to achieve bajlgoal,
— to provide an agent with abilities suitable for team acfivit
— to constrain or modify agent behaviour for conformance watm norms; and
— to describe a hierarchy of authority in an organisation @&fdg and hence create a
permissions structure.

Roles are most obviously integrated into our framework et ér agents whoseont ent

is those agents fulfilling the role and whaSent ext is the organisation to which the
role belongs. However in some cases, in particular strartanchies, it may be possible
to associate roles directly with the organisational agéelow we examine a variety of
such role types and consider in more detail how each couldtéitaur model.

Ability roles Let plan P be a complex plan that requires abilitieg) and z if it is to

be fulfilled. An agentA is created (without any domain abilities of its own) to gathe
together agents that have the necessary abilities. Agenight generate a new agentin
its Cont ent for each of the abilities required to fulfil plah. When agentl encounters
an agent with abilityr, y or z it adds the agent to tHéont ent of the appropriate group
(agent), analogous to assigning roles.

A talented agent might become a member of several ability. Féte ability set,
itself an agent, may be a simple container or could exhilmitgex behaviour of its own.
One basic behaviour might be to periodically request (ofagents in itsCont ent)
the execution of its designated ability. Note that, in theecaf an ability that is hard to
carry out, it may be provident to include many agents with #iality. Similarly, the
desired ability might be a complex ability that must be satgd to further planning,
resulting in a number of nested abilities.

Multi-agent system

arbitrary agent

Fig. 6. Roles according to abilities.

Roles in society Joining a society, organisation or team of agents commanigives
the adoption of the norms of that society, organisation amtéWhether these norms
are expressed as beliefs, goals, preferences or comnionigabtocols, our approach
allows them to be transmitted between group members, pkatig at the time of join-
ing. For example, if team membership requires that memhzasosviedge receipt of
messages then each new member of a group might be given theilee{loehaviour)

IF received(ag,) THEN send(ag, ack(6))

A stronger constraint might require an agent to believe asages received from its
Cont ext :

IF received(ag,) AND ag € Cont ext THEN addBelief (8, ag) AND send(ag, ack(6))

Of course, agents can not be certain that another agenteeifl kith given constraints
or comply with norms of the society, the most it can do is dedrfanmal acknowledge-
ment of its request and a commitment to do so. Group memipecsini be denied if an
agent fails to satisfy thentry criteria

Authority roles None of the structures discussed usefully reflect hierasobi author-
ity. Each allow almost arbitrary group membership, witmgigive and cyclic structures
possible making them unsuitable for expressing a hieraoftauthority, which by its
nature must be acyclic with exactly one root.

A common use for such a hierarchy is for creating channelsoofrgunication.
Our approach to grouping enables communication restnistfor free, as agents may
only communicate with theirimmediate superiors (context}their direct subordinates
(content). Communication to peers (by multicast) can omyabhieved by sending a
singlebroadcast message to the agent common to the contexts of the intendigpdt re
ents. The receiving [superior] agent will, if it deems it eqpriate, forward the message
to the other agents in its content.

5 Concluding Remarks

In this paper, we have proposed a simple but clear model fdti-agent structuring

in agent languages based on varieties of the logical BDIagmbr. Although derived
from work on METATEM, we propose this as a general approach for many languages.
To support this, we first show how simple and intuitive therapph is and how the
underlying structures of any appropriate language can bdifirad. (Note that more
detailed operational semantics for our grouping approatbgic-based BDI languages

is given in [10].) We then showed, in a necessarily brief viyy many of the common
teamwork and organisation aspects can be modelled usirgppuoach.

In order to evaluate the approach, we have also implemetitedgentSpeak (actu-
ally, Jason [3]) and have developed several simple exanoplégnamic organisations.
This simple additional layer has so far proved to be convera@d powerful. Obvi-
ously, theCont ent /Cont ext approach has also been extensively used in previous
work on METATEM [14-16]. In addition, it has been incorporated in the seticarof
AIL [9], a common semantics basis for a number of languagedding AgentSpeak
and 3APL; see [10] for formal details.

5.1 Future Work

Our immediate aim with this work is to apply the model to largpplications, partic-
ularly in the areas of ubiquitous computing and social oiggtions. This will give a
more severe test for the approach and will highlight anysaoéaifficulty.

As mentioned above, the approach is being integrated imtd\th semantics [9],
which provides a common semantics basis for a number of Bigjuages. Since trans-
lations from AgentSpeak, 3APL, etc are being produced, we alm to translate the
organisational aspects used into the above model.

Finally, since the aim of the work on AIL is to provide genevigrification tech-
niques for BDI languages (that can be translated to AlL) [A]extending the AIL
semantics, we also aim to provide verification techniquessfams, roles and organisa-
tions developed within BDI languages.

References

1. H. Barringer, M. Fisher, D. Gabbay, R. Owens, and M. Reyna@dgors. The Imperative
Future: Principles of Executable Temporal LogiResearch Studies Press, 1996.

2. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, edittdulti-Agent Pro-
gramming: Languages, Platforms and ApplicatioSpringer-Verlag, 2005.

3. R. H. Bordini, J. F. ldbner, and R. VieiraJason and the Golden Fleece of Agent-Oriented
Programming. In Bordini et al. [2], chapter 1, pages 3-37.

4. R.H.Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying MtAgent Programs by
Model Checking.Journal of Autonomous Agents and Multi-Agent Systep(2):239-256,
2006.

5. L. Cavedon, A. S. Rao, and G. Tidhar. Social and Individual @dment. InProc. PRICAI
Workshop on Intelligent Agent Systems, Theoretical and Practicabsspages 152—-163.
Springer, 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

P. R. Cohen and H. J. Levesque. Intention is Choice with Commitn¥entificial Intelli-
gence 42(2-3):213-261, 1990.

. P.R.Cohen and H. J. Levesque. Confirmations and Joint Actid?roln International Joint

Conference on Atrtificial Intelligence (IJCAPages 951-959, 1991.

. P. R. Cohen and H. J. Levesque. Teamwork. Technical Repdst SRI International,

California, USA, 1991.

. L. A. Dennis, B. Farwer, R. H. Bordini, M. Fisher, and M. Wooldidg\ Common Semantic

Basis for BDI Languages. IRroc. 7th International Workshop on Programming Multiagent
Systems (ProMAS2007. (To appear in LNAI, Springer.)

L. A. Dennis, M. Fisher, and A. Hepple. Language Constructd/faiti-Agent Program-
ming. InProc. 8th Workshop on Computational Logic in Multi-Agent Systems (@)LIM
2007. (To appear in LNAI, Springer.)

J. Ferber and O. Gutknecht. A Meta-model for the Analysis anigBes Organizations
in Multi-agent Systems. IRroc. 3rd International Conference on Multi-Agent Systems (IC-
MAS) pages 128-135, 1998.

J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizatfam Organizational
View of Multi-agent Systems. IRroc. Workshop on Agent-Oriented Software Engineering
(AOSE) volume 2935 ot NAI, pages 214-230. Springer, 2003.

M. Fisher. METATEM: The Story so Far. IfProc. 3rd International Workshop on Program-
ming Multiagent Systems (ProMASPlume 3862 ofecture Notes in Artificial Intelligence
pages 3—-22. Springer, 2006.

M. Fisher, C. Ghidini, and B. Hirsch. Programming Groups of Ratidmgents. InProc.
International Workshop on Computational Logic in Multi-Agent SytemdNI&l), volume
3259 ofLNAI. Springer-Verlag, 2004.

M. Fisher and T. Kakoudakis. Flexible Agent Grouping in Executdbtaporal Logic. In
Intensional Programming II\World Scientific, 2000.

B. Hirsch. Programming Rational AgentsPhD thesis, Department of Computer Science,
University of Liverpool, June 2005.

J. F. Hibner, J. S. Sichman, and O. Boissier. A Model for the Structuralctiamal, and
Deontic Specification of Organizations in Multiagent System®ryc. 16th Brazilian Sym-
posium on Artificial Intelligence (SBIApages 118-128. Springer, 2002.

N. R. Jennings and M. Wooldridge. Applications of Agent TechnplbgAgent Technology:
Foundations, Applications, and Marke&pringer, 1998.

H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On ActingflegdnProc. 8th American
National Conference on Artificial Intelligence (AAApages 94—99, 1990.

N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Remote Agent:didl8 Go Where
No Al System Has Gone Befordrtificial Intelligence 103(1-2):5-48, 1998.

D. V. Pynadath, M. Tambe, N. Chauvat, and L. Cavedon. Tawbedm-Oriented Program-
ming. Inintelligent Agents V/lvolume 1757 of-NAI, pages 233-247. Springer, 1999.

A. S. Rao and M. Georgeff. BDI Agents: from Theory to Practioé?roc 1st International
Conference on Multi-Agent Systems (ICMA&)ges 312-319, San Francisco, USA, 1995.
I. A. Smith and P. R. Cohen. Toward a Semantics for an Agent Gornmations Language
Based on Speech-Acts. Froc. American National Conference on Artificial Intelligence
(AAAI), pages 24-31, 1996.

G. Tidhar. Team-Oriented Programming: Preliminary Report. fieahReport 1993-41,
Australian Artificial Intelligence Institute, Melbourne, Australia, 1993.

J. Vazquez-Salceda, V. Dignum, and F. Dignum. Organizing Meltie§ystems. Technical
Report 2004-015, Institute of Information & Computing Sciences, Witrelmiversity, 2004.
M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory aadtiee.The Knowledge
Engineering Revieyd 0(2):115-152, 1995.

