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1 Introduction

In this article I will present an overview of a selection of tools for execution and proof
based on temporal logic, and outline both the general techniques used and problems en-
countered in implementing them. This selection is quite subjective, mainly concerning
work that has involved researchers I have collaborated with at Liverpool (and, previ-
ously, Manchester). The tools considered will mainly be theorem-provers and (logic-
based) agent programming languages. Specifically:

– clausal temporal resolution [21, 28] and several of its implementations, namely
Clatter [14], TRP++ [42] and TeMP [44], together with its application to veri-
fication [35];

– executable temporal logics [24, 4] and its implementation as both METATEM [3]
and Concurrent METATEM [22, 49], together with its use as a programming lan-
guage for both individual agents [23, 26, 29] and multi-agent systems [33, 30, 32].

In addition, I will briefly mention work on induction-based temporal proof [5], temporal
logic programming [1], and model checking [7].

Rather than providing detailed algorithms, this presentation will concentrate on gen-
eral principles, outlining current problems and future possibilities. The aim here is to
give the reader an overview of the ways we handle temporal logics. In particular how
we use such logics as the basis for both programming and verification.

2 What Is Temporal Logic?

2.1 Some History

Temporal logic was originally developed in order to represent tense in natural lan-
guage [56]. Within Computer Science, it has achieved a significant role in a number
of areas, particularly the formal specification and verification of concurrent and distrib-
uted systems [55]. Much of this popularity has been achieved as a number of useful
concepts, such as safety, liveness and fairness can be formally, and concisely, specified
using temporal logics [20, 52].
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2.2 Some Intuition

In their simplest form, temporal logics can be seen as extensions of classical logic,
incorporating additional operators relating to time. These operators are typically: ‘ �’,
meaning “in the next moment in time”, ‘ ’, meaning “at every future moment”, and
‘♦’, meaning “at some future moment”. These additional operators allow us to express
statements such as

(send ⇒ ♦received)

to characterise the statement

“it is always the case that if we send a message then, at some future moment it
will be received”.

The flexibility of temporal logic allows us to use formulae such as

(send ⇒ �(received ∨ send))

which is meant to characterise

“it is always the case that, if we send a message then, at the next moment in
time, either the message will be received or we will send it again”

and
(received ⇒ ¬send)

meaning

“it is always the case that if a message is received it cannot be sent again”.

Thus, given formulae of the above form then, if we try to send a message, i.e. ‘send’,
we should be able to show that it is not the case that the system continually re-sends the
message (but it is never received) i.e. the statement

send ∧ ¬received

should be inconsistent.

2.3 Some Applications

The representation of dynamic activity via temporal formalisms is used in a wide va-
riety of areas within Computer Science and Artificial Intelligence, for example Tem-
poral Databases, Program Specification, System Verification, Agent-Based Systems,
Robotics, Simulation, Planning, Knowledge Representation, and many more. While I
am not able to describe all these aspects here, the interested reader should see, for ex-
ample, [52, 53, 7, 62, 47]. With respect to multi-agent systems, temporal logics provide
the formalism underlying basic dynamic/distributed activity, while this temporal frame-
work is often extended to incorporate rational agent aspects such as beliefs, goals and
knowledge [27].

There are many different temporal logics (see, for example [20]). The models of time
which underlie these logics can be discrete, dense or interval-based, linear, branching
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or partial order, finite or infinite, etc. In addition, the logics can have a wide range of
operators, such as those related to discrete future-time (e.g: �, ♦, ), interval future-
time (e.g: U , W ), past-time (e.g: �♦• , , S , Z ), branching future-time (e.g: A,
E), fixed-point generation (e.g: μ, ν) and propositional, quantified propositional or full
first-order variations. Even then, such temporal logics are often combined with standard
modal logics. For example, typical combinations involve TL + S5 modal logic (often
representing ‘Knowledge’), or TL + KD45 (Belief) + KD (Desire) + KD (Intention).

Here, I will mainly concentrate on one very popular variety, namely discrete linear
temporal logic, which has an underlying model of time isomorphic to the Natural Num-
bers (i.e. an infinite sequence with distinguished initial point) and is also linear, with
each moment in time having at most one successor. (Note that the infinite and linear
constraints ensure that each moment in time has exactly one successor, hence the use of
a single ‘ �’ operator.)

3 Where’s the Difficulty?

Temporal Logics tend to be complex. To give some intuition why this is the case, let us
look at a few different ways of viewing (initially propositional) temporal logic.

Propositional temporal logic can be thought of as

1. A specific decidable (PSPACE-complete) fragment of classical first-order logic.
For example, the semantics of (discrete, linear) propositional temporal logic can

be given by translation to first-order logic as follows. Here, we interpret a temporal
formula at a moment in time (indexed by i), and encode this index as an argument
to the first-order formula. For simplicity, we consider just propositional symbols,
such as p. Then, the question of whether the formula p is satisfied at moment i
in a temporal model is translated to the question of whether p(i) is satisfied in a
classical first-order logic model:

i |=TL p → |= p(i)
i |=TL

�p → |= p(i + 1)
i |=TL ♦p → |= ∃j. (j ≥ i) ∧ p(j)
i |=TL p → |= ∀j. (j ≥ i) ⇒ p(j)

However, this first-order translation can be a problem as proof/execution techniques
often find it hard to isolate exactly this fragment.

2. A multi-modal logic, comprising two modalities, [1] and [∗], which interact closely.
The modality [1] represents a move of one step forwards, while [∗] represents all

future steps.
Thus, the induction axiom in discrete temporal logic

� (ϕ ⇒ �ϕ) ⇒ (ϕ ⇒ ϕ)

can be viewed as the interaction axiom between modalities

� [∗](ϕ ⇒ [1]ϕ) ⇒ (ϕ ⇒ [∗]ϕ)

Usually, [1] is represented as ‘ �’, while [∗] is represented as ‘ ’.
However, while mechanising modal logics is relatively easy, multi-modal prob-

lems become complex when interactions occur between the modalities; in our case
the interaction is of an inductive nature, which can be particularly complex.
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3. A characterisation of simple induction.
The induction axiom in discrete temporal logic

� (ϕ ⇒ �ϕ) ⇒ (ϕ ⇒ ϕ)

can alternatively be viewed as

[∀i. ϕ(i) ⇒ ϕ(i + 1)] ⇒ [ϕ(0) ⇒ ∀j. ϕ(j)]

Reformulated, this becomes

[ϕ(0) ∧ ∀i. ϕ(i) ⇒ ϕ(i + 1)] ⇒ ∀j. ϕ(j)

which should be familiar as a version of arithmetical induction, i.e. if ϕ is true of
0 and if ϕ being true of i implies it is true of i + 1, then we know ϕ is true of all
Natural Numbers.

However, this use of induction can again cause problems for first-order proof
techniques.

4. A logic over sequences, trees or partial-orders (depending on the model of time).
For example, a sequence-based semantics can be given for discrete linear tem-

poral logic:

si, si+1, . . . , sω |= �p if, and only if, si+1, . . . , sω |= p

si, si+1, . . . , sω |= ♦p if, and only if, there exists a j≥ i such that sj , . . . , sω |= p

si, si+1, . . . , sω |= p if, and only if, for all j ≥ i then sj , . . . , sω |= p

This shows that temporal logic can be used to characterise a great variety of, poten-
tially complex, computational structures.

5. A syntactic characterisation of finite-state automata over infinite words (ω-
automata).
For example

– formulae such as p ⇒ �q give constraints on possible state transitions,
– formulae such as p ⇒ ♦r give constraints on accepting states within an au-

tomaton, and
– formulae such as p ⇒ s give global constraints on states in an automaton.

This shows some of the power of temporal logic as a variety of different ω-automata
can be characterised in this way.

The decision problem for a simple propositional (discrete, linear) temporal logic is al-
ready PSPACE-complete [58]; other variants of temporal logic may be worse! When
we move to first-order temporal logics, things begin to get unpleasant. It is easy to
show that first-order temporal logic is, in general, incomplete (i.e. not recursively-
enumerable [59, 2]). In fact, until recently, it has been difficult to find any non-trivial
fragment of first-order temporal logic that has reasonable properties. A breakthrough by
Hodkinson et al. [39] showed that monodic fragments of first-order temporal logic could
be complete, even decidable. Monodic first-order temporal logics add quantification to
temporal logic but only allow at most one free variable in any temporal subformula.
Thus,
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∀x. a(x) ⇒ b(x)
∀x. a(y) ⇒ ♦c(y, y)

∀z. (∃w. d(w, z)) ⇒ �(∀v. e(z, v))

are all monodic formulae, whereas

∀x. ∀y. f(x, y) ⇒ �g(y, x)

is not. The monodic fragment of first-order temporal logic is recursively enumerable [39]
and, when combined with a decidable first-order fragment, often produces a decidable
first-order temporal logic [38, 10, 9, 45].

4 What Tools?

The main tools that we are interested in are used to carry out temporal verification,
via resolution on temporal formulae, and temporal execution, via direct execution of
temporal formulae. In our case, both of these use temporal formulae within a specific
normal form, called Separated Normal Form (SNF) [25].

4.1 SNF

A temporal formula in Separated Normal Form (SNF) is of the form

n∧

i=1

(Pi ⇒ Fi)

where each of the ‘Pi ⇒ Fi’ (called clauses or rules) is one of the following

start ⇒
r∨

k=1

lk (an initial clause)

q∧

j=1

mj ⇒ �
r∨

k=1

lk (a step clause)

q∧

j=1

mj ⇒ ♦l (a sometime clause)

where each l, lk or mj is a literal and ‘start’ is a formula that is only satisfied at the
“beginning of time”.

Thus, the intuition is that:

– initial clauses provide initial constraints;
– step clauses provide constraints on the next step; and
– sometime clauses provide constraints on the future.

We can provide simple examples showing some of the properties that might be repre-
sented directly as SNF clauses.
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– Specifying initial conditions: start ⇒ reading
– Defining transitions between states: (reading ∧ ¬finished) ⇒ �reading
– Introducing new eventualities (goals): (tired ∧ reading) ⇒ ♦¬reading

reading ⇒ ♦finished
– Introducing permanent properties:

(increasing ∧ (value = 1)) ⇒ � (value > 1)

which, in SNF, becomes

(increasing ∧ (value = 1)) ⇒ �(value > 1)
(increasing ∧ (value = 1)) ⇒ �r

r ⇒ �(value > 1)
r ⇒ �r

Translation from an arbitrary propositional temporal formula into SNF is an operation
of polynomial complexity [25, 28].

We also need the concept of a merged SNF clause: any SNF clause is a merged SNF
clause and, given two merged SNF clauses A ⇒ �B and C ⇒ �D, we can generate
a new merged SNF clause (A ∧ C) ⇒ �(B ∧ D).

4.2 Clausal Resolution

Given a set of clauses in SNF, we can apply resolution rules, such as

Initial Resolution: start ⇒ (A ∨ l)
start ⇒ (B ∨ ¬l)
start ⇒ (A ∨ B)

Step Resolution: P ⇒ �(A ∨ l)
Q ⇒ �(B ∨ ¬l)

(P ∧ Q) ⇒ �(A ∨ B)

Temporal Resolution (simplified)1: A ⇒ � ¬l
Q ⇒ ♦l
Q ⇒ (¬A)W l

As we will see later, it is this temporal resolution rule that causes much of the difficulty.
It should be noted here that the above is a basic explanation of clausal temporal

resolution. A number of refinements, both in terms of what resolution rules are used,
and the form of SNF, have been developed [11, 8].

There has also been considerable work on extending the clausal resolution approach
to handle logics formed by combining temporal logic with one or more modal logic. In
particular, resolution for a temporal logic of knowledge (i.e. temporal logic combined
with an S5 modal logic of knowledge) have been developed [19]. More recent work in
this area has concerned extending resolution to cope with more complex interactions
between the knowledge and time dimensions [18, 54] and application of such logics in
verification [17, 16].

1 (¬A)W l is satisfied either if ¬A is always satisfied, or if ¬A is satisfied up to a point when l
is satisfied.
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4.3 Executable Temporal Logics

In executing temporal logic formulae, we use the Imperative Future approach [4]:

– transforming the temporal specification into SNF;
– from the initial constraints, forward chaining through the set of temporal rules rep-

resenting the agent; and
– constraining the execution by attempting to satisfy goals, such as ♦g (i.e. g even-

tually becomes true).

Since some goals might not be able to be satisfied immediately, we must keep track of
the outstanding goals and reconsider them later. The basic strategy used is to attempt to
satisfy the oldest outstanding eventualities first and keep a record of the others, retrying
them as execution proceeds.

Example. Imagine a search agent which can search, speedup and stop, but can also run
out of resources (empty) and reset.

The agent’s internal definition might be given by a temporal logic specification in SNF,
for example,

start ⇒ ¬searching
search ⇒ ♦searching

(searching ∧ speedup) ⇒ �(empty ∨ reset)

The agent’s behaviour is implemented by forward-chaining through these formulae.

– Thus, searching is false at the beginning of time.
– Whenever search is made true, a commitment to eventually make searching true is

given.
– Whenever both speedup and searching are made true, then either reset or empty

will be made true in the next moment in time.

This provides the basis for temporal execution, and has been extended with execution
for combinations with modal logics, deliberation mechanisms [26], resource-bounded
reasoning [29] and a concurrent operational model [22].

5 Implementations

5.1 Clausal Temporal Resolution

The essential complexity in carrying out clausal temporal resolution is implementing
the temporal resolution rule itself. First, let us note that the Temporal Resolution rule
outlined earlier is not in the correct form. The exact form of this rule is

Temporal Resolution (full): A1 ⇒ �B1
. . . ⇒ . . .
An ⇒ �Bn

Q ⇒ ♦l
Q ⇒ (

∧n
i=1 ¬Ai)W l
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where each Ai ⇒ �Bi is a merged SNF clause and each Bi satisfies Bi ⇒ (¬l ∧
n∨

j=1

Aj).

Thus, in order to implement this rule, a set of step clauses satisfying certain proper-
ties must be found; such a set is called a loop. This process has undergone increasing
refinement, as has the implementation of clausal temporal resolution provers in general:

1. The original approach proposed was to conjoin all sets of step clauses to give, so
called, merged SNF clauses and then treat these merged clauses as edges/transitions
in a graph. Finding a loop is then just a question of extracting a strongly connected
component from the graph, which is a linear operation [60].

The problem here is explicitly constructing the large set of merged SNF clauses.
2. Dixon [12, 13, 14] developed an improved (breadth-first) search algorithm, which

formed the basis of the ‘Clatter’ prover. This search approach effectively aimed
to generate only the merged SNF clauses that were required to find a loop, rather
than generating all such clauses.

The problem with the Clatter family of provers was the relatively slow link
to the classical resolution system (which was used to carry out the step resolution
operations).

3. Hustadt then developed TRP [46]. The idea here was to use arithmetical transla-
tions to translate as much as possible of the process to classical resolution opera-
tions and then use an efficient classical resolution system. In addition, TRP used a
translation of the breadth-first loop search algorithm into a series of classical reso-
lution problems suggested in [15]. (TRP is also able to deal with the combination
of propositional temporal logic with various modal logics including KD45 and S5.)
The resulting system was evaluated against other decision procedures for this form
of temporal logic and was shown to be very competitive [46, 43].

The main problems with TRP were that it was implemented in Prolog and that
the data/term representation/indexing techniques could be improved.

4. A more recent variety of clausal resolution system for propositional temporal logic
is TRP++, implemented by Hustadt and Konev [42]. Here, TRP is re-implemented
in C++ and is refined with a number of contemporary data representation and in-
dexing techniques.
TRP++ currently performs very well in comparison with other provers for propo-

sitional temporal logic.
5. Finally, TeMP [44] is a clausal resolution prover specifically designed for monodic

first-order temporal logic [8, 50]. This utilises the Vampire [57] system to handle
much of the internal first-order proving.

Both TRP++ and TeMP are available online2.

5.2 Executable Temporal Logics

The Imperative Future style of execution provides a relatively simple approach to exe-
cuting temporal logic formulae. As described above, beginning at the initial conditions

2 See http://www.csc.liv.ac.uk/˜konev

http://www.csc.liv.ac.uk/~konev
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we simply forward chain through the step clauses/rules generating a model, all the time
constraining the execution with formulae such as ‘♦g’.

The development in this area has not primarily been concerned with speed. As we
will see below, the developments have essentially involved refining and extending the
internal capabilities of the programs and allowing for more complex interactions be-
tween programs.

Thus, the implementations of this approach, beginning with METATEM, proceeded
as follows.

1. The first approach, reported in [34], essentially used a Prolog meta-interpreter to
implement the system. The forward chaining aspect is relatively standard, and the
management of outstanding eventualities (i.e. formulae such as ‘♦g’) was handled
with a queue structure.

In order to maintain completeness (in the propositional case) a form of past-time
loop checking had to be employed. This involved retaining a large proportion, and
sometimes all, of the history of the computation and checking for loops over this as
every new computation state was constructed. (Note that this loop-checking aspect
is usually omitted from the later languages.)

The main problems with this approach were the lack of features, particularly
those required for programming rational agents, such as internal reasoning, delib-
eration and concurrency.

2. In [22], Concurrent METATEM was developed. This allowed for multiple asyn-
chronous, communicating METATEM components and provided a clean interaction
between the internal (logical) computation and the concurrent operational model.

Concurrent METATEM was implemented in C++ but was relatively slow and
static (i.e. process scheduling was implemented directly).

3. Kellett, in [48, 49], developed more refined implementation techniques for Concur-
rent METATEM. Here, individual METATEM programs were compiled into (linked)
pairs of I/O automata [51], one to handle the internal computation, the other to han-
dle the interaction with the environment. Such automata can then, potentially, be
cloned (for process spawning) and moved (for load balancing and mobility).

While Concurrent METATEM provides an interesting model of simple multi-
agent computation, work was still required on the internal computation mechanism
for each individual agent.

4. More recently, the internal computation has been extended by providing a belief
dimension, allowing meta-control of the deliberation3, allowing resource-bounded
reasoning and incorporating agent abilities [26, 29, 30].

This has led to a programming language in which rational agents can be imple-
mented, and in which complex multi-agent organisations can be developed. Recent
work by Hirsch [37] has produced a Java implementation of both individual and
group aspects, and has applied this to multi-agent and pervasive computing appli-
cations [31, 32, 36].

3 Deliberation here means the process of deciding in which order to attempt outstanding even-
tualities at each computation step.
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5.3 Other Techniques

In this section, I will briefly mention a few other systems related to temporal logic.

Induction-based Temporal Proof. As mentioned above, first-order temporal logics are
complex. In particular, full first-order temporal logic is not recursively-enumerable.
However, as we still wish to prove theorems within such a logic, we have been devel-
oping techniques to support this. Such a system is described in [5], where an induction-
based theorem-prover is enhanced with heuristics derived from the clausal temporal
resolution techniques (see above) and implemented in λClam/λProlog.

Temporal Logic Programming. Standard logic programming techniques were trans-
ferred to temporal logic in [1]. However, because of the incompleteness of first-order
temporal logics, the language was severely restricted. In fact, if we think of SNF above
then the fragment considered is essentially that consisting of initial and step clauses.
Thus, implementation for such a language is a small extension of classical logic pro-
gramming techniques and constraint logic programming techniques.

Model Checking. Undoubtedly the most popular application of temporal logic is in
model checking. Here, a finite-state model capturing the executions of a system is
checked against a temporal formula. These finite state models often capture hardware
descriptions, network protocols or complex software [40, 7]. While much model-
checking technology was based on automata-theoretic techniques, advances in sym-
bolic [6] and on-the-fly [41] techniques have made model checking the success it is.
Current work on abstraction techniques and Java model checking, such as [61], promise
even greater advances.

6 Summary

I have overviewed a selection of tools for execution and proof within temporal logic.
While this selection has been heavily biased towards those in which I have been in-
volved, several of the techniques are at the forefront of their areas. Although these tools
are generally prototypes, they are increasingly used in realistic scenarios, and more so-
phisticated versions appear likely to have a significant impact in both Computer Science
and Artificial Intelligence.
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di Siena, 2001.

47. M. Huth and M. Ryan. Logic in Computer Science. Cambridge University Press, 2000.
48. A. Kellett. Implementation Techniques for Concurrent METATEM. PhD thesis, Department

of Computing and Mathematics, Manchester Metropolitan University, 2000.
49. A. Kellett and M. Fisher. Automata Representations for Concurrent METATEM. In Pro-

ceedings of the Fourth International Workshop on Temporal Representation and Reasoning
(TIME). IEEE Press, May 1997.

50. B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Mechanising first-order tem-
poral resolution. Information and Computation, 199(1-2):55–86, 2005.

51. N. A. Lynch and M. R. Tuttle. An Introduction to Input/Output Automata. Technical Report
MIT/LCS/TM-373, Laboratory for Computer Science, Massachusetts Institute of Technol-
ogy, November 1988.

52. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer-Verlag, New York, 1992.

53. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag,
New York, 1995.

54. C. Nalon, C. Dixon, and M. Fisher. Resolution for Synchrony and No Learning. In Pro-
ceedings of Advances in Modal Logic Confernece (AiML-5), Manchester, UK, September
2004.

55. A. Pnueli. The Temporal Logic of Programs. In Proceedings of the Eighteenth Symposium
on the Foundations of Computer Science, Providence, USA, November 1977.

56. A. Prior. Past, Present and Future. Oxford University Press, 1967.
57. A. Riazanov and A. Voronkov. Vampire 1.1 (system description). In Proc. IJCAR 2001,

pages 376–380. Volume 2083 of Lecture Notes in Artificial Intelligence, Springer-Verlag,
2001.

58. A. P. Sistla and E. M. Clarke. Complexity of propositional linear temporal logics. ACM
Journal, 32(3):733–749, July 1985.



142 M. Fisher

59. A. Szalas and L. Holenderski. Incompleteness of First-Order Temporal Logic with Until.
Theoretical Computer Science, 57:317–325, 1988.

60. R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing,
1:146–160, 1972.

61. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In International
Conference on Automated Software Engineering (ASE), September 2000.

62. M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.


	Introduction
	What Is Temporal Logic?
	Some History
	Some Intuition
	Some Applications

	Where's the Difficulty?
	What Tools?
	SNF
	Clausal Resolution
	Executable Temporal Logics

	Implementations
	Clausal Temporal Resolution
	Executable Temporal Logics
	Other Techniques

	Summary


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


