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Abstract

It has been recognised for some time that there are close links between the vari-
ous logics developed for the analysis of multi-agent systems and the many game-
theoretic models developed for the same purpose. In this paper, we contribute to
this burgeoning body of work by showing how a probabilistic model checking tool
can be used for the automated analysis of game-like multi-agent systems in which
both agents and environments can act with uncertainty. Specifically, we show how a
variation of the well-known alternating offers negotiation protocol of Rubinstein can
be encoded as a model for the PRISM model checker. and its behaviour analysed
through automatic verification of a number of probabilistic CTL’s properties.
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1 Introduction

In game theory, negotiation is thought of as a game where two players bargain
over one or several items. The players’ roles are distinct: the seller is willing
to get a profit by selling the bargained items whereas the buyer is keen on
spending his/her resources (money) to buy them. The utility of each player
essentially depends on the game outcome (i.e. the value at which an agree-
ment is reached). A player’s strategy basically describes what his/her next
move is going to be (i.e. in a monetary negotiation the value of subsequent
offers a player is willing to make). The possible moves a player can make con-
stitutes the set of pure strategies for him/her. If uncertainty is accounted for,
then probability distributions are given to pure strategies and we talk about
mixed strategies, hence expected utilities. Game-theory aims to study proper-
ties of the players’ strategies. A strategy which maximises a player’s utility
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(independently of the opponent’s one) is said to be a dominant one, whereas
a combination of strategies (for the two players) forms a Nash equilibrium if
no player will get a higher utility by adopting another strategy given that the
opponent will stick to the considered one. Given a game G, questions like,
“is there any dominant strategy?”, or, “is there any Nash-equilibrium strategy
combination?”, need to be addressed by researchers. In this paper we focus on
a specific negotiation framework, namely the Rubinstein’s alternating offers’
one, and show how a probabilistic model-checker can be used as an alterna-
tive means for its analysis. We consider a limited number of strategy profiles
and for each of them we determine the corresponding probability distribution
over the set of agreements, hence the expected utility. This approach differs
from both the simulation and mathematical analysis techniques usually em-
ployed for game analysis. In particular, our approach is automatic, as are
simulation techniques, yet covers all possible behaviours of the system, as do
mathematical analysis techniques. Thus, our approach provides an automatic
way to analyse an exact computed expectation concerning the possible system
behaviours.

The structure of this paper is as follows. In Section 2, we review the
problem of negotiation, in particular the “alternating offers” protocol, and
in Section 3 we outline the model checking approach, specifically probabilistic
model checking. We bring these two aspects together in Sections 4 and 5,
describing the probabilistic model of the bargaining protocol in Section 4 and
carrying out a range of verification experiments on this scenario in Section 5.
Finally, in Section 6, we provide brief concluding remarks.

2 The alternating-offers negotiation framework

A number of protocols and associated strategies for automatic negotiation in
multi-agent systems have been developed over the past two decades. One
of the earliest, and most influential, was the monotonic concession protocol
and Zeuthen strategy adapted by Rosenschein and Zlotkin [10] from previous
work by Harsanyi and Zeuthen. In that work the authors gave the first real
evaluation of such negotiation approaches in automated negotiation settings.
Most recent work in automated negotiation has focussed on an alternative
model of negotiation: the alternating offers model proposed by Rubinstein [8].
Here we briefly describe it referring the interested reader to the literature for
more details. In Rubinstein’s offers model, agents take it in turns to make
an action. The action can be either (i) put forward a proposal (offer), or (ii)
accept the most recent proposal. We assume just two agents, a and â, and
negotiation takes place in a sequence of rounds, which we will assume are
indexed by the natural numbers. Agent a begins, at round 0, by making a
proposal x0, which agent â can either accept (A) or reject (R). If the proposal
is accepted, then the deal x0 is implemented. Otherwise, negotiation moves
to another round, where agent â makes a proposal (counter-offer) and agent
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a chooses to either accept or reject it.

There is, of course, nothing to stop negotiation using the alternating offers
protocol going on for ever: according to the protocol, they can just keep on
Rejecting andRejecting andRejecting. . . If the agents never reach agreement,
(i.e., a history of the proposal simply consists of a sequence of deals and
associated Rs), then we define the outcome of negotiation to be the conflict
deal, Θ. The following basic assumptions are made [8, p.33–34] 4 :

Disagreement is the worst outcome: Agents prefer any outcome at least
as much as disagreement.

Agents seek to maximise utility: Agents really do prefer to get larger
utility values.

Time is valuable: For any outcome x and times t1 and t2, both agents would
prefer outcome x at time t1 over outcome x at time t2 if t2 > t1. Thus, given
a choice between agreement x being made now and x being made later, we
always prefer the former.

In Rubinstein’s alternating offers framework, the tactic for generating play-
ers’ proposals is a function of time (1). The offer made by agbent a to agent
â (either the buyer, b or the seller, s) at time time t (0 ≤ t ≤ T a, where T a is
player a’s deadline) falls between its Initial-Price (IP a) and its Reserved-Price
(RP a) and is defined as follows:

pt
a→â =

IP a+φa(t)(RP a−IP a) for a=b,

RP a+(1−φa(t))(IP a−RP a) for a=s,
(1)

where ka determines the price to be offered by agent a in its first proposal.
Several time-dependent functions can be characterised by means of the Nego-
tiation Decision Function (NDF) φa(t), which is as follows:

φa(t) = ka + (1− ka)(
t

T a
)

1
ψ (2)

By varying the value of ψ in (2), different type of tactics can be obtained (Fig-
ure 1): with ψ < 1 we talk about boulware tactics (offer increases/decreases
very slowly for most of the time and reaches the RP rapidly as the time dead-
line approaches), with ψ = 1, we have linear tactics whereas with ψ > 1 we
talk about conceder strategies.

3 Probabilistic Model Checking

Model Checking [4] is a well established methodology for testing a system’s
model against properties expressed in terms of some temporal logic formulae.
A model checker takes a model M and a formula φ as inputs and returns
either YES if φ is satisfied on all executions through M (i.e. M |= φ) or NO

4 Some other technical assumptions are made, but these are the “central” ones.
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Fig. 1. Negotiation Decision Function

if it is not (i.e. M 6|= φ), providing, in such a case, a counter-example of the
checked property.

Model-checking techniques may be classified with respect to the type of
model they refer to. In this sense we may distinguish between models which
allow to represent non-determinism without enclosing any “quantification” of
the uncertainty (i.e. non-probabilistic system), as opposed to models which
incorporate information about the likelihood of possible future evolutions (i.e.
probabilistic systems). Non-probabilistic systems can be modelled in terms
of Labelled Transition Systems (LTS), essentially state-graphs whose nodes
are attached with propositions stating what is true in a state. Linear Time-
temporal Logic [9] and its branching-time extension, the Computational Tree
Logic [3], allow for the verification of qualitative properties against a LTS
(e.g. properties such as “in any possible execution a safe-state is reached at
some point” or “no deadlock-state can be ever reached”). When indications
about the likelihood of the system behaviour can be devised, then a proba-
bilistic model may be built. Markov processes [5] are a subclass of stochastic
processes suitable for modelling systems such that the probability of possible
future evolutions depends uniquely on the current state rather than on its past
history (i.e. the path which lead to it). A system’s timing is also taken care
of with Markov chains models leading to either Discrete time Markov chains
(DTMC), for which time is considered as discrete quantity, or Continuous
time Markov chains (CTMC), when time is thought as a continuous one. The
verification of Markov chains via model checking has been widely developed
during last decades, resulting in the characterisation of specific temporal log-
ics and verification algorithms: the Probabilistic Computational Tree Logic
(PCTL) [6] for verification of DTMC and the Continuous Stochastic Logic
(CSL) [2], for CTMC verification. In the following we briefly introduce the
basic for PCTL model checking, which is the verification technique we are
referring to in this work. For a detailed treatment the reader is referred to the
literature.

Definition 3.1 Given a set of atomic propositions AP , a labelled DTMC M
is a tuple (S,P, L) where S is a finite set of states, P : S×S → [0, 1] is
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the transition probability matrix such that ∀s ∈ S,
∑

s′∈S P(s, s′) = 1 and
L :S → 2AP is a labelling function.

A path in a given a DTMC M = (S,P, L) and its probability measure are
formally characterised in the following definitions.

Definition 3.2 A path σ from state s0 is an infinite sequence σ= s0→ s1→
. . .→sn→ . . . such that ∀i∈N, P(si, si+1)>0. Given σ, σ[k] denotes the k-th
element of σ.

The probability measure of a set of infinite paths with common finite prefix
σ ↑ n = s0 → . . . → sn is defined as the product of the probability of the
transitions their common prefix consists of.

Definition 3.3 Let σ ↑ n = s0 → . . . → sn be a finite path of M. The
probability measure of the set of (infinite) paths prefixed by σ↑n is

Prob(σ ↑ n) =
n−1∏
i=0

P(si, si+1)

if n > 0, whereas Prob(σ ↑ n)=1 if n=0.

Definition 3.4 (PCTL syntax) The syntax of PCTL state-formulae (φ)
and path-formulae (ϕ) is inductively defined as follows with respect to the
set of atomic propositions AP :

φ := a | tt | ¬φ | φ ∧ φ | PEp(ϕ)

ϕ := φ U≤t φ

where a∈AP , p∈ [0, 1], t∈N∗∪{∞} and E∈{≥, >,≤, <},
The PCTL semantics is as the CTL one except for probabilistic path-formulae.
PEp(φ

′ U≤tφ′′) is satisfied in a state s iff the probability measure of paths
starting at s and satisfying (φ′ U≤tφ′′) fulfils the bound E p. Formally:

s |= PEp(φ
′ U≤tφ′′) iff Prob(s, (φ′ U≤tφ′′)) E p

where the semantics of (φ′ U≤tφ′′) with respect to a path σ is defined as:

σ |= φ′U≤tφ′′ iff ∃i≤ t : σ[i] |=φ′′ ∧ ∀j<i, σ[j] |=φ′

Essentially PCTL extends CTL’s expressiveness in two ways: by allowing a
continuous path-quantification (i.e. CTL existential and universal path quan-
tifiers are replaced by a single continuous quantifier, namely PEp)

5 and by
introducing a discrete time-bounding for Until-formulae. For a complete treat-
ment of PCTL model checking we refer the reader to [6].

5 PCTL is a superset of CTL’s as: E(φUφ)≡P>0(φUφ) and A(φUφ) ≡ P≥1(φUφ)
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4 DTMC Model of Rubintein’s Protocol

In this section we describe how we have built the DTMC model for the nego-
tiation framework introduced in Section 2. The model has been implemented
in the Reactive Modules formalism of Alur and Henziger [1], the input lan-
guage for the Probabilistic Model-Checker PRISM [7], and it consists of two
modules, the Buyer and the Seller, that reproduce the players’ behaviour de-
scribed by the UML state-chart diagrams of Figure 2. In essence the buyer

p :
( 1 � p ) :

q : ( 1 � q ) :

Fig. 2. Buyer and Seller state-charts

and the seller alternatively throw a bid/counter bid then wait for the other
player to make a decision on their offer. If the offer is accepted (i.e. an agree-
ment has been reached) then the purchase takes place and the negotiation is
successfully completed. State-diagrams in Figure 2 refer to a configuration
where the Buyer is starts the bidding process. In order to assess symmetry
of the bargaining process both starting orders (i.e. the buyer bids first or the
seller) must be considered.

For a player the decision on the opponent’s offer is a probabilistic one,
which depends on the offered amount. Such a probability is formally given by
the Seller and Buyer Acceptance Probability functions,S AP () and B AP ()
respectively, which we have defined in the following manner:

S AP (x) =

 0 if x <= S RP

1− S RP
x if x > S RP

(3)

B AP (x) =


1 if x <= 0

1+ S RP
x−(B RP+S RP ) if S RP <x<B RP

0 if x > B RP

(4)

In defining such functions two aspects must be accounted for. First, of-
fers ruled out by a player’s reserved price must be given a null probability.
Secondly, for the sake of symmetry, players should be equally likely to accept
offers of equally utility (i.e. whose distance from their respective RP is the
same). This can straightforwardly be verified on Figure 3 where curves for
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both function 3 and 4 are shown 6.

Piecewise approximation of NDFs. In our model the continuous NDFs
(φ(t)) belonging to the family defined in equation 2 are approximated by
piecewise linear functions consisting of two pieces 7 (see Figure 4) 8. The offer
function has three parameters: the slope of the first piece, the slope of the sec-
ond piece and boundary (switch time) between the pieces. The desired setting
(boulware/conceder strategy) is chosen through model configuration so that
different strategy profiles (strategy combinations) are verified (i.e. probability
for each possible negotiation outcome are derived).
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Fig. 4. NDFs’ linear approximation

6 the depicted curves correspond to a setting such that the seller and buyer reserved price
are, respectively, set to S RP =1000 and S RP =10000.
7 A two piece line is a good approximation for extreme bargaining tactics (i.e. ψ ∼ 0 or
ψ>>1), which is the type of non-linear tactics we are interested to address in this work. Less
extreme strategies may be better approximated by multi-piece lines, which would require
minimal modifications to our model in order to be coped with.
8 the depicted curves correspond to specific settings for the pieces’ slopes and switch-time.
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5 Model’s verification

The probabilistic behaviour (i.e. the Acceptance probability functions) en-
coded within the DTMC model of the alternating offer framework, results in
a probability distribution over the set of possible outcomes of the negotiation
(i.e. the interval [S RP,B RP ]), hence over a strategy profile’s payoff. Once
a strategy profile (e.g. Boulware-Boulware or Conceder-Conceder, etc.) has
been chosen by configuration, the corresponding probability distribution is
determined by verifying, with the PRISM tool, the following PCTL formula
against the framework model:

P =?(tt U(agreement)∧(purchase=PV AL)) (5)

The above property captures those evolutions for which an agreement over a
specific value (PV AL) is reached, at some point, during the bargaining pro-
cess. The verification of (5) for every possible agreement value (PV AL ∈
[S RP,B RP ]) provide us with the distribution of the probability over the set
of outcomes. From this the resulting expected utility can be straightforwardly
derived from the verification results (for the sake of brevity we do not report
it in here).

Before starting the verification phase the model needs to be configured. The
configuration requires setting a number of parameters amongst which the
strategy combination which we want to study (i.e. the strategy’s slopes and
switch-time for both players’). The possible strategies are clearly infinite,
however for our purpose we consider only a limited number of combinations
which we aim to compare through the results of model verification. The range
of possible agreements (i.e. the interval [S RP,B RP ]) must also be chosen
through configuration and, in order to improve the model’s efficiency, this is
done by means of two distinct parameters: the interval width and its offset
from the origin. We observe that the numerical result of model verification is
affected by the chosen interval (as a result of functions (3) and (4) definition).

In the following we report some of the results we have obtained by ver-
ification of (5) for an accepting interval arbitrary set to [10000, 11000] (i.e.
width:102, offset;103). We will compare the resulting probability distribu-
tion (cumulative) for different strategy profiles, pointing out which strategy is
dominant amongst the considered ones. The results we present are grouped ac-
cording to the family the underlying strategy combination belongs to. Hence,
for example, Lin(50)-Lin(50), denotes a profile in which both players are
adopting a (pure) linear offer’s function with slope equal to 50 whereas, for
example, in Boul(1/100)-Conc(100/1) the seller is adopting a boulware strat-
egy with slopes equal to 1 and 100 respectively, while the buyer is conceding
with an initial gradient of 100 which becomes equal to 1 after switching.
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Linear-Linear symmetrical: in this setting we consider strategy profiles in
which both players are using a linear offer’s function with equal slope. In Fig-
ure 5(a) the probability distribution for the possible agreements is compared
for different value of the strategy slope (i.e. Lin(10), Lin(50) and Lin(100)).
This graph essentially shows that larger slope’s values result in a higher proba-
bility for equal values in the accepting interval. The corresponding expectation
values are roughly the same: Exp(Lin(10)) ∼ 498, Exp(Lin(50)) ∼ 499 and
Exp(Lin(100)) ∼ 500, showing a larger slope tend to advantage the seller.
This is also confirmed by the graphs in Figure 5(b) that represent the cu-
mulative distribution functions for the three cases. The curves in there show
that larger strategy’s gradients are better from the seller point of view as they
concentrate most of the probability close to the supremum of the accepting
interval.
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Fig. 5. Linear-Linear strategy profile

Linear-Linear asymmetrical: here we consider strategy profiles of linear
offer’s functions with different slopes. For studying the incidence of the strat-
egy’s gradient on the probabilistic outcome of negotiation we consider a fixed
value for the slope of one player while varying the other’s. In Figure 6 the
cumulative distributions for several asymmetrical linear profiles are depicted.
We observe that by increasing the buyer’s slope while the seller’s one is set,
for example, to 10 (e.g. by comparing the curves for profiles Lin(50)-Lin(10),
and Lin(100)-Lin(10)) the probability tend to cumulate closer to the supre-
mum of the interval (which is good for the seller). Again this is confirmed
by looking at the expectation values, which show the same tendency, with
Exp(Lin(50)Lin(10))∼692, whereas Exp(Lin(100)Lin(10))∼804.

Non-linear asymmetrical: similar conclusions are valid also when we con-
sider profiles for which both players are using a non-linear strategy with dif-
ferent slope values. In Figure 7 the cumulative probability for asymmetrical
Conceder combinations with different gradients are compared. There we can
observe that profiles which switch to the low gradient piece of the strategy
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Fig. 6. Lin-Lin asymmetrical cumulative

earlier tend to cumulate the probability closer to the higher utility half of the
interval. This is evident, for example, if we compare curves of equal gradi-
ents but different swith time as in Conc(10/1)-Conc(100/10)-T sw : 4 and
Conc(10/1)-Conc(100/10)-T sw : 8 in Figure 7, the former corresponding to
an earlier switch time for the seller (equal to 4) the latter to a delayed switch
time (equal to 8).

Similar considerations hold when combinations of different type of non-
linear strategies, are compared. In Figure 8 the cumulative probability for
boulware-conceder profiles of fixed gradients (i.e. respectively Boul(1/100)
and Conc(100/1)) are compared with respect to to different value of switch
time for the seller. The graphs in Figure 8 confirm that for constant slope’s
values, a non-linear strategy with the earliest switch time is dominant.
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6 Conclusion

In this paper we have shown a different approach to the verification of multi-
player games which can be used as an alternative to (or in conjunction with)
analytical methods and/or simulation. We have illustrated how the analysis
of specific negotiation (mixed) strategies can be performed by means of proba-
bilistic model checking. This is achieved by developing an ad hoc probabilistic
model which is then verified against probabilistic properties.

This analysis has helped in comparing the effect that several strategic vari-
ables has on the probabilistic outcome of negotiation. In particular we have
shown that, for large value of the offers functions slope (in both linear and
non-linear strategies) the expected value tends to increase and the probability
distribution tends to cumulate toward the supremum of the accepting interval.
Furthermore with respect to non-linear strategies of constant slopes, the ear-
liest switch time (to the low gradient piece of piecewise linear offer function)
is dominant with respect to the others.

While we have only presented a selection of the results obtained, it is
clear that this approach can be used to provide a deep analysis of probabilis-
tic negotiation/game scenarios. Consequently, we believe this approach has
very great potential for improvements in game analysis, in automated analysis
procedures, and in the development of sophisticated negotiation strategies.
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