Formal Verification of Probabilistic S warm Behaviours

Savas Konur, Clare Dixon and Michael Fisher

Department of Computer Science, University of Liverpool, Liverpool, UK
{Konur, CLDixon, MFisher}@liverpool.ac.uk

Abstract. Robot swarms provide a way for a number of simple robots to work
together to carry out a task. While swarms have been found to be adaptable,
fault-tolerant and widely applicable, designing individual robot algorithms so as
to ensure effective and correct swarm behaviour is very difficult. In order to assess
swarm effectiveness, either experiments with real robots or computational simu-
lations of the swarm are usually carried out. However, neither of these involve a
deep analysis of all possible behaviours. In this paper we will utilise automated
formal verification techniques, involving an exhaustive mathematical analysis, in
order to assess whether our swarms will indeed behave as required.

1 Introduction

A robot swarm is a collection of simple, and often identical, robots which will work to-
gether to achieve some task [1,2, 12]. Whilst the behaviour of each individual robot is
fairly easy to understand, it is considerably harder to predict and guarantee the emergent
behaviours of the overall swarm. Consequently, it is very difficult to design an individ-
ual robot control procedure that, when replicated across all the robots, will guarantee
the required swarm behaviour. In this paper we will explore how such robot algorithms
can be analysed in a more formal way than simply by simulation or testing.

To exhibit our approach, we have chosen a scenario for which swarm algorithms
have already been designed, implemented and tested. Thus, we focus on foraging robots,
specifically those developed in [10, 11]. The idea is that robots have to search for, and
retrieve, food items, bring them back to the ‘nest’ and then rest. There are a number of
parameters involved here, for example the time the robots spend resting, the probability
of any robot finding food, the energy expended in searching, the energy gained by food,
etc. In analysing swarm algorithms of this sort, it is particularly important to see how
such parameters affect the swarm behaviours in terms of, for example, overall swarm
energy or the ratio of searchers to resters within the swarm. By such an analysis we can
explore under what conditions the swarm exhibits optimal behaviour.

Swarm analysis is usually carried out either by testing real robot implementations,
or by computational simulations; see, for example, [7, 11]. However, each of these only
examines a relatively small number of the possible swarm behaviours and so, especially
where swarms are to be deployed in safety (or business) critical areas, these approaches
guarantee very little about actual swarm behaviours. A general alternative to simulation
and testing is to use formal verification, and particularly the technique called model-
checking [3]. Here a mathematical model of all the possible behaviours of the system
is constructed and then all executions through this model are assessed against a log-
ical formula representing a required property of the system. If there is any possible
behaviour that violates the required property, then this is highlighted.

While model checking techniques usually assess a temporal property, we will use
something more sophisticated. Since there is inherent uncertainty within swarms, here
we use a probabilistic model checker called PRISM [6]. Thus, we use a probabilistic
model of the individual robots [10] and so we can potentially analyse not just the tem-
poral, but also the probabilistic, properties of the swarm. So, our aim is to take an exist-
ing robot swarm algorithm, model it in our framework, and then automatically analyse
all possible runs through the system via the PRISM model checker. While we can ver-
ify properties of individual robots, we are particularly concerned with global swarm
behaviour. Thus, we will show that we can not only re-create the simulation results
from relevant papers [10], but can also show that certain properties hold of all possible
runs/configurations, i.e. we can formally verify swarm behaviour. This extends beyond
testing and simulation of robot swarms to formal verification via probabilistic model
checking and provides the potential for much deeper analysis of swarm behaviours.

In Section 2 we introduce the foraging robot scenario and in Section 3 we explain
how it is to be modelled and verified. In Section 4 we present several experiments based
on this model. These are carried out using the PRISM model checker and comprise both
simulation and verification activities. In Section 5, we provide concluding remarks.

2 The Foraging Robot Scenario

The foraging robot scenario we consider follows that presented in [10]. Within a fixed
size arena, there are a number of foraging robots, i.e. they must search a finite area and
bring food items back to the nest. Food is placed randomly over the arena and more
may appear over time. The food items collected will increase the energy of swarm, but
searching for food items will use up energy and there is no guarantee that robots will
actually find any food. The behaviour of each robot in the system is represented by the
probabilistic state machine in Fig. 1, with states;

— SEARCHING, where the robot is searching for food items;

GRABBING, where the robot attempts to grab a food item it has found;
DEPOSITING, where the robot moves home with the food item;
HOMING, where the robot moves home without having found food;
RESTING, where the robot rests for a particular time interval.

Associated with these states are both time-out conditions and probability values:

T,: the maximum amount a time a robot can continue searching;

T,: the maximum amount of time a robot can attempt grabbing;

Ty: (Ty/T;) the average time spent depositing (homing/resting);

vf: the probability of finding a food item;

4. the probability of grabbing a food item; and

7;: the probability of ‘losing’ sight of a food item, e.g. due to robot interference.

The probabilistic finite state machine in Fig. 1 is adapted from [10], the main difference
being that we ignore avoidance in this initial investigation. All robots are initially in
the state SEARCHING. In each time step, robots move to the GRABBING state with
probability v, (the chance of a robot finding food). Robots stay in the SEARCHING

1= -t <T,

Y, t < T,
" g GRABBING

DEPOSITIN

Fig. 1. Probabilistic Finite State Machine for a Single Foraging Robot [10].

state with probability 1 — ~yy. If a robot cannot find food within T time steps, it will
move to the HOMING state. In the GRABBING state the robots move to the DEPOSITING
state with probability 7, (the chance of grabbing the food), move to the SEARCHING
state with probability ; (the chance of losing sight of food as it has been grabbed by
another robot), and stay in the GRABBING state with probability (1 — 7v,) — ;. If a
robot cannot grab a food item in T}, time steps, it will move to the HOMING state. The
robots in the HOMING (respectively DEPOSITING, RESTING) state take 7}, (respectively
Ty, T} time steps to return back to the nest (respectively deposit food, rest) before they
move to the next state.

3 Modelling and Verifying the Scenario

The essence of formal verification is to analyse a logical requirement (typically within
formal logic) against all possible behaviours of the system in question. The fastest,
and most widely used, approach is called model-checking [3]. Here, a structure (such
as a finite-state automaton) describing all possible system behaviours is exhaustively
(and automatically) checked against the required logical properties. Thus, given that
the state-machine in Fig. 1 is a probabilistic model, we can analyse both probabilis-
tic and temporal properties of such robots using a probabilistic model checker, such
as PRISM [6]. Indeed, when we verify properties of an individual probabilistic state-
machine, our input to PRISM is a probabilistic model (technically a discrete-time Markov
Chain) and a property which can be represented in a number of probabilistic temporal
logics, such as PCTL [5]. PCTL can be used to represent quantities such as “the proba-

CLINY3

bility a robot eventually reaches the nest”, “the probability that the energy in the system

is greater than E”, etc., as well as standard temporal properties. Using PRISM, we can
also compute the minimum or maximum probability over a range of possible configu-
rations or parameters of a model, producing a form of best/worst-case analysis.

However, in this paper we are particularly concerned with verifying the proper-
ties of swarms comprising large numbers of robots. Although PRISM is generally quite
efficient, allowing us to analyse models with as many as 10'° states (see, for exam-
ple, [4]), a naive application of PRISM to robot swarm verification may generate many
more states. For example, if we built a product state-machine from multiple copies of
the Fig. 1 state-machine then the size of the resulting model would be huge. So, rather
than representing each robot as a different probabilistic state machine and then taking
the product of all these machines to generate the whole system, we use a counting ab-
straction approach. This is particularly useful if there are many identical, independent
processes, as is the case in a robot swarm, and allows us to abstract away from low-level
probabilistic details and so just consider global population behaviour.

The basic idea is as follows. Since we know that all the robots are modelled by
identical probabilistic state machines, then we actually model the whole system by one
state machine with exactly the SEARCHING, HOMING, etc, states we saw in Fig. 1.
However, to each of these states we add a counter which is used to record how many
robots are actually in that state at that moment. Thus, if 20 robots are searching then the
counter in the SEARCHING state will be 20. By examining Fig. 1 we can work out how
many of these should move to GRABBING, how many should move to HOMING, and
how many should remain in SEARCHING at each step. Thus, in addition to the 5 states,
each state is labelled with a set of difference equations explaining how the numbers of
robots associated with each state evolve. It is important to note that we are abstracting
away from local probabilities and now considering a more global view.

Due to lack of space we do not show the (difference) equations defining how the
numbers of robots in each of the 5 key states changes over time. But we remark that
fractional values of numbers of robots are rounded to the nearest whole number since
we work with a discrete state space.

4 Experiments

In this section, we present the results from running PRISM on our model with different
properties and parameters. We run them both in simulation mode, whereby we generate
a random run, and in verification mode, whereby we assess all possible runs against a
PCTL formula. The properties we check use PCTL syntax, which comprises the usual
operators from classical logic such as A (and), V (or) and = (implies), as well as prob-
abilities for example P=! (i.e. with probability 1) and temporal operators such as [¢
(¢ holds at all present/future moments) > (¢ holds at some present/future moment),
@ U Y (¢ holds until) holds).

Energy Calculation. Before discussing the experiments, we will explain how the swarm
energy is calculated. In a swarm, each robot consumes a certain amount of energy at
each time step. We assume that a robot consumes E,, Ey, E, and Ej, units of energy at
each step in SEARCHING, GRABBING, RESTING and HOMING, respectively, and each

food-item delivers the swarm F; units of energy (we assume that F; is net energy,
i.e. it is the energy obtained from the food carried minus the energy consumed in the
depositing state; we also assume that a robot can carry only one food-item.) The total
swarm energy in the next time instance, denoted by En(t + 1), is calculated as follows:

En(t+1) = En(t) + EgNT4(t) — E,Ny(t) — E,Ny(t) — E,N,.(t) — Ey Ny (t)

where N “(t) denotes the number of robots that have been in DEPOSITING for T}
time steps; Ny (), Ny (), Ny(t) and Ny (t) denotes the number of robots that are in
the SEARCHING, GRABBING, RESTING and HOMING states, respectively, at time ¢. It is
important to note that in order to ensure that we have finitely many states we discretise
the energy values, and model En as discrete state variable.

4.1 Swarm Model with Resting Timeout

We will start our experiments with a model based on the state structure in Fig. 1 and then
will gradually enhance this to be more sophisticated. So, we begin with experiments
based on the basic model in which robots leave the RESTING state after waiting for 7.
time steps. The energy parameters used are as follows: E; = 250, F, = 2, £}, = 4,
E; = E, = 50, and En(0) = 2000 x 10? (the initial swarm energy at ¢ = 0). We also
take Ty = Ty = T}, = Ty = T, = 50 seconds, and 7; = 0.1, 74, = 0.8. In the sequel,
we take N as the total number of robots. Fig. 2 compares the total energy of a swarm of
100 robots with the different (but constant) v (probability of finding food) values. As
seen in Fig. 2, if the probability of finding food is below 0.5, i.e. less food is available
for the swarm, then the total energy of the swarm decreases. If the probability of finding
food is greater than 0.5, i.e. more food is available, then the swarm gains energy.

In PRISM, we can test various runs (i.e. performing simulations as in Fig. 2); but
this does not guarantee that a property is true in all cases. Using the verification module
of PRISM we can also verify whether a property holds for all possible runs; or we can
determine the actual probability of a property being true. Assume we want to determine
the probability that “for an arbitrary number of robots and food finding probability
the swarm energy is equal to or greater than the initial energy from a time point ¢ 4.
This implies that from a time point ¢ 4 the total energy of the swarm never goes below
the initial energy. We assume vy takes discrete steps with increments of 0.01 in the
range [0, .., 1], N = [100,..,500], t4 = 2000 and t,,,4, = 10000. We can specify this
property in PCTL as follows:

P ((t <taV En>E0)Ut=tya)

We verified this formula using PRISM, and the probability returned is 0.59. This re-
sult validates the simulation shown in Fig. 2. In Fig. 2, «vy values remained constant
throughout the experiment. In Fig. 3 we use a variable ~y value that decreases over
time, i.e. modelling the situation when food gradually becomes more scarce. So, vy is
1.0 at £ = 0, and reduces by 0.1 in every 1000 seconds. Running some simulations, we
see that the total swarm energy initially increases, since the probability of finding food
is high, i.e. there is much food available for the swarm. When the probability of finding

3000

2800 Y=1.0

2600

2400

¥,=0.7
2200

....;—-———"““--__—> - V=06
2000

¥,=0.5

1800

1600

1400

Swarm Energy (10° units)

1200

1000 ¥,=0.3

¥,=0.1

0 1000 2000 3000 4000 5000 6000 7000 8000 000 10000
Time (seconds)

Fig. 2. Total swarm energy vs. the (constant) probability of finding food (yy).

2300
2250

2200 / \

2150 / \

2100

2050 "Il‘ \
2000 M \

1950

Swarm Energy (103 units)

1900

1850

1800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (seconds)

Fig. 3. Total swarm energy vs. the (decreasing) probability of finding food (y¢).

food decreases, i.e. food availability reduces, the energy gain becomes equal to the en-
ergy spent by the swarm. After a while the energy gained becomes less than the energy
spent, since the food becomes scarce, and therefore the total swarm energy decreases.

Again, rather than just running individual experiments, we can verify some prop-
erties of all executions. For example, the following property states that “the total en-
ergy never reduces below a certain value E (before timeout)”, specified in PCTL as
P='[J(Energy > E). We verified this formula in PRISM (We assumed E = 1900 x
10% and N = [100, .., 500]). This property can be useful to determine a set of robots can
achieve an important task within a certain period, since we can be sure they will always
have energy above a certain threshold value. We also queried the following formula in
PRISM

P="(true U (En > EAPT'Q(En > EAt=tpa)))

assessing the probability that if the total energy exceeds E at some time, then the energy
level in the end will be above E'. PRISM returned a probability value of 0.31 for £ =

3000 x 103, N = [100, .., 500] and #,,4, = 10000. This is an expected result because
food becomes scarce as time passes, and so it is likely that the energy level decreases.

4.2 Swarm Model without Resting Timeout

In Fig. 1, we assumed that if a robot moves to the RESTING state from HOMING or
DEPOSITING, it waits 7). time steps in RESTING. We now change this scenario and as-
sume that the robots do not wait in the RESTING state for a fixed amount of time before
moving to SEARCHING, but wait there depending on a probability ~s. This probabil-
ity, in turn, depends on the number of robots in the DEPOSITING and HOMING states.
Namely, robots move from RESTING to SEARCHING states with probability

ANTE (1) - NP (1)
Vs = ~ :

and stay in the RESTING state with probability 1 — ~,. In the above, A is the energy
gaining parameter, and Ngd (t) (respectively N ,? "(t)) denotes the number of robots
that have been in DEPOSITING (respectively HOMING) for T (respectively T3) time
steps. Intuitively, we can think of this new scenario as follows: since each robot brings
a food item in DEPOSITING state, if more robots move to the DEPOSITING state and
less robots move to the HOMING state, then more robots will move to the SEARCHING
state. As can be seen, -y, is proportional to the energy gaining parameter \. That is, if
we increase the value of \, then more robots will move to the SEARCHING state.

Using verification we can also establish several properties. For example, we have
checked the PCTL property P=7 []((t > ta) = (N, > n)), specifying the prob-
ability that the number of searching robots will never reduce below n after £4 sec-
onds. The probability that PRISM returned is 0.99 for t4 = 2000 and n = 10. We
also assumed) takes discrete steps with increments of 0.01 in the range [0, .., 1.5] and
N =[100, .., 200]. This result shows that the number of searching robots is never below
n for almost all time points from ¢ 4.

In addition to the scenarios above, we also considered a scenario where -y, depends
on the number of robots searching. Thus, if a robot is in the GRABBING state, then it
can grab a food with a probability v, = /N, where « is a constant and N is number
of robots searching. Due to lack of space, we omit the formal analysis of this scenario.

5 Conclusions

In this paper we have taken a probabilistic state transition system for foraging swarm
robots from [10] and used it as the basis for verification of global swarm behaviour
using the PRISM model-checker. Rather than instantiating such a transition system for
each robot and performing local verification, we adopt a macroscopic approach and
represent the whole swarm using one transition system calculating the number of robots
in each state based on a combination of the number of robots in the previous state and
the probability that robots change state. This allows us to simulate the global foraging
robot scenario for a number of parameters. In particular we investigate the changes to
swarm energy relating to changing the probability of finding food and differing resting

timeouts. We also experimented with variable probabilities including the probability of
moving from resting to searching and the probability of grabbing.

It is important to note that the use of this counting abstraction allows us to analyse
the behaviour of large numbers of robots — otherwise, we would not have been able
to carry out local verification even with tens of robots composed together. Using this
approach we can formally verify that certain behaviours will always happen. This is not
something that can be done easily with either simulation or testing.

Foraging robots have been studied in a number of other papers, for example [8, 7, 9—
11]. The foraging robot scenario we use here is from [10] however as stated previously
the main difference being that we ignore avoidance in this paper.

Extensions of this work include extending the work we present here to incorpo-
rate avoidance so we can compare with work such as [8], incorporating further robot
interactions, and developing PRISM models for other domains such as “stick pulling”.

Acknowledgements.

The authors would like to acknowledge the helpful comments from the anonymous
reviewers. This work was partially supported by EPSRC research project EP/F033567.

References

1. Beni, G.: From Swarm Intelligence to Swarm Robotics. In: Proc. International Workshop on
Swarm Robotics (SAB). LNCS, vol. 3342, pp. 1-9. Springer (2005)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. J. Artificial Societies and Social Simulation 4(1) (2001)

3. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

4. Duflot, M., Kwiatkowska, M., Norman, G., Parker, D.: A Formal Analysis of Bluetooth
Device Discovery. Int. J. Software Tools Technology Transfer 8(6), 621-632 (2006)

5. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. Formal Aspects
of Computing 6, 102-111 (1994)

6. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Automatic Ver-
ification of Probabilistic Systems. In: Proc. 12th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 3920, pp.
441-444. Springer (2006)

7. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Efficiency and Task Allocation in Prey Re-
trieval. In: Biologically Inspired Approaches to Advanced Information Technology. LNCS,
vol. 3141, pp. 274-289. Springer (2004)

8. Lerman, K., Galstyan, A.: Mathematical Model of Foraging in a Group of Robots: Effect of
Interference. Autonomous Robots 13(2), 127-141 (2002)

9. Lerman, K., Martinoli, A., Galstyan, A.: A Review of Probabilistic Macroscopic Models
for Swarm Robotic Systems. In: Proc. International Workshop on Swarm Robotics (SAB).
LNCS, vol. 3342, pp. 143-152. Springer (2005)

10. Liu, W.,, Winfield, A., Sa, J.: Modelling Swarm Robotic Systems: A Study in Collective
Foraging. In: Proc. Towards Autonomous Robotic Systems (TAROS). pp. 25-32 (2007)

11. Liu, W., Winfield, A., Sa, J., Chen, J., Dou, L.: Strategies for Energy Optimisation in a Swarm
of Foraging Robots. In: Proc. 2nd International Workshop on Swarm Robotics (SAB). LNCS,
vol. 4433, pp. 14-26. Springer (2007)

12. Sahin, E., Winfield, A.E.T.: Special Issue on Swarm Robotics. Swarm Intelligence 2(2-4),
69-72 (2008)

