
State-Space Reduction Techniques in Agent Verification
�

Rafael H. Bordini
��

Michael Fisher
�

Willem Visser
�

Michael Wooldridge
�

�
University of Liverpool, Liverpool L69 3BX, U.K. {bordini,michael,mjw}@csc.liv.ac.uk�
RIACS/NASA Ames Research Center, CA 94035, USA. wvisser@email.arc.nasa.gov

Abstract

We have developed a set of tools to allow the use of
model-checking techniques for the verification of systems
directly implemented in an agent-oriented programming
language. The success of model checking as a verification
technique for large systems is dependent partly on its use in
combination with various state-space reduction techniques.
An important example of such techniques is property-based
slicing. This paper introduces an algorithm for property-
based slicing of AgentSpeak multi-agent systems. We ap-
ply our approach to the AgentSpeak code for a scenario in-
spired by routine tasks of autonomous Mars rovers, and ex-
plain how slicing reduces the search space in theory. We
consider experiments on such scenarios, and initial results
show a significant reduction in the state space, thus indicat-
ing that this approach can have an important impact on the
practicality of agent verification.

1. Introduction

As multi-agent systems come to be used in increasingly crit-
ical applications, the need to provide tools supporting their
verification — showing that a system is correct with re-
spect to its stated requirements — becomes even stronger.
We have developed model checking techniques and tools
for verifying systems implemented in AgentSpeak(L) [4, 2].
The AgentSpeak(L) BDI logic programming language was
created by Rao [7], and is one of the few languages for pro-
gramming ‘intelligent’ multi-agent systems. While we have
developed these tools, based on translating AgentSpeak(L)
programs into either Java (for use with the JPF model
checker) or Promela (the input language for the SPIN model
checker), practical experience has shown that, as with con-
ventional programs, the verification of multi-agent pro-

� Work at Liverpool supported by an EC Marie Curie Fellowship under
contract number HPMF-CT-2001-00065.�
Currently at the Department of Computer Science, University of
Durham, DH1 3LE, U.K. E-mail:R.Bordini@durham.ac.uk.

grams suffers from thestate explosionproblem. In carry-
ing out model checking on a concurrent system, the whole
state space of the system must be represented in some way
— and this state space is typically enormous.

A key technique used in simplifying the analysis of con-
ventional programs is that ofslicing. The basic idea behind
program slicing is to eliminate details of the program that
are not relevant to the analysis in hand [10]. Thus, in our
case, since we wish to verify some property, the idea is to
eliminate parts of the program that do not affect that prop-
erty; this is calledproperty-based slicing. Although slic-
ing techniques have been successfully used in conventional
programs to reduce the state-space required, these standard
techniques are only partially successful when applied to
multi-agent programs. What we require are slicing tech-
niques tailored to theagent-specificaspects of (multi-)agent
programs. In short, this is what we describe in this paper:
a new agent-based slicing algorithm and its application to
model-checking AgentSpeak.

The remainder of this paper is organised as follows. The
next section provides a brief overview of our approach to
model checking agent systems. Section 3 gives the nec-
essary background on slicing for logic programming lan-
guages. We then introduce our AgentSpeak slicing algo-
rithm, give an illustrative example, and outline a proof of
correctness in Section 4. Section 5 discusses a case study
on an autonomous Mars rover scenario.

2. Model Checking AgentSpeak

A first key step in our research was to restrict
AgentSpeak(L) to finite state systems: AgentSpeak(F), a
finite state version of AgentSpeak(L), was first described
in [2]. The idea is to translate multi-agent systems defined
in this language into the input language of existing model
checkers, so that we can take advantage of the extensive
range of tools for model checking that are available.

An AgentSpeak agent (��) is created by the specifica-
tion of a set of beliefs (��), which is a set of ground predi-
cates, and a set of plans (�). AgentSpeak(L) distinguishes
two types of goals (�): achievement goalsand test goals.

�� ��� �� 	 �
�� ��� ���. � � � ���. �� � 	

�� ��� P���, � � �,��
 �� � 	

	 � ��� 	 � � � � 	 � �� � �

	 ��� ��

: � <- � .�� ��� +�� �
-�� �

+� �
-�

� ��� true
� ��

& � � � & �� �� � �

� ��� true

� ��
; � � � ; �� �� � �
� ��� �� �

not (��)� ��� A���, � � �,��
 � � � � �� � 	

� ��� !�� �

?��� ��� +�� �
-��

Figure 1. Concrete Syntax of AgentSpeak(F).

Achievement goals are predicates (as for beliefs) prefixed
with the ‘!’ operator, while test goals are prefixed with the
‘?’operator. Achievement goals state that the agent wants
to achieve a state of the world where the associated pred-
icate is true. Atest goalstates that the agent wants to test
whether the associated predicate is one of its beliefs. Atrig-
gering event(

��
) defines which events may initiate the ex-

ecution of plans. There are two types of triggering events:
those related to theaddition(‘+’) anddeletion(‘-’) of men-
tal attitudes (beliefs or goals).

An AgentSpeak plan () has ahead(the expression to
the left of the arrow), which is formed from a triggering
event (denoting the purpose of that plan), and a conjunction
of belief literals (

�
) representing acontext(�). The con-

junction of literals in the context must be a logical conse-
quence of that agent’s current beliefs if the plan is to be ex-
ecuted. A plan also has abody(�), which is a sequence of
basic actions or (sub)goals that the agent has to achieve (or
test) when the plan is triggered. Plan bodies are sequences
of goals, belief updates (

�
), orbasic actionsthat an agent is

able to perform on its environment. Such actions are also
defined as predicates, but with special predicate symbols
(calledaction symbols) used to distinguish them.

The grammar in Figure 1 gives the concrete syntax of
AgentSpeak(F). In the grammar,P stands for any predicate
symbol,A for action symbols, and terms

��
are either con-

stants or variables. As in Prolog, uppercase initial letters are
used for variables, and lowercase for constants and predi-
cate symbols (cf., Prolog atoms). Note that first order terms
(cf., Prolog structures) are not allowed in the present ver-
sion of AgentSpeak(F).

There are also some predefinedinternal actionsymbols,
which are indicated by an initial ‘.’ character. The action
‘ .send’ is used for speech-act based inter-agent communi-
cation, and is interpreted as follows. If an AgentSpeak(F)
agent

��
executes.send��� � ��� � ��
, a message will be in-

serted in the mailbox of agent
��

, having
��

as sender, illo-
cutionary force

���
, and propositional content�� (an atomic

AgentSpeak(F) formula). At this stage, only three illocu-
tionary forces can be used:tell, untell, andachieve (un-
less others are defined by the user). They have the same in-
formal semantics as in the well-known KQML agent com-
munication language. Other predefined internal actions are
used for printing messages, and conditional and arithmetic
operations, for example.

The main difference between AgentSpeak(F) and
AgentSpeak(L) is that first order terms are disallowed.
Other restrictions, which apply particularly when model
checking is to be done with SPIN, are described in [2]. A
multi-agent system is specified by the user as a collection
of AgentSpeak(F) source files, one for each agent in the
system. Various functions that are part of the interpretation
of AgentSpeak(L) agents can be customised. Also, the user
has to provide the environment in which the agents will be
situated; this is written in the input language of the model
checker itself, rather than AgentSpeak(F).

In the context of verifying multi-agent systems imple-
mented in AgentSpeak, the most appropriate way of spec-
ifying the properties that the system satisfies (or does not
satisfy) is by expressing them using a temporal logic com-
bined with modalities for referring to agent’s mental atti-
tudes, in particular BDI logics [12, 8]. Such logics formalise
the main concepts of the underlying BDI architecture used
in reactive planning systems such as AgentSpeak agents.
A way of interpreting the informational, motivational, and
deliberative modalities of BDI logics for AgentSpeak(L)
agents was given in [3] based on the operational seman-
tics of AgentSpeak(L). In the present work, we use this
framework for interpreting the BDI modalities in terms of
data structures within the model of an AgentSpeak(F) agent
given in the model checker’s input language. This way, we
can translate (temporal) BDI properties into LTL formulæ.

The logical property specification language for our
model-checking approach is defined next. It is a simplified
version of���� [12], which is based on modal logics of
intentionality, dynamic logic, and CTL*. In the version of
the logic used here, we limit the underlying temporal logics
to LTL rather than CTL*, given that LTL formulæ (exclud-
ing the “next” operator�) can be automatically processed
by our target model-checkers. The main restriction of the
language used here in comparison to���� is that theBel,
Des, andInt modalities can only be applied to atomic for-
mulæ (i.e., predicates as used in AgentSpeak).

Let 	 � be any valid boolean expression in the model
specification language of the model checker being used,

�
be any agent label,� be a variable ranging over agent labels,
and�� and� be atomic and action formulæ defined in the
AgentSpeak(F) syntax (see Figure 1), except with no vari-
ables allowed. Then the set of well-formed formulæ (wff)
of this language is defined inductively as follows:

1. 	 � is awff ;
2. �� is awff ;
3. �Bel

� ��
, �Des
� ��
, and�Int

� ��
 arewff ;
4. �� ��� � ��
 and �� ��� � ��
 arewff, where� ��

Bel
�
Des

�
Int� and� ranges over a finite set of agent

labels;
5. �Does

� �
 is awff ;
6. if � and� arewff, so are���
, �� 	 �
, ��
 �
, �� �

�
, �� � �
, always ��
, eventually���
, until
�� � �
, and “release”, the dual of until�� � �
;

7. nothing else is awff.

In the syntax above, agent labels denoted by
�
, and over

which variable � ranges, are the ones associated with
each AgentSpeak(F) program during the translation pro-
cess. That is, the labels given as input to the translator
form the finite set of agent labels over which the quan-
tifiers are defined. The only unusual operator in this lan-
guage is�Does

� �
, which holds if the agent denoted by
�

has requested action� and that is the next action to be ex-
ecuted by the environment. An AgentSpeak(F) atomic for-
mula �� is used to refer to what is actually true of the en-
vironment (rather than from the point of view, i.e., belief,
of an agent). The concrete syntax used in the system for
writing formulæ of the language above is also dependent on
the underlying model checker. Before we pass the LTL for-
mula on to the model checker, we translateBel, Des, and
Int formulæ into predicates accessing the AgentSpeak(F)
data structures modelled in the model checker’s input lan-
guage. This is done in accordance with the definitions given
in [3].

3. Slicing Logic Programs

Perhaps the closest existing work to our goal of program
slicing for AgentSpeak is that on slicing for logic pro-
grams, and so we here provide a brief introduction to pre-
vious work in this area. In one of the earliest papers on
slicing logic programs, Zhao, Cheng, and Ushijima present
a graph-theoretic representation of a concurrent logic pro-
gram, which can be used for slicing [13]. An arc-classified
digraph calledLiteral Dependence Netis used to repre-
sent four types of dependencies of concurrent logic pro-
grams: control, data, synchronisation, and communication
dependencies. Subsequently, a backward slicing algorithm
for Prolog was presented by Schoenig and Ducassé in [9]
which is able to carry out slicing with greater precision than
the approach in [13]. In [9], slicing is done at the level of
arguments of predicates, so slices are subsets of the clauses
of the original programs where also some predicate argu-
ments may have been replaced by “anonymous variables”.
More recently, Zhao, Cheng, and Ushijima extended their
approach, using what they call an Argument Dependence
Net [14]. They use the same principles as in their previous

work, but refine the program representation to have annota-
tions on dependence at the level of arguments rather liter-
als.

Slicing in the context of those authors is intended for de-
bugging, software maintenance and understanding, and so
on. Therefore, the more details of a program can be elim-
inated, the better. For our present purposes, Zhao’s early
work suffices, as we do not need slicing at the level of ar-
guments. Instead of a slice for a particular variable, as usual
in software engineering approaches, we here aim at remov-
ing plans (whole clauses) based on their influence on the
truth of a predicate (rather than variable) that appears in a
property specification (under certain modalities).

The approach of Schoeninget al. works for Prolog pro-
grams. Although AgentSpeak is similar to Prolog in many
respects, which would indicate that we might base our algo-
rithm on [9], an AgentSpeak plan has the exact same struc-
ture of a guarded clause. The slicing algorithm proposed by
Zhaoet al. is specific to Guarded Horn Clauses, so their ap-
proach is a better candidate as a basis for ours. Besides, we
do not need to generateexecutable slices(the main motiva-
tion in [9]), as we are only interested in preserving the truth
of particular properties of the system.

For these reasons, we chose to use the technique by Zhao
et al. presented in [13] as a basis for our slicing algorithm
for AgentSpeak. Note that their work is intended for con-
current logic programs, where body literals are AND pro-
cesses, different clauses of a procedure are OR processes,
shared variables relate to process communication and syn-
chronisation, etc. However, all such dependencies apply to
any logic program, as Zhaoet al. observe themselves [13].
Although we are not dealing with concurrent logic pro-
grams of this kind, the reader may consider the terms used
in their algorithm (such as “communication dependencies”)
as metaphors to dependencies which must be dealt with in
slicing any logic program (thus in our case too).

Below, we summarise the approach presented in [13],
which will be used in the algorithm we introduce in Sec-
tion 4. It is heavily based on two representations of a logic
program. The first, calledAnd/Or Parallel Control-Flow
Net (CFN), is an arc-classified digraph (directed graph)
where control-flow dependencies are annotated. The sec-
ond is calledDefinition-Use Net(DUN), and contains an-
notations on data dependencies.

In a CFN, vertices are used to represent the heads,
guards, and each literal in the bodies of the clauses in
the program. Execution arcs (both AND-parallel and OR-
parallel) as well as sequential control arcs are used to de-
note control flow information. The generation of such CFN
can be understood informally from the rules presented in
Figure 2. Note that, as we will be dealing with slicing sets
of AgentSpeak plans (each plan having the same structure
of a guarded clause), we have not reproduced here the rules

g

p

p

g

q

p

p :− g | q. p :− g | p.

(a) Iterative Clause

p

g

q2q1 qm

p

...

p :− g | q1, q2, ..., qm.

(b) General Clause

p

g1

q12q11 q1m

p

g2

q22q21 q2m

p

gn

qn2qn1 qnm

AND−parallel execution arc

OR−parallel execution arc

sequential control arcp

...

p :− g2 | q21, q22, ..., q2m.

...

p :− gn | qn1, qn2, ..., qnm.

...

p :− g1 | q11, q12, ..., q1m.

(c) Procedure forp

Figure 2. CFN Generation Rules [13].

given in [13] for unit clauses and goal clauses, as these are
not relevant for presenting our slicing algorithm.

As noted above, we also need to annotate a logic pro-
gram (based on the approach used in concurrent logic pro-
gramming) with data, synchronisation and communication
dependences among literals. For this, another structure is
needed, the so called definition-use net (DUN). Its defi-
nition requires four functions:� determines the variables
definedat each vertex,� determines the variablesusedat
each vertex,� determines the set of channel variablessent
at each vertex, and� determines the set of channel vari-
ablesreceivedat each vertex. Functions� and� are deter-
mined bymode inference(Zhaoet al., in their later work,
use the approach proposed in [5]); mode inference for logi-
cal variables is done by abstract interpretation.

A form of control dependence in a concurrent logic pro-
gram occurs when clauses share the same head literal. This
is calledselective control dependencein [13]. Its definition
uses the CFN to determine whether two literals are directly
selective-control dependent. Two vertices can be alsodi-
rectly data dependent. Zhaoet al. use the DUN to define
a data-dependence relation between literals.Synchronisa-
tion in concurrent logic programs relates to two types of
dependences in logic programs in general: dependences be-
tween the guard (or the head literal if the guard is empty)

and the body literals, or between body literals that share log-
ical variables. Similarly,communicationin concurrent logic
programming captures data dependences between literals in
different clauses. The definition ofLiteral Dependence Net
(LDN) is then an arc-classified digraph containing all four
types of dependencies mentioned above (control, data, syn-
chronisation, and communication).

A static slicing criteriais defined in [13] as a pair,�� � � �,
where

�
is a literal in the program and

�
is a set of vari-

ables that appear in
�
. Thestatic slice� � �� � �
 of a logic

program given a static slicing criterion�� � � �
is the set of

all literals in that program which possibly affect the execu-
tion of

�
and/or affect the values with which variables in

�
are instantiated. Interestingly, once the LDN of a logic pro-
gram is built, a static slice can be determined simply by
solving a reachability problem in the LDN arc-classified di-
graph.

4. Slicing AgentSpeak

In our approach, the system to be sliced is given by a set
of AgentSpeak programs, one for each agent, and an ab-
stract representation of the environment, stating which facts
about the environment (which may then become agents’ be-
liefs through perception of the environment) are changed,
either by the agents’ actions or spontaneously, in case of
dynamic environments. The environment is thus abstractly
represented by a set of rules with one action in the left-hand
side and a sequence of possible belief changes in the form
of addition or deletion of predicates. In case of dynamic en-
vironments, rules can have empty left-hand sides. The envi-
ronment also has a set of facts (in Prolog terminology) rep-
resenting what is initially true of the environment.

Besides the system components, the property for which
a slice will be obtained (and will later be used for model
checking) also needs to be given. This is specified in the re-
stricted BDI logic defined in Section 2. The input to the al-
gorithm is thus a finite set of AgentSpeak programs� , the
abstract environment� , and the property	 for which the
slice is to be obtained. The slicing algorithm then works in
three stages, as described below.

Stage I At this stage the LDN for the system is created ac-
cording to the algorithm by Zhaoet al, as presented in Sec-
tion 3. When matching literals in different parts of the pro-
grams, AgentSpeak notations such as ‘+’, ‘ -’, ‘ !’, and ‘?’
should be considered as part of the predicate symbol. The
only extra care to be taken in such matching is that a!� in
the body of a plan matches a+!� in the triggering events of
plans.

Initially, an LDN is created for each individual
AgentSpeak program. Then the environment’s LDN is cre-
ated and connected to the various agents’ LDNs as follows:

1. In the environment specification, for each rule, edges
are added from the left-hand side to each percept
change in the right-hand side.

2. Create edges from matching action predicates in the
plan bodies (of all agents) to the left-hand side of the
environment rules. (In the case of environment rules
with empty left-hand sides, we have to create links
from all actions to that rule, as these belief changes
can happen at any time.)

3. For each percept change within the environment’s ini-
tial facts, or in the right-hand side of environment
rules, create edges from it to all matching triggering
events in the plans of all agents.

In order to make the algorithm shown in the next stage
clearer, we introduce the following terminology for the
nodes of the LDN created for the individual AgentSpeak
codes. We call a

�
-node any node of the LDN that was cre-

ated for the triggering event1 of a plan, a-node any node
created from literals in the context of the plan, and�-node
any node created from body literals.

An example system and its corresponding LDN is shown
in Figure 3. In the figure, most plan contexts (i.e., guards)
are omitted for the sake of clarity.

+b2 : b1 <− ;

.

!g1

+b3 : ... <− .a4

+!g1 : ... <− .

a1

a3

;

;

.

a1

+b3

+!g2 : ... <− .a3

+!g1 : ... <− ;

.a2

!g1

!g2

<− ; .a1 +b1

<− .a2 +b2

<− .a3 +b3

<− .a4 +b4

Environment

+b4 : ... <− .a1+b3 : ... <− .a4

−b4

: b2 <−

ag2

environment

context

Key:

b

+b1

ag1

−node

−node t

Figure 3. An Abstract Example.

Stage II Once the LDN is created, plans are marked ac-
cording to Algorithm 1. It takes as input the system code
(System), i.e., a set of AgentSpeak agent programs� and
the Environmentrepresentation� ; the LDN generated in

1 Recall that a plan’s triggering event is equivalent to the head of a
Guarded Horn Clause, and a plan’s context to the guard of the clause.

the previous stage (LDN); and the property for which one
intends to later model check (Property).

Algorithm 1 Marking plans givenSystem, LDN, Property
(Stage II of the AgentSpeak Slicing Algorithm).

for all subformula� of Property with Bel, Des, Int, or Does
modalities or an AgentSpeak atomic formulado

for all agent�� in theSystem do
for all plan� in agent�� do

let �� be the node of theLDN
that represents the triggering event of�
if � � �Bel �� �	 then

for all �-node�
 labelled�� or �� in �� ’s plans, or in the
facts and right-hand side of rules in theEnvironmentdo

if �
 is reachable from�� in LDN then
mark�

if � � �Des �� � 	 then
for all �-node�
 labelled � in �� ’s plansdo

if �
 is reachable from�� in LDN then
mark�

if � � �Int �� � 	 then �note�-node below, rather than�-node�
for all �-node�
 labelled � in �� ’s plansdo

if �
 is reachable from�� in LDN then
mark�

if � � �Does �� �	 then
for all �-node�
 labelled� in �� ’s plansdo

if �
 is reachable from�� in LDN then
mark�

if � is an AgentSpeak atomic formula�
not in the scope of the modalities above
�meaning� is true of theEnvironment� then

for all node�
 labelled�� or �� in the facts and
right-hand side of rules in theEnvironmentdo

if �
 is reachable from�� in LDN then
mark�

Stage III At this stage, a “slice” of the system is ob-
tained by simply deleting all plans that were never marked
throughout the execution of the algorithm in Stage II. If it
happens that all plans of an agent are deleted, then the whole
agent can be safely removed from the system, as that agent
will have no effect on whether the overall system satisfies
the given property.

4.1. An Abstract Example

For the example shown in Figure 3, andProperty �
� �Des ag1 g2
, all plans are marked after checking for
reachability from each of the nodes representing the trig-
gering events of all plans to the only instance of!g2 in the
bodies ofag1’s plans. As all plans are marked, this means
that for this particular set of programs and given property,
slicing would not eliminateanypart of the original code.

Now consider that same system except that the body
of ag2’s last plan is changed froma1 to a3. With
this changed system, and the sameProperty �
� �Des ag1 g2
, the plans that are marked after checking
reachability from each of the nodes representing the trig-
gering events of all plans to the only instance of!g2 in
the body ofag1’s plans are as follows: only the plans with

triggering events+b1 and+!g1 remain forag1, and only
plan +b2 remains forag2 (plans are referred to by their
triggering events, which is this particular example is unam-
biguous). Model checking for the property can be done on
this particular slice of the system. While it may be counter-
intuitive that a plan for+!g2 is left out of the slice even
thoughg2 appears in the property, this is correct accord-
ing to the interpretation we have given to theDes modality.
By that definition, in order for an agent to desire� , no plan
for that goal is required; having� as an achievement goal in
the body of any plan is all that is necessary for� to (pos-
sibly) become desired. For� to be intended rather than de-
sired, then a plan for it is indeed required (in practice, an
applicable plan). So, althoughg2 (with Des) appears in the
property, the only plan for it (i.e., havingg2 in its trigger-
ing event) is left out of the system’s slice that is generated
when that property is used as slicing criterion.

4.2. Correctness Outline

In this section we provide the main ideas that are to be used
in proving correctness results for our slicing algorithm. We
first make clear what we mean by correctness of the slicing
algorithm, in the following definition. Recall that, in our ap-
proach, a system is given by set of AgentSpeak agents� sit-
uated in an environment� ; the slicing algorithm takes� ,
� and a property	 as parameters and returns� �, a set of
AgentSpeak programs that are sliced down from� .

Definition 1 (Slicing Algorithm Correctness) A slic-
ing algorithm for AgentSpeak� is correct if for any
finite set of AgentSpeak programs� , abstract environ-
ment� , and property	 , for � � such that� �� �� � 	
 � � �,
� �� �� 	 if and only if� �

�� �� 	 .

The proof that our algorithm is correct as per the defini-
tion above is based on five lemmas, one for each of the ba-
sic cases of formulæ of our property specification language.
In the lemmas, we ignore the consequences of inter-agent
communication2 in the interpretation of AgentSpeak agents;
that is, beliefs are only changed from perception of the en-
vironment, and goals derive from such changes (rather than,
e.g., requests from other agents).

Lemma 1 (Belief subformula) Formula �Bel �� �
, with
its definition given in [3], can only become true in regard to
an AgentSpeak agent�� under two circumstances: (i) when
� � appears in the body of one of the agent’s plans, or (ii)
by belief revision from the agent’s perception of the envi-
ronment. Any plan in the system can make either (i) or (ii)

2 Note that we can assume there is no communication between agents
without loss of generality. The abstract specification of the environ-
ment can be used to model beliefs that are changed by the execution
of “special” actions representing the effects of inter-agent communi-
cation.

happen if, and only if, it is marked by Algorithm 1 when-
ever �Bel �� �
 is a subformula of property	 .

Proof (Sketch) The proof uses the inference rules that de-
fine the transition relation within the operational semantics
of AgentSpeak, and the assumptions about an agent’s be-
lief revision process, to show that indeed only cases (i) and
(ii) make such formulæ true, and that these cases happen
precisely at points in the program represented by nodes��
in Algorithm 1, to which reachability is checked from each
plan’s triggering event (the head of the plan, which connects
the remainder of the plan in the graph). Then, assuming
the LDN generation algorithm is correct, all plans that can
lead the program to such control points, or affect the val-
ues bound to variables used in such parts of the programs,
have paths in the LDN to those nodes��, hence are reach-
able and marked in the loop at line 6 of the algorithm.�

We omit the remaining four lemmas, for subformulæ
with Des, Int, and Does modalities, and AgentSpeak
atomic formulæ (used to refer to facts about the environ-
ment), as they have similar enunciations (except that case
(ii), regarding belief revision, is only relevant toBel) and
proofs, with reference to the particular reachability prob-
lem and the appropriate lines of the algorithm. From this,
we may prove the correctness of the whole slicing algorithm
as follows.

Theorem 1 (Slicing Algorithm Correctness) The slicing
algorithm for AgentSpeak introduced in this paper is cor-
rect in the sense of Definition 1.

Proof (Sketch) By structural induction on thewff of the
logic used to write the specifications, using the five lemmas
that refer to the base cases. �

5. Autonomous Mars Rover: A Case Study on
Intra-Agent Plan Slicing

The development of autonomous rovers for planet explo-
ration is an important aim of the research on “remote
agents” carried out at space agencies [6]. We illustrate our
slicing technique with an abstract version of a Mars explo-
ration scenario, characterising a typical day of activity of
rovers such as Sojourner (in the Mars Pathfinder mission).
The ideas used here for creating such scenario were mainly
taken from [11] (and to a lesser extent from [1]).

A Martian day is called “sol” and the instructions sent to
the rover and collected data transmitted from it are recorded
by day since landing on the planet. Thus, “sol 22” refers to
the 22nd day of activity of the rover on Mars. The scenario
described here is inspired by the description given in [11]
of a sequence of instructions sent to Sojourner on sol 22:

1. Back up to the rock named Soufflé;
2. Place the arm with the spectrometer on the rock;

3. Do extensive measurements on the rock surface;
4. Perform a long traverse to another rock.

In this particular sol operation, it turned out that the rover
did not position itself correctly to approach the rock with the
spectrometer arm. The misplaced spectrometer meant that
no useful data was collected, and that particular rock could
not be visited again, hence a science opportunity was lost.
This is an example mentioned in that paper where more flex-
ibility in the exploration rover control software is required.

That paper also describes a more flexible approach to
sending instructions to a rover. This is not included here, but
we took that description into account when modelling our
application. They also mention that the rover is instructed
to be especially attentive to “green patches” on rocks. This
is likely to be an interesting science opportunity and so the
rover should always give priority to examining such rocks
if they turn up in its way to another target. Also, the batter-
ies installed in the rover only work when there is sunlight,
so all science activities are restricted by the amount of en-
ergy stored during the day. The rover must make sure all
collected data is transmitted back to earth before it runs out
of energy. Thus, other activities should be interrupted if car-
rying them out will mean the rover will not have enough en-
ergy to downlink collected data back to Earth.

Although we tried, in the AgentSpeak agent we devel-
oped for this application, to account for a greater flexibil-
ity for exploration rovers (as aimed in [11]) in aspects such
as making sure the rover is correctly positioned before ac-
tivating the spectrometer, note that we here describe an ab-
stract scenario based on general ideas of what goes on with
a rover in one day of operation. Planning for such remote
agents is a lot more complicated, as resources (computa-
tional or otherwise) that can be used in an actual rover are
greatly restricted for technological and financial reasons.

The AgentSpeak code for this simplified Mars rover has
25 plans3. It is interesting to note how adequate the con-
structs of agent-oriented programming based on BDI no-
tions are for describing some of the activities of remote
agents such as the one discussed here. Thus, that code is
an interesting example on which to apply our slicing tech-
nique, as described next.

Intuitively, there are two ways in which slicing partic-
ularly alleviates the state explosion of AgentSpeak pro-
grams. The first one is by removing plans that cannot af-
fect the truth or otherwise of the formula in the slicing crite-
rion, but would increase the length of a computation for an
agent to handle particular events before the truth property
can be determined. This is similar to the motivation for re-
moving clauses in traditional logic programs. It reduces the

3 Because of space limitation, we cannot include any of the AgentSpeak
code used for the rover here. However, we have made it available on
the Web athttp://www.durham.ac.uk/r.bordini/
Publications/PubApp/AAMAS04-CR/amr.asl.

length of computations of individual intentions; note how-
ever that automata-theoretic model checking already avoid
expanding system states that are not necessary for finding a
counter-example, which is a different situation.

Besides removing details of intermediate intention pro-
cessing that are unnecessary for checking a certain prop-
erty, yet another source of state space reduction can hap-
pen by slicing AgentSpeak(L) programs. Whenever all the
plans that are used to handle particular external events can
be removed, this greatly reduces the state space, given that
at any point during the computation associated with one in-
tention, there are reachable states in which other intentions
(other focuses of attention) are created to handle events that
may have been generated by belief revision. Slicing out
such plans eliminates all such branches of the computation
tree. An alternative reduction would be to avoid the envi-
ronment to generate such events in the first place (consid-
ering that they will not affect the property being verified
anyway). Because the environment code is not usually in
AgentSpeak(L), but is provided by the user, automatic slic-
ing is less practical in this way. The user would have to re-
move, from its own code, the generation of the events that
the algorithm would determine as safe to slice out.

We next show two examples of specifications that have
been verified for the implemented system. In the specifi-
cations,��� is used to denote the agent (theautonomous
Mars rover). An example of the first type of state-space re-
duction (reducing the path length of the computation associ-
ated with a particular intention), is as follows. Suppose the
agent’s original plan library did not include plansr1–r4
(the ones which allow the rover to react to possible alter-
native targets, sundown, etc.). This would mean the agent
would not, in any case, have more than a single intention
at a time. Still, consider that the following property is to be
checked (thus being our slicing criterion):
� ��Does ��� place spectrometer arm at(R)	 �
�Bel ��� correctly positioned to examine(R)		 (1)

which means that whenever the rover performs the action of
placing its spectrometer arm at a certain rock, it believes to
be itself correctly positioned to examine that rock.

Because plansc1–c4 (the ones used for the agent to
transmit back to the ground team all data it has gathered)
can only become intended after some point in the execution
whereplace spectrometer arm at(R) has already
happened, there is no need to consider that part of the exe-
cution of the intention as it will not affect the property under
consideration (i.e., that level of detail of the intention exe-
cution is irrelevant for the given property). The generated
slice for the above property does not include plansc1–c4.

An example of the second type of state space reduction
(the one which avoids the generation of other focuses of
attention that would not interfere with the property being
checked) is:

� ��Int ��� transmit all remaining data(22)	 ��� ��Bel ��� data(specData,souffle,22,)	�� �Bel ��� downlink(ground,specData,souffle,22)			
(2)

which means that in any execution path, whenever the rover
intends to transmit all remaining data back to Earth, some
time after that there will be no data entry in its belief base
for which there is not an associated belief saying that that
particular piece of information has already been downlinked
back to the ground team (this ensure, e.g., that the rover
does not run out of batteries before it finishes the impor-
tant task of transmitting all gathered data).

With the above slicing criterion, planr3 (a plan for re-
acting to possible ordinary targets; there is a separate one
for reacting to rocks with green patches) can be safely re-
moved. Note that although the slicing appears to be “small”
(i.e., just one plan is removed), a considerable reduction
of the state space can ensue, depending also on how dy-
namic the environment is. If many possible targets are de-
tected (and approached) during the time data is being trans-
mitted back to Earth, this could generate a large number of
different system states in which the two focuses of atten-
tions are being dealt with simultaneously by the rover.

Experiments were run on a machine with an MP 2000+
(1666 MHz) processor with 256K cache and 2GB of RAM
(266 MHz). For specification (1), SPIN used�	�MB of
memory (���� � �	� states in the system) and took��s
to complete model checking. After slicing, numbers went
down to�	�MB (�
 � ��
 states) and��s. This means a re-
duction of 25.6% on the time to model check, and a 33%
reduction in memory usage. For specification (2), SPIN
used 	��MB of memory (� ��� � �	� states), and took
���s to complete. After slicing, this went down to���MB
(� ��� � �	� states) and���s. This means a reduction of
about 26% on the time to model check, and 21% on mem-
ory usage. Interestingly, using SPIN’s built-in slicing algo-
rithm does not reduce the state space at all.

6. Conclusions

We have presented a new algorithm for property-based slic-
ing specifically targeted at AgentSpeak programs. Given a
set of AgentSpeak programs forming a multi-agent system,
we are now able to derive a second set of programs that has
a smaller state space, yet is equivalent to the original one
with respect to the property under consideration. This work
forms part of our ongoing programme on the verification of
multi-agent systems. Initial experimental results show a sig-
nificant reduction in the state space, thus indicating that this
approach can have an important impact on the practicality
of automatic agent verification. An automatic AgentSpeak
slicer based on this work is still being implemented, but ini-
tial complexity analysis shows there should not be an issue
with the slicing time prior to model checking.

References

[1] J. Biesiadecki, M. W. Maimone, and J. Morrison. The
Athena SDM rover: A testbed for mars rover mobility. In
6th Int. Symposium on AI, Robotics and Automation in Space
(ISAIRAS-01), Montreal, Canada, 2001.

[2] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge.
Model checking AgentSpeak. InProc. 2nd Int. Joint Conf.
on Autonomous Agents and Multi-Agent Systems (AAMAS-
2003), Melbourne, Australia, pages 409–416, New York,
NY, 2003. ACM Press.

[3] R. H. Bordini andÁ. F. Moreira. Proving BDI properties of
agent-oriented programming languages: The asymmetry the-
sis principles in AgentSpeak(L).Annals of Mathematics and
Artificial Intelligence, 2004. To appear.

[4] R. H. Bordini, W. Visser, M. Fisher, C. Pardavila, and
M. Wooldridge. Model checking multi-agent programs with
CASP. In Proc. 15th Conf. on Computer-Aided Verifica-
tion (CAV-2003), Boulder, CO, LNCS 2725, pages 110–113.
Springer-Verlag, Berlin, 2003. Tool description.

[5] M. Krishna Rao, D. Kapur, and R. Shyamasundar. Proving
termination of GHC programs. In D. S. Warren, editor,Proc.
10th Int. Conf. on Logic Programming, Budapest, Hungary,
pages 720–736, Cambridge, MA, 1993. MIT Press.

[6] N. Muscettola, P. Pandurang Nayak, B. Pell, and B. C.
Williams. Remote agent: to boldly go where no AI sys-
tem has gone before.Artificial Intelligence, 103(1–2):5–47,
1998.

[7] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logi-
cal computable language. InProc. 7th Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World (MAA-
MAW’96), Eindhoven, The Netherlands, LNAI 1038, pages
42–55. Springer-Verlag, London, 1996.

[8] A. S. Rao and M. P. Georgeff. Decision procedures for BDI
logics. J. Logic and Computation, 8(3):293–343, 1998.

[9] S. Schoenig and M. Ducassé. A backward slicing algorithm
for Prolog. InProc. Third International Symposium on Static
Analysis (SAS’96), Aachen, Germany, LNCS 1145, pages
317–331. Springer-Verlag, 1996.

[10] F. Tip. A survey of program slicing techniques.Journal of
Programming Languages, 3(3):121–189, 1995.

[11] R. Washington, K. Golden, J. Bresina, D. E. Smith, C. An-
derson, and T. Smith. Autonomous rovers for mars explo-
ration. InAerospace Conference, Aspen, CO. IEEE, 1999.

[12] M. Wooldridge.Reasoning about Rational Agents. The MIT
Press, Cambridge, MA, 2000.

[13] J. Zhao, J. Cheng, and K. Ushijima. Literal dependence net
and its use in concurrent logic programming environment. In
Proc. Workshop on Parallel Logic Programming, held with
FGCS’94, ICOT, Tokyo, pages 127–141, 1994.

[14] J. Zhao, J. Cheng, and K. Ushijima. Slicing concurrent logic
programs. InProc. 2nd Fuji Int. Workshop on Functional
and Logic Programming, Shonan Village Center, Japan,
pages 143–162. World Scientific, 1997.

