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Acornerstone of autonomous-agents research is that we can model—and ulti-

mately program—such agents through the concept and principles of rational

action. In other words, agents are systems that attempt to accomplish their goals by act-

ing rationally in a shared environment. This view of agents manifests itself in many 

ways, but perhaps the most significant manifestation
is the development of rational agents that use prac-
tical reasoning to make decisions about what to do.1

Agent-oriented programming techniques seem
appropriate for developing systems that operate in com-
plex, dynamic, and unpredictable environments. Such
application areas include airtraffic control, autonomous-
spacecraft control, health care, and industrial-systems
control, all of which require dependable and, more
importantly, verifiable computational systems. We aim
to address this requirement by developing model-check-
ing techniques for the (automatic or semiautomatic)
verification of rational-agent systems written in a logic-
based agent-oriented programming language.

Typically, developers apply model-checking tech-
niques to abstract models of a system rather than the
system implementation (see the “Model Checking”
sidebar). Although this is important for detecting design
errors at an early stage, developers might still intro-
duce errors during coding.2 In contrast, developers can
directly apply our model-checking techniques to sys-
tems implemented in an agent-oriented programming
language, automatically verifying agent systems with-
out the usual gap between design and implementation.

Our approach
We developed our techniques for AgentSpeak, a

rational-agent programming language based on the
AgentSpeak(L) abstract agent-oriented programming
language.3 AgentSpeak shares many features of the
agent-oriented programming paradigm (see the “Agent-
Oriented Programming” sidebar for more information).
More importantly, it supports the principle that we can

program agents in terms of “mentalistic” notions such
as beliefs, desires, and intentions, and these mental atti-
tudes feature prominently in the language (which is
why AgentSpeak is often called a BDI language). 

Besides using some mentalistic notions in pro-
gramming the system, we also want to be able to
refer to such notions in the specifications that we
check against our agent programs. Therefore, we use
a simple form of BDI logic as our property specifi-
cation language.1 We can automatically translate this
language into linear temporal logic (LTL, the prop-
erty specification language of various widely used,
freely available model checkers) with special expres-
sions for interpreting the BDI modalities in terms of
the state of AgentSpeak agents. 

Similarly, we’ve developed techniques for auto-
matically translating AgentSpeak programs into the
model specification language of existing model-
checking systems. In this way, we reduce the prob-
lem of verifying that an AgentSpeak system has cer-
tain BDI logic properties to a conventional LTL
model-checking problem.

Avoiding the need to develop a model checker
from scratch has its advantages. Some existing model
checkers have more than a decade of continuous
development behind them. They can therefore offer
reliable implementations as well as sophisticated
techniques to cope with the substantial computational
requirements of model-checking experiments. The
idea, in this case, is to translate specific notations into
input and specification languages that those model
checkers understand.

Following that approach, and on the basis of work
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initially reported elsewhere,4 we developed a
set of tools called CASP (Checking Agent-
Speak Programs). Using CASP, we can trans-
late an AgentSpeak agent or multiagent sys-
tem into both PROMELA (the input language of
Spin (http://spinroot.com), a publicly avail-
able model-checking system) and Java. We
can then use Spin or Java PathFinder (http://
ase.arc.nasa.gov/visser/jpf) to verify our sys-

tems. JPF is an on-the-fly model checker that
works directly on Java bytecodes.2

Our approach to dependable multiagent
systems applies particularly to agents for
which precise (that is, formal) notions of
belief, desire, and intention exist. Although
they can coexist in a system, agents pro-
grammed using traditional techniques should
be verified with equally traditional verifica-

tion techniques; in particular, their properties
must be specified in plain, linear temporal
logic rather than the property specification
language we consider here.

Programming multiagent systems
A first key step in our research was to

restrict AgentSpeak to finite-state systems,
resulting in the AgentSpeak(F) language.4
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Imagine we have a logical formula, ϕ, that specifies some pro-
gram’s property that we wish to check. How can we check this
property against a program description?

One (deductive) approach is to have another logical formula,
say Γ, that exactly specifies the program (derived, for example,
through logical semantics). Thus, Γ must characterize the pro-
gram’s (possibly infinite number of) models (or executions). To
check that the property holds, we must prove that we can in-
fer ϕ from Γ. Effectively, this means establishing that the set
of models that satisfy Γ is a subset of the set of models that
satisfy ϕ. If the sets of models are infinite, this can be difficult.

If, on the other hand, we have a small (finite) set of models
(say, Σ) that represent the only possible program executions,
we only need to check that all these models satisfy ϕ—that is,
that each individual model in Σ satisfies ϕ. Because only a finite
number of such models exist, this can be checked automatically.

This (algorithmic) approach is called model checking.1 It has
been particularly successful where the programs being checked
are reactive systems and where the properties are given using
temporal logics. We can characterize model checking in terms
of the relationship between sets of models. In the case of reac-
tive systems being checked with respect to temporal formulas,
these models are infinite sequences. So, we can also character-

ize the model-checking relationship in terms of automata that
accept such infinite sequences, particularly Büchi automata.

Although model checking has been successful in several
areas, it has two key problems. First, for any nontrivial program
and property, the space required to check the property can be
very large. Second, basic model checking is restricted to finite-
state programs (in particular, programs with finite numbers of
possible executions). Researchers have been focusing on these
two problems and have recently made significant advances.
Using symbolic approaches to represent the model-checking
problem in a more compact way has helped alleviate the space
problem. Also, techniques that let the model-checking proce-
dure be applied to finite abstractions of infinite systems (see
the “Abstraction and Slicing” sidebar) allow the verification of
programs with infinite state spaces. 

(Also see the related article in this issue, “Using Model Check-
ing to Assess the Dependability of Agent-Based Systems.”)
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Model Checking

The notion of agents as rational actors is a leitmotif in auto-
nomous-agents research. In the early 1990s, Yoav Shoham
articulated a vision of programming agents that makes ratio-
nal action a first-class component of the programming model.1

Shoham envisioned systems composed of multiple interacting
agents (a “societal model of computation”), where the agents
were directly programmed in terms of mental states such as
beliefs, desires, and intentions. 

The concept shares some of the attributes of declarative
programming: instead of directly programming an agent in
terms of low-level instructions relating to its precise course of
action, we give it goals (or desires) to achieve and information
about its environment in the form of beliefs: the goals in turn
determine the agent’s intentions. The agent then makes a
rational decision about what action to perform: it behaves in
the way any rational individual would, given its beliefs and
goals. 

For example, a rational individual with a given intention
would be inclined to try again if the first attempt to achieve
that intention failed. Similarly, an agent with a particular

intention wouldn’t choose to adopt other intentions that were
inconsistent with this one. Programming an agent then amounts
to giving it appropriate beliefs about its environment and giv-
ing it some goal to achieve. 

There are several compelling arguments for this model. Ide-
ally, it abstracts away from control issues: we simply present
some goal that we wish to be achieved, and we expect the
computational system to act as a rational agent would given
such a goal. Also, because we’re used to understanding and
predicting the behavior of rational agents, the behavior of
agent programs should be relatively easy for humans to under-
stand and predict. To exemplify his proposal, Shoham presented
a prototype agent-oriented programming language called
AGENT0; researchers have subsequently proposed many other
similar languages.
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By translating multiagent systems defined in
this language into the existing model check-
ers’ input language, we could exploit the
extensive range of tools and techniques avail-
able with such model checkers.

An AgentSpeak(L) agent is defined by a
set of beliefs (ground predicates) and a set of
plans. In this language, we distinguish two
types of goals: achievement and test. Achieve-
ment goals are predicates prefixed with the !
operator; test goals are prefixed with the ?
operator. An achievement goal states that the
agent wants to achieve a state of the world
where the associated predicate is true. A test
goal states that the agent wants to test whether
the associated predicate matches one of its
beliefs.

An AgentSpeak agent is a reactive planning
system (see the related sidebar). The agent
reacts to events that change either its beliefs
(because its perception of the environment has
changed) or its goals (because an executing
plan requires the execution of another plan to
achieve a subgoal). A triggering event defines
which events may lead to the execution of a
particular plan. The programmer writes the
plans so that the addition (+) or deletion (–)
of beliefs or goals (the mental attitudes of
AgentSpeak agents) can trigger them.

An AgentSpeak(L) plan has a triggering
event that denotes the plan’s purpose, a con-
text (given by a conjunction of belief liter-
als), and a body. The conjunction of literals

in the context must be a logical consequence
of that agent’s current beliefs if the plan is to
execute. A plan body is a sequence of basic
actions or (sub)goals that the agent must
achieve (or test) when the plan is triggered.
Plan bodies refer to the basic actions that an
agent can perform on its environment. Such
actions are also written as predicates, using
special predicate symbols called action sym-
bols. We later present plans that illustrate
these notions. As in Prolog, an uppercase ini-
tial letter is used for variables and lowercase
for constants and predicate symbols.

The main difference in syntax between
AgentSpeak(F) and AgentSpeak(L) is that the
former doesn’t allow first-order terms—that
is, terms are either constants or variables. Other
restrictions—such as using uninstantiated vari-
ables in triggering events or specifying bounds
for the data structures that our AgentSpeak
interpreter uses—apply only when the target
model checker is Spin. JPF can cope with data
structures that don’t have a predefined bound.
Of course, if the model is such that the data
structures grow too much, this will prevent full
state-space search (it’s a well-known cause of
state-space explosion).

Researchers have proposed various exten-
sions to AgentSpeak(L) to make it a more
practical programming language—for exam-
ple, the construct of internal actions (some-
what similar to native methods in Java).
These are arbitrary programs that the agents

run internally (“internal” here distinguishes
these actions from those that change the envi-
ronment, thus having an effect that’s exter-
nal to the agent). Action symbols with a “.”
character denote internal actions: users can
then define libraries of such actions. The
interpreter includes a library of predefined
(standard) internal actions to account for
important extensions of the language for gen-
eral practical use (from arithmetic expres-
sions to more sophisticated mechanisms such
as dropping intentions).

The standard internal action .send is used
for speech-act-based interagent communica-
tion and is interpreted as follows. If an
AgentSpeak(F) agent l1 executes .send (l2, ilf,
at), a message will be inserted into the mail-
box of agent l2, having l1 as sender, illocu-
tionary force ilf, and propositional content at
(an atomic AgentSpeak(F) formula). To keep
things simple, AgentSpeak(F) has only three
predefined illocutionary forces: tell, untell, and
achieve. They have the same informal seman-
tics as in the usual agent communication lan-
guages. These communicative acts change
the agent’s mental state only after user-
defined functions confirm the source of infor-
mation’s trustworthiness or the rights of other
agents to request tasks.

Although we don’t provide a detailed
description of the interpretation of Agent-
Speak(L) programs, we give some related con-
cepts. Intentions are particular courses of

A key component of rational action in humans is planning:
we can generate from a goal a recipe for action such that fol-
lowing this recipe will achieve the goal. Accordingly, much AI
research has addressed the issue of automatic planning: the
synthesis of plans by agents from first principles. Unfortunately,
planning is, like so many other AI problems, prohibitively
expensive computationally. Although researchers have made
great strides in developing efficient planners, the process’s
inherent complexity casts some doubt on whether you can
use plan-synthesis algorithms to develop plans at runtime. 

Many researchers have instead considered approaches to
developing agents that use precompiled plans—that is, plans
developed offline, at design time. Michael Georgeff and Amy
Lansky’s procedural-reasoning system is a common ancestor of
such approaches.1 On one level, you can view a PRS simply as
an architecture for executing precompiled plans. However, the
control structures in the architecture incorporate additional
features that provide a sophisticated environment for runtime
practical reasoning. 

First, the architecture’s control structure might invoke
plans by their effect rather than by name (as is the case in
conventional programming languages). Second, plans are

associated with a context, which must match the agent’s cur-
rent situation for the plan to be considered viable. These two
features mean that an agent may have multiple potential
plans for the same end and can dynamically select between
them at runtime, depending on its current circumstances. In
addition, plans are associated with triggering events, the idea
being that a plan is made “active” by the occurrence of such
an event, which can be external to the agent or internal. An
example of an internal event might be the creation of a new
subgoal or a plan’s failure to achieve its desired effect. Exter-
nal events, on the other hand, are generated by perceived
changes in the agent’s environment. Overall, plans can be in-
voked in a goal-driven manner (to satisfy a subgoal) or in an
(external) event-driven manner. AgentSpeak represents an
attempt to distill PRS’s essential features into a simple, unified
programming language.
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actions to which an agent has committed so as
to achieve a particular goal: each intention is
a stack of partially instantiated plans—that is,
plans in which some variables have been
instantiated. An event, which can trigger a
plan’s execution, can be external when origi-
nating from the agent’s perception of its envi-
ronment. Or, the event can be internal when
generated from one of the agent’s executing
plans (for example, an achievement goal in a
plan body generates a goal-addition event).

In our approach, we program a multiagent
system by writing a collection of AgentSpeak
source codes (one for each agent in the sys-
tem) and the definition of the shared envi-
ronment. To define the shared environment,
we need to represent all the facts (in the form
of predicates) about the environment’s state:
we use the target model checker’s input lan-
guage rather than AgentSpeak to do this.
Each agent has its own percepts based on
sensing the environment, thus letting us
model the fact that agents might have incor-
rect or incomplete information about the
world. Agents also have a belief revision
function that generates the appropriate exter-
nal events (the perceived changes in the envi-
ronment). The available agent architecture
adopts a simple belief revision function,
unless the user provides a more specific one. 

Specifying required properties
We’ve presented a way of interpreting the

informational, motivational, and deliberative
modalities of BDI logics in terms of an
AgentSpeak agent’s state; this is based on the
operational semantics of AgentSpeak. We
use this framework to interpret the BDI
modalities in terms of data structures in the
model of an AgentSpeak(F) agent. This way,
we can translate (temporal) BDI properties
into LTL formulas.

The logical property specification lan-
guage for our model-checking approach is a
simplified version of LORA (Logic of Ratio-
nal Agents),1 which is based on modal logics
of intentionality, dynamic logic, and CTL*
(a well-known branching temporal logic). In
the restricted version of the logic used here,
we limit the underlying temporal logics to
LTL rather than CTL*, given that our target
model checkers can automatically process
LTL formulas (excluding the “next” opera-
tor �). Let pe be any valid Boolean expres-
sion in the model specification language of
the model checker, l be any agent label, x be
a variable ranging over agent labels, and at
and a be atomic and action formulas defined

in the AgentSpeak(F) syntax, but with no
variables allowed. Then we define induc-
tively the set of well-formed formulas (wff)
of our property specification language as we
show in Figure 1. 

In the syntax used in Figure 1, agent labels
denoted by l, and over which variable x
ranges, are the ones associated with each
AgentSpeak(F) program during translation.
That is, the labels given as input to the trans-
lator form the finite set of agent labels over
which the quantifiers are defined. The only
unusual operator in this language is (Does l
a), which holds if the agent denoted by l has
requested action a and that’s the next action
the environment will execute. An Agent-
Speak(F) atomic formula at refers to what’s
actually true of the environment (rather than
what’s true from the agent’s viewpoint).

The concrete syntax used in the system for
writing formulas also depends on the underly-
ing model checker. Before we pass the LTL for-
mula on to the model checker, we translate Bel,
Des, and Int modalities into predicates access-
ing the AgentSpeak(F) data structures modeled
in the model checker’s input language. An
intention requires an available applicable plan,
whereas a desire doesn’t. In BDI theory, inten-
tions are desired states of affairs that an agent
has committed itself to achieving (in practice,
by executing a plan). The term goal often refers
to a desire, but BDI theory assumes an agent’s
goals—but not necessarily its desires—are
compatible with each other.

Autonomous Mars rover: 
An illustrative scenario

Consider a typical day for an autonomous
rover such as NASA’s Spirit and Opportu-
nity, which landed on Mars in early 2004.
The ground team might tell the rover to tra-
verse toward a certain rock, place its spec-
trometer arm on the rock, carry out extensive
measurements, then perform a long traverse
to another distant rock. Before sending the
rover to Mars, the team instructs it to give

priority to rocks with “green patches,” even
when traveling to another target, because
such patches provide an interesting opportu-
nity for NASA scientists.

Also, the rover’s batteries only work when
there’s sunlight, so activities are constrained
by the amount of energy stored during the
day. The rover must transmit its collected data
back to Earth before it runs out of energy, so
it must interrupt an activity if finishing it
means the rover won’t have enough energy to
downlink collected data back to Earth.

Previous Mars exploration rovers, such as
Sojourner, didn’t have flexible control soft-
ware. Researchers have reported, for exam-
ple, that during one operation, the rover
didn’t position itself correctly to approach a
certain rock with the spectrometer arm.5 The
misplaced spectrometer meant the rover
couldn’t collect any useful data. NASA thus
lost an opportunity because the rover didn’t
revisit that particular rock. Reactive plan-
ning systems are particularly suitable for
providing flexible control for autonomous
rovers.

Here we provide some AgentSpeak plans
for the autonomous Mars rover scenario.
According to the first example, whenever the
rover believes it has observed a green patch
on a rock, unless its batteries are too low, it’ll
try to examine the rock:

+green_patch(Rock) :
not battery_charge(low) <–

?location(Rock,Coordinates);
!traverse(Coordinates);
!examine(Rock).

The rover must retrieve, from its own belief
base, the coordinates associated with that
rock (this is the test goal in the beginning of
the plan’s body), then achieve the goal of tra-
versing to those coordinates, and finally
examining the rock. Recall that each of these
achievement goals will trigger the execution
of some other plan.
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Figure 1. The property specification language used in our model-checking approach.

1. pe is a wff.
2. at is a wff.
3. (Bel l at), (Des l at), and (Int l at) are wff.
4. ∀x.(M x at) and ∃x.(M x at) are wff, where M ∈ {Bel, Des, Int} and x ranges over a finite

set of agent labels.
5. (Does l a) is a wff.
6. If ϕ and ψ are wff, so are (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ ⇒ ψ), (ϕ ⇔ ψ), always (�ϕ),

eventually (�ϕ), until (ϕ U ψ), and “release,” the dual of until (ϕ R ψ).
7. nothing else is a wff.



The next plans provide alternative courses
of actions for traversing to a certain location
that the rover must choose according to what
it believes about the environment:

+!traverse(Coords) :
safe_path(Coords) <–

move_towards(Coords).

+!traverse(Coords) :
not safe_path(Coords) <–

...

If the rover believes there’s a safe path for tra-
versing toward the given coordinates, it sim-
ply moves toward those coordinates (this is a
basic action through which the rover can effect
changes in its environment). We don’t show
the alternative plan here, in which the rover
searches for an alternative route, avoiding any
unsafe paths.

The next example tells the rover how to
examine a certain rock:

+!examine(Rock) :
correctly_positioned(Rock) <–

place_spectrometer(Rock);
!extensive_measurements(Rock).

+!examine(Rock) :
not correctly_positioned(Rock) <–

!correctly_positioned(Rock);
!examine(Rock).

If the rover believes it’s correctly positioned
to examine the rock, it executes the action of
placing the spectrometer arm on that rock
(recall that basic actions denote the hardwired
means available in the rover for changing its
environment), then achieving the goal of
doing extensive spectrometric measure-
ments. If it doesn’t believe it’s correctly
positioned, then it should first achieve a
state of affairs in which it believes it to be
so before attempting again to examine
the rock.

Next, we show examples of proper-
ties that the Mars rover is expected to
satisfy, written in our specification lan-
guage. The specification in Figure 2a
indicates that whenever the rover places
its spectrometer arm at a certain rock, it
believes it’s correctly positioned to
examine that rock.

The specification in Figure 2b ensures
that after the rover intends to transmit its
remaining spectrometer data back to
Earth, eventually it’ll no longer contain

data entries for which it doesn’t have an asso-
ciated belief saying that it has already down-
linked that particular piece of information. This
ensures, for example, that the rover’s batteries
don’t run out before it finishes transmitting all
gathered data.

Alleviating the state-space
explosion problem

Clearly, using model-checking programs
rather than design models poses significant
challenges. Because actual programs are typ-
ically more elaborate than designs, the state-
space explosion problem is exacerbated. So,
the importance of state-space reduction tech-
niques, particularly abstraction techniques
(see the “Abstraction and Slicing” sidebar), is
even greater. 

One such abstraction technique is property-
based slicing. This technique is similar to the
program slicing that software engineering tra-
ditionally uses,6 except that the slicing crite-
rion is the property we later want to model
check. As part of CASP, we’ve devised a prop-
erty-based slicing algorithm for AgentSpeak
that lets us remove agent plans that aren’t rel-
evant for model checking a certain property:
we automatically generate the relevant slice
before we translate the system.7 The system’s
model generated in this way can then have a
significantly smaller state space.

Slicing alleviates the state explosion in
two ways. First, it removes plans that can’t
affect the truth (or falsity) of the formula in
the slicing criterion. This is similar to the
motivation for removing clauses in tradi-
tional logic programs: it reduces the length
of computations of individual intentions.

For example, suppose an agent’s original

plan library doesn’t include plans that let the
rover react to possible alternative targets or
to sundown. Then the agent wouldn’t have
more than a single intention at a time. Still,
consider that the property to be checked is the
same as in Figure 2a (that is, take that formula
as the slicing criterion). Because the plans that
make the agent transmit its data back to the
ground team can only become intended after
some point in the execution where place_spec-
trometer(R) has already happened, there’s no
need to consider that part of the intention’s
execution. It won’t affect the property under
consideration (in other words, that level of
detail of the intention execution is irrelevant
for the given property). The code slice that
our slicing algorithm generates for the prop-
erty in Figure 2a doesn’t include those plans.

The second way slicing alleviates state
explosion is by removing all plans used to
handle particular external events. At any
point during the computation associated
with one intention, reachable states exist in
which other intentions (other foci of atten-
tion) are created to handle events that belief
revision might have generated. Slicing out
such plans eliminates all such branches of
the computation tree. An alternative reduc-
tion would be to avoid the environment gen-
erating such events in the first place (con-
sidering that they won’t affect the property
being verified anyway). 

The specification in Figure 2b exemplifies
this second type of state-space reduction. If
that specification is used as the slicing crite-
rion, we can safely remove the plan for react-
ing to possible ordinary targets (there’s a par-
ticular one for reacting to rocks with green
patches).

Although in this second example the
slicing appears to be minor (just one
plan isn’t included in the slice), a con-
siderable reduction of the state space
can ensue, depending also on how
dynamic the environment is. If the rover
detects (and approaches) many possi-
ble targets while transmitting data back
to Earth, this could generate many dif-
ferent system states in which the rover’s
attention is divided between two tasks
(it must deal with two foci of attention
simultaneously).

For a variation of the Mars rover exam-
ple and the specifications shown in Fig-
ure 2, we obtained average improvements
of 26 percent in terms of the time and
memory required to model check the gen-
erated slices rather than the original pro-
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Figure 2. Examples of properties using our 
specification language for the autonomous Mars
rover scenario: (a) ensuring that the rover believes
it’s correctly positioned to examine a rock before
doing so; (b) ensuring that the rover eventually
transmits gathered data back to Earth whenever it
intends to do so. (We use amr [autonomous Mars
rover] to denote the agent.)

�((Does amr place_spectrometer(R)) →
(Bel amr correctly_positioned(R)))

(a)

�((Int amr transmit_remaining_data(Day)) →
� ¬((Bel  amr data(spect,Rock,Day,_)) ∧

¬(Bel amr downlink(ground,spect,Rock,Day))))

(b)



gram. Interestingly, the slicing algorithms
available with the target model checkers we’ve
used can’t detect the opportunities for slicing
determined by the semantics of the BDI
modalities. This shows the importance of hav-
ing a specific slicing tool that works directly
on AgentSpeak code. In addition, the slicing
technique can have various other uses (for
example, understanding AgentSpeak code in
given plan libraries).

Toward dependable agent-based
systems

Multiagent systems represent an approach
to implementing distributed systems that
departs radically from traditional approaches.
In general, a much higher level of abstrac-
tion is used for such systems’ design and
implementation. The metaphors used in
designing multiagent systems do more than
just facilitate our conception of and interac-
tion with the system.

Consider, for example, one of the most
common sources of bugs in distributed sys-
tems: deadlocks or data races when accessing
shared variables. Because of the frequency
with which we find such errors in distributed
systems, researchers have put considerable
effort into practical model checkers to find this
type of bug (examples of this appear else-
where2). The multiagent-systems approach
intrinsically avoids this kind of problem.

Typically, autonomous agents in a multi-
agent system must share and compete for

resources. The usual metaphor is that certain
agents own resources (of whatever type) and
allocate them on the basis of some high-level
mechanism—for example, one inspired by
economic markets or negotiation techniques.
Whatever approach we take for agent coor-
dination, an agent’s mental state is, by defi-
nition, private. Other agents have no access
to an agent’s mental state, except through
high-level communication (based on the
speech act theory). Certainly the protocols
used—for example, in resource allocation
mechanisms—must be verified because they
too could suffer from common faults (such
as starvation). Arguably, any such protocols
that agents use can be independently checked
for properties that guarantee that no such
faults will occur. Ideally, we can expect to
find, in the near future, libraries of such high-
level agent coordination mechanisms already
verified. Multiagent-systems practitioners
could then simply use them off the shelf,
knowing their properties and the ones agents
must comply with to ensure certain proper-
ties of the overall system.

This points to a sophisticated use of com-
positional reasoning in verifying multiagent
systems. Also, internal to each agent, some
form of compositional reasoning is likely to
be appropriate for verifying particularly com-
plex agents. Recall the internal-action con-
struct in AgentSpeak that we described ear-
lier. We can give the code that implements
such actions in any programming language

and can use it to integrate legacy code. These
algorithms can be independently verified,
using traditional techniques for model-check-
ing programs, to ensure they produce the
expected results. When model checking the
agents, we’re interested only in the properties
of their high-level reasoning, which takes for
granted the details of individual actions.

So, automatic verification in multiagent sys-
tems can work on several levels of abstraction:
the level of social interactions and social orga-
nizations; the individual level where the agent’s
reasoning is targeted; and also an even lower
level concerning specific algorithms or legacy
code (in the autonomous Mars rover scenario,
this would correspond, for example, to the
image-processing software used to check for a
safe path to a certain rock). Thus, it seems that
the various levels of abstraction in multiagent
systems, which are metaphors for the various
levels in human societies, might also help in
verifying large systems. In addition, they could
provide system designers and programmers
with more natural ways of coping with the
increasing complexity of their tasks.

I t’s still far from clear whether we’ll be able
to satisfactorily address issues related to

the openness of multiagent systems (when
varying numbers of heterogeneous agents may
interact at a given time) and to evolving agents
(that is, coping with emergent phenomena).
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Model-checking performance is sensitive to a system’s state
space—large systems require more time and memory to ana-
lyze. Furthermore, with concurrent systems (for example, agent
execution environments), the state space grows exponentially
with the number of concurrent components; this is the state-
space explosion problem.

For model checking to scale to industrial-size examples, we
must alleviate the state-space explosion problem. Consequently,
researchers have proposed numerous state-space reduction
techniques for use during model checking—abstraction being
the most popular.

Abstraction can come in two forms: underapproximations
and overapproximations of the original system. The former
refers to analyzing a system that doesn’t contain all the behav-
iors of the original. In this context, any erroneous behavior
detected while model checking the abstract system is an error
in the real system as well, but not finding any errors doesn’t
guarantee that no errors exist in the real system. Overapproxi-
mations, where the abstract system contains more behaviors
than the original, preserves correctness, but an error found in
the abstract system might not be present in the original.

Slicing is an abstraction technique used to reduce the portion
of the program (system) that needs to be considered (called the
slice) to satisfy a specific criterion (for example, the portion of
the program that affects a variable’s value at a specific program
point).1 A common use of slicing is to reduce the part of the
program to consider during debugging.

Slicing can also reduce the program being considered before
carrying out model checking. For model checking, the slicing
criterion is to consider the program points that can affect the
truth-value of propositions referred to in the temporal prop-
erty being checked. This is called property-based slicing and
creates a precise form of underapproximation of the original
program. That is, with respect to the property being checked,
all the behaviors of the original program, and only those, are
present in the sliced (abstracted) program.
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However, although this area is still at an early
stage, we think that combining deductive8 and
algorithmic verification techniques (such as
those presented here) will have an important
role in the verification of such types of multi-
agent systems in the future.
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