Temporal Logic

[Syntax and Semantics]

Michael Fisher

Department of Computer Science, University of Liverpool, UK

MFisher@liverpool.ac.uk

An Introduction to Practical Formal Methods Using Temporal Logic

PTL Syntax

Formulae in PTL are constructed from the following.

- A finite set of propositional symbols, \(\text{PROP} \), such as \(p, q, r, \text{trigger}, \text{terminate_condition2}, \text{lunch}, \ldots \)
- Propositional connectives: \(\text{true}, \text{false}, \neg, \lor, \land, \Rightarrow \).
- Temporal connectives: \(\Box, \Diamond, \text{start}, U, \text{and} W \).
- Parentheses, ‘(‘ and ‘)’, used to avoid ambiguity.

The set of well-formed formulae of PTL, denoted by \(\text{WFF} \), is now inductively defined as follows.

- \(\text{PROP} \subseteq \text{WFF} \), and \(\text{true}, \text{false} \) and \(\text{start} \) are in \(\text{WFF} \).
- If \(\varphi \) and \(\psi \) are in \(\text{WFF} \), then so are
 - \(\neg\varphi \quad \varphi \lor \psi \quad \varphi \land \psi \quad \varphi \Rightarrow \psi \quad (\varphi) \)
 - \(\Diamond \varphi \quad \Box \varphi \quad \varphi U \psi \quad \varphi W \psi \quad \Diamond\varphi \).

Examples of Syntax

The following are all legal \(\text{WFF} \) of PTL

\[
p U (q \land \Diamond r) \quad a \Rightarrow \Box \Diamond (bWc) \quad (f \land \Diamond g) U \Box \neg h
\]

But the following are not

\[
p \Diamond q \quad (U r) \quad a \Rightarrow \Box b \Box c
\]

Semantic Structures (1)

Models of PTL are formally

\[
\text{Model} = \langle S, R, \pi \rangle
\]

where

- \(S \) is the set of \textit{moments} in time (accessible worlds),
- \(R \) is the \textit{temporal accessibility relation} (linear, discrete, finite past), and
- \(\pi : S \mapsto \mathcal{P} \text{PROP} \), a \textit{propositional valuation}, mapping each moment/world to a set of propositions (i.e. those that are true in that moment/world).
Semantic Structures (2)

A linear, discrete relation, such as \(R \), is isomorphic to \(\mathbb{N} \). So, this is often reduced to

\[
\text{Model} = \langle \mathbb{N}, \pi \rangle
\]

where

\[
\pi : \mathbb{N} \rightarrow \mathcal{P}\text{PROP}
\]

maps each moment in time to a set of propositions.

And, still further to

\[
\text{Model} = s_0, s_1, s_2, s_3, \ldots
\]

where each \(s_i \) is a set of propositions.

But: We will generally use the \(\text{Model} = \langle \mathbb{N}, \pi \rangle \) variety.

Formal Semantics

The semantics of a temporal formula is provided by an interpretation relation

\[
\models : (\text{Model} \times \mathbb{N}) \rightarrow \mathbb{B}
\]

For a model, \(M \), temporal index, \(i \), and formula, \(\varphi \), then

\[
\langle M, i \rangle \models \varphi
\]

is true if \(\varphi \) is satisfied at moment \(i \) within model \(M \).

The way the interpretation relation is defined provides the semantics for the logic.

Semantic Structures (3)

We will use the

\[
\mathcal{M} = \langle \mathbb{N}, \pi \rangle
\]

semantic basis, which can be viewed as

\[
\begin{array}{c}
\bullet \quad \bullet \quad \bullet \\
\pi(i) \quad \pi(i+1) \quad \\
P, q, s, w \quad p, q, s, \ldots
\end{array}
\]

\[
\begin{array}{c}
\bullet \quad \bullet \quad \bullet \\
\pi(i) \quad \pi(i+1) \quad \\
P, q, s, w \quad p, q, s, \ldots
\end{array}
\]

Semantics of Propositions

We begin with the semantics of basic propositions:

\[
\langle M, i \rangle \models p \iff p \in \pi(i) \quad \text{(for } p \in \text{PROP)}
\]

i.e. look up the proposition in the model provided to see whether it is satisfied or not.

Recall:

\[
\begin{array}{c}
\bullet \quad \bullet \quad \bullet \\
\pi(i) \quad \pi(i+1) \quad \\
P, q, s, w \quad p, q, s, \ldots
\end{array}
\]
Semantics of Classical Operators

Next we consider the standard classical operators.

\[\langle M, i \rangle \models \neg \varphi \iff \text{it is not the case that } \langle M, i \rangle \models \varphi \]

\[\langle M, i \rangle \models \varphi \land \psi \iff \langle M, i \rangle \models \varphi \text{ and } \langle M, i \rangle \models \psi \]

\[\langle M, i \rangle \models \varphi \lor \psi \iff \langle M, i \rangle \models \varphi \text{ or } \langle M, i \rangle \models \psi \]

And so on....

Temporal Operators: Start

\[\langle M, i \rangle \models \text{start} \iff (i = 0) \]

Only ever satisfied at the “beginning of time”.

Temporal Operators: Next

Provides a constraint on the next moment in time.

\[\langle M, i \rangle \models \Box \varphi \iff \langle M, i + 1 \rangle \models \varphi \]

Examples

\[\langle \text{sad} \land \neg \text{rich} \rangle \models \Box \text{sad} \]
\[\text{hop} \land \Box \text{skip} \land \Box \Box \text{jump} \]
\[\langle x _equals _1 \land \text{added} _3 \rangle \models \Box (x _equals _4) \]

Temporal Operators: Sometime

Provides a constraint on the future — we can not be sure when \(\varphi \) will be true, only that it will eventually occur.

\[\langle M, i \rangle \models \Diamond \varphi \iff \text{there exists } j \geq i \text{ such that } \langle M, j \rangle \models \varphi \]
Temporal Operators: Sometime

There is a choice in the semantics of ‘sometime’ about whether to take $j \geq i$ or $j > i$; an alternative operator can be defined as follows:

\[(M, i) \models \diamondsuit \varphi \iff \text{there exists } j > i \text{ such that } (M, j) \models \varphi \]

Clearly:

\[\diamondsuit \varphi \leftrightarrow (\varphi \lor \diamondsuit \varphi) \]

Examples:

\[\neg \text{resigned} \land \text{sad} \Rightarrow \diamondsuit \text{famous} \]
\[\diamondsuit \text{accident} \Rightarrow (\Box \text{buy_insurance}) \]
\[\text{sad} \Rightarrow \Box \text{happy} \]
\[\text{is_monday} \Rightarrow \diamondsuit \text{is_friday} \]

Temporal Operators: Always

Provides invariant properties (c.f. safety properties).

\[(M, i) \models \Box \varphi \iff \text{for all } j. \text{ if } (j \geq i) \text{ then } (M, j) \models \varphi \]

Example

Why do we term $\Box \diamondsuit p$, “infinitely often P”?

Let us take the semantics of $\Box \diamondsuit p$ at a particular moment i in model M:

\[(M, i) \models \Box \diamondsuit \varphi \iff \text{for all } j. \text{ if } (j \geq i) \text{ then } (M, j) \models \Box \varphi \]

Now, choose a j, and a $k \geq j$ where $(M, k) \models \varphi$
As we quantify over all j’s, then we can now choose another j, such that $j > k$, which requires us to satisfy φ again in the future, and so on....

Aside: No Future

Rather than using \mathbb{N} as our underlying model of time, what if we use a linear, discrete sequence, but with a finite length:

Semantics of the temporal operators must be modified.
For example, the ‘\Box’ operator typically defaults to true if there is no ‘next’ moment. So, ‘$\Box \text{false}$’ is actually only satisfied at the last state in a finite sequence!

See also: bounded approximations and related techniques.

"Spatial Logics": A State-of-the-Art Survey

"Temporal Logics": An Introduction to Practical Formal Methods Using Temporal Logic
Temporal Operators: Until

A property persists until a point occurs (which is guaranteed to occur) where another property becomes true.

\[\langle M, i \rangle \models \varphi U \psi \iff \text{there exists } j. (j \geq i) \text{ and } \langle M, j \rangle \models \psi \text{ and for all } k. \text{if } (j > k \geq i) \text{ then } \langle M, k \rangle \models \varphi \]

Examples:
- \(_ _ \text{start_lecture} \Rightarrow \text{talk_U_end_lecture} \)
- \(_ _ \text{born} \Rightarrow \text{living_U_dead} \)

Temporal Operators: Unless (1)

Unless: as until, except that the ‘\(\psi \)’ point is not guaranteed to occur and so the persistent property can potentially persist forever.

\[\langle M, i \rangle \models \varphi W \psi \iff \langle M, i \rangle \models \varphi U \psi \text{ or } \langle M, i \rangle \models \square \varphi \]

Examples:
- \(_ _ \text{stay_in_roomW_fire_alarm} \)
- \(_ _ \text{commence} \Rightarrow \text{(executing_W_stop_msg)} \)

Useful Interactions

By their semantic definitions:

- \(aUb \leftrightarrow ((aWb) \land \Diamond b) \)
- \(cWd \leftrightarrow ((cUd) \lor \Box c) \)

Of course:

- \(\neg \Box r \leftrightarrow \Diamond \neg r \)

Less obviously:

- \(\neg (eUf) \leftrightarrow (\neg f)W(\neg f \land \neg e) \)
- \(\neg (pWq) \leftrightarrow (\neg q)U(\neg p \land \neg q) \)

But, happily, at least in infinite and linear models,

- \(\neg \Diamond w \leftrightarrow \Diamond \neg w \)