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Abstract

Logical formalisation of agent behaviour is desirable, mally in order to provide a clear
semantics of agent-based systems, but also to provide tihedtion for sophisticated rea-
soning techniques to be used on, and by, the agents themsé&lve possible worlds se-
mantics offered by modal logic has proved to be a succegsifudwork in which to model
mental attitudes of agents such as beliefs, desires andiornis. The most popular choices
for modeling the informational attitudes involves annioigthe agent with a5 -like logic

for knowledge, or aK'D/5-like logic for belief. However, using these logics in thetan-
dard form, an agent cannot distinguish situations in whiehdvidence for a certain fact is
‘equally distributed’ over its alternatives, from situats in which there is only one, almost
negligible, counterexample to a ‘fact’. Probabilistic rabtbgics are a way to address this,
but they easily end up being both computationally and conedly complex, for example
often lacking the property of compactness. In this papempreeose a probabilistic modal
logic Pr K D45, in which the probabilities of the possible worlds rangeravénite domain

of values, while still allowing the agent to reason aboutiitdly many options. In this way,
the logic remains compact, implying that the agent still ttasonsider only finitely many
possibilities for probability distributions during a ressng task. We demonstrate a sound,
compact and complete axiomatization foy X D45 and show that it has several appealing
features. Then, we discuss an implemented decision proeéoiuthe logic, and provide a
small example.
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1 Introduction

Agent technology is increasingly used in contemporaryesyst The overall idea
is that an agent aims at maximizing its performance, basesheimonmental ev-
idence and its knowledge, or beliefs. In this context, th@asentation of beliefs
plays an important role in the agent description. This isason why, when con-
sidering the agent’s representation, the chosen formaditem characterises the
agent’s state of “mind”. And as a consequence, reasonirfgheiefs (within that
representation) becomes a crucial aspect for successfut dgsign.

One possible approach to an agent’s representation of kdgwl!(or belief) is the
use of a formal language, whose syntax and semantics arsqlyedefined. In
this way, a logical agent description and its associatecaséios are consequently
strongly linked. As information about the world may be vagueperfect, uncer-
tain, or ambiguous, agents should be able to represent asdir@inder uncertainty
in order to operate in such an environment. By consideritgraction with the
“real” world, we require agent descriptions to incorporstene elements of uncer-
tainty. Note that, in this paper, we will not consider m@gent settings, in which
agents have uncertain predictions about other agentsitanaiy.

Here we use a possible worlds semantics (also known as Ksipketures, or mod-
els [18]) as the semantical basis that characterises magiakl of knowledge and
belief, and as a means of expressing uncertainty with réspéue true state of the
world. Given a situation of a system, one could draw a map atestconsidered
possible and, consequently, be able to determine whatiesviedlin that situation.
In this context, a set of possible worlds would representiireastic possibilities.
In other words, by having worlds that are named “possible’agent expresses its
“doubts” about which is the “real” situation, i.e., its umta@nty about the true state
of the world. The more worlds an agent considers possibéeyibre uncertain it is,
and the less it believes. This is what makes possible worljlsaditative measure
of an agent’s uncertainty [14].

The most popular choices for modelling informational attés such as beliefs, in-
volves annotating the agent with/aD45-like logic [8,20]. However, when using
logics such ad< D45 in its standard form, an agent cannot distinguish situation
in which the evidence for a certain fact is ‘equally disttduxli over its alternatives,
from situations in which there is only one, almost negligibtounterexample to
the ‘fact’. Probabilistic logics (cf. [22]) and probabtiis modal logics ([12]) are
a way to address this. In particular, probabilistic logi¢koowledge and belief
([13,6,25]) aim at removing the limitations implied by cd&sal epistemic and dox-
astic logic. In epistemic logic the formalization is resteid to sentences such as
“agent knowsy” or “agent does not know”, in which no quantification of the
agent’s certainty is possible.



We present a logic that builds upon the natural frameworkrgiké models, while
allowing us to reason about uncertainty. For us it is bothartgmt and interesting
to capture, and express, the notion of degrees of uncertaititin the agent itself.
This means, intuitively, that we want to express statemigigs “agenti believes
that the probability of statemebtbeing true is greater thaxi. In this sense, the
agent can have more (or less) confidence in certain factse Bfmecifically, we in-
troduce thePr K D45 Logic which extends, in some aspects, the sysieid given
in [25] (which in turn was inspired by the logic from [9]). Weqpose not only a
complete axiomatization for the logic, but also a decisioocpdure that permits
us to verify the satisfiability o K D45-formulae. We claim thaPr K D45 rep-
resents a good candidate for representing and reasoning abcertainty within
computational agents, especially because, contrary tg mhogical approaches to
probabilistic reasoning, it is conceptually simple anddaly compact— we come
back to this in the concluding section.

This paper is organised as follows. In Section 2 we preseasaription of the lan-

guage, including basic definitions and a complete axioraatia. In the subsequent
section we provide the semantics and establish some ngitalgroperties such
as soundness, completeness and the finite model properiynplamented deci-

sion procedure for the logic is presented in Section 4. Binak consider related

work and provide concluding remarks in Section 5.

2 Logic: Language and Axioms

In this paper we introduce the logiéz K D45 , an extension of thé’=D system,
introduced by van der Hoek in [25], which in turn was inspitedthe work of
Fattorosi and Amati [9]. Thé’r K D45 basic modal operatdP~ allows us to write
formulae such a$;; ¢, meaning that the “agent believes that the probability of
being true is strictly greater than5”. The other operators (with self-explanatory
meaning)P=, P<, P< and P~ can each be defined in terms of the basic one. Since
probabilities range from to 1, and the probability of a formula is given by the sum
of values associated to the worlds in which this formula baRf is identified with

the classical modal operatér for belief.

A peculiar property of the semantics is that it only allowskmability measures (for
each world) that are in some finite base BetfThe motivation for this, as will be
explained in Section 5, is the restoration of compactnegtédogic. In Section 2.1
it will also become clear that, although this restricts @obty assignments to a
finite range, it is still possible to express and reason aaraitrary probabilities.



2.1 Language Description

The languagd. of PrK D45 (as for PrD originally described in [25]) consists
of a countable set of propositional symbols, the logicalnsmtives— andV (with
standard definitions fot_, T, A, —, «»), and parentheses. We also define a modal
operatorP;”, wherez is a rational number within the closed interj@l1].

The logic is defined relative to a finite fixed base $ewith {0,1} C F =
{zg, 21, ..., 2.} C [0,1]. Itis assumed that; < x;.1, if i < n (implying0 = z,
andz, = 1). This is no restriction on thleanguageof the logic: here, the basic
operator isP;, wherex € [0, 1], with the intended meaning d?;” ¢ being: ‘it

is believed that the probability af being true is (strictly) greater thari. From
the definition of the basic modal operat®r we derive the definitions of the other
modal operatorsi(representing an arbitrary value ovyer1)):

D1. Prp =Py ~¢

D2. Prp =Py~

D3. PSp =-P° p

D4. P-po =P, o NPy

In Section 2.2 we establish that these operators have thecedgproperties. For
instance, we show thdt=y is equivalenttd P ¢ VvV Pro).

The probability values used for assignments are taken fréimte set of rational
numbers, which we call set. This set includes the extreme valuggnd 1 in
order to reason about absolute certainty, and is moreowsedlunder restricted
(if the sum does not excedd addition— to represent reasoning about mutually
exclusive disjunctions—and complement with respedt-te to deal with negation.
The formal definition of this set is as follows.

Definition 1 A setF' is abasefor the logic Pr K D45 if it satisfies:

(1) Fisfinite;

(2) {0,1} C FC0,1];

B)r,ye Fand(z+y <1)= (x+y) € F,
A zeF=(1—-x)€f.

Let d be such that < d < 1. We say thaD is generatedy d, notationD = d, if
D ={z €]0,1] | 3k € Nx = k - d}. Not only is every generated set a base set,
but the converse also holds:

Observation 2 F is a base set iff” = d for somed € (0, 1].



2.2 Axioms and some Theorems

We do not restrict theeasoningabout probabilites to numbers frofy only seman-
tically the values for probabilites come from this set. lhatwords, even though
F'is a finite set of specific values, one can still represensfabbut numbers not
in F. So, letz andy be arbitrary values ovd#, 1] and letz;, z;; be elements of
F (0 <1 < n), the inference rulesi{l and R2) and axioms {1-A9) of Pr K D45
are defined in the following way.

R1. Fromy andy = ¢ infer (modus ponens)
R2. Fromy infer P2y (necessitation rule)

Al. All propositional tautologies
A2. Pi(p — 1) = [(Pro — P7y) APy @ — PZ) A (PFo — PF)]

A3. PP (¢ — 1) — (PZp — P2y (Wherey < x)
A4. Py
A5. P7  (pVih) = (PreV PY) (wherez 4+ y € [0, 1))

A6. PE—(p A1) — ((PZp A P2y) — P2 (o V1)) (wherex + y € [0, 1])
AT. Pryp = Pr ¢

A8. (Py Pzp — PZp) A (FPy Pr¢ — P=o)
A9. (PZyp — PEPZ¢) A (PSp — PEPSp)

We say thatPr K D45 F ¢, if there is a proof forp, using the axioms and inference
rules of Pr K D45, and in such a case we say thais derivable According to the
first axiom, all the propositional tautologies are part & flystem. The axiom42-
AG all reflect basic properties of probabilities. Axiom8 and A3 assume a certain
implication: it has probability 1. Given tha#l2 expresses that any probability for
the consequent is at least the probability of the antecededtthat ‘greater than’
implies ‘at least’. AxiomA3 says that the probability of the consequent is greater
than any number that is smaller than the lower bound for thecadent. AxiomA4
guarantees that no probability is negative, atidguarantees that the probability
of a disjunction is obtained from the probability of its disgts. By AxiomAG we
have that the probability of a disjunction of mutual exchesassertions is at least
the sum of the individual probabilities of those assertions

Axiom AT reflects the peculiarity of having a base Beit says that, if a probability

is bigger than a certain value i, it must be at least the next value. In other words,
it enforces that arbitrary values collapse to the valuesgmein F. Axioms A8

and A9 are new w.r.t. [25] and emphasize the relation with the mamtat K D45,
making our agents doxastically introspective. (This wél imade precise later in
Theorem 5.) AxiomAS8 denotes that, if the agent assigns a positive probability to
some probabilistic judgment, then it incorporates thiggjuént. AxiomA9 states
that the agent is absolutely sure about its own probalailistliefs.



To highlight the use o K D45, we present a simple planning example proposed
in Kushmericket al. [19] and show howPrK D45 can be used to specify and
reason about its properties.

Example 3 (Robot With a Bomb) The example is described as follows. A robot
is given two packages, and told that exactly one of them amtabomb. It needs
to defuse the bomb, and the only way to do so is to ‘dunk’ thkgegeccontaining
the bomb in the toilet. Placing a package in the toilet migt# \ve consider here
with probability0.1) ‘clog’ the toilet, and that is to be avoided.

Suppose both goals are desired, i.e., we want to defuse biodritesve an unclogged
toilet. Furthermore, assume that we want this to happen wittbability at least
0.8.

Using the predicate’ in( Package, Bomb), dunk(Package), andclogged( Toilet),
a possible specification would be:

A. in(packagel, bomb) < —in(package2, bomb)
B. Piin(packagel,bomb) N\ Pysin(package2, bomb)

C. One valuation chosen among the following:
(1) —dunk(packagel) A =dunk(package2)
(2) —dunk(packagel) A dunk(package2)
(3) dunk(packagel) N —~dunk(package?2)
(4) dunk(packagel) N\ dunk(package?2)
D1. —dunk(packagel) N\ —~dunk(package2) —
P (—defused(bomb) N P-—clogged(toilet))
D2. —dunk(packagel) A dunk(package2) —
Pis(—defused(bomb) N\ Pyy—clogged(toilet))
D3. dunk(packagel) N ~dunk(package2) —
P55 (—defused(bomb) N\ Py y—clogged(toilet))
D4. dunk(packagel) A dunk(package2) —
P (defused(bomb) N\ Pyg—clogged(toilet))

E. Pg(defused(bomb) A =clogged(toilet))

We now demonstrate some properties that follow from defingiand axioms pre-
sented above. All proofs are to be found in Appendix A, un&tated otherwise.

Lemma 4 The following theorems are derivable froRy K D45. A proof is to be
found in [25]:

L1. PSy
L2. Pfy < P~y

2 Although we use predicate symbols for brevity, the exampleurely propositional.



Theorem 5 Define thebelief operator ‘B’ using By = PZ¢. Based on this, we
can infer the following.

a) All K D45-properties ofB are derivable inPr K D45:
1) ¢ =F By
(2) F B(¢ — ) — (By — BY)
(3) - By — BBy (from A9)
(4) F =By — BBy

b) We say that a formula i is modalif it is built from atomic propositions, using
only the logical connectives and the modal operatbrWe claim that, for all
modal formulaey, PrK D45 & ¢ iff KD45 - .

Below we present some further theoremsifK D45 (Proofs are to be found
in [25]) since Pr K D45 extendsPr D, the proof is similar to that in [25]. In our
schemesg, y represent arbitrary values oviér 1|. We also define:

Vet o2 me) = e)AC N\ (i Apj)))

i 1<i<j<k
Theorem 6 For all ¢, ¢ in the language and alt € [0, 1]:

T1l. Pro < (PyoV Pro) APy — (PpV Pro)

T2. 7(P7 o, Py, Pro)

T3. (P AP y) (y # x)
T4, (=Pro < P7o) A (—P;¢ < Pro)

T5. Pry < (PZo A Pro)

T6. P — Py (y <)
T7. Px:gp <—>P1:_x—|g0

T8. (PF—(o AY) A Pro) « (P — Py (o V1)

Recall that our logic is based on a finite set of probabilitiyea F'. Although the
use of a base set may seem restrictive, we have seen that AXioemsures the
possibility of arbitrary values being used. In additiore tbllowing lemma shows

a benefit of having a finite basé: we can express, in the language, that every
formula has a probability. The proof is again similar to oneg in [25].

Lemma 7 Forall ¢ € L, the following is aPr K D45-theorem:
V(Poe. Pro, ..., P o) whereF' = {0 = zg, 1, ..., x,, = 1}

3 Semantics and Properties

Formulae are interpreted &robabilistic Kripke Models oveF’ (or Pk D45 mod-
els). PZy is true at a worldw if the probability values assigned to the possible



worlds that verify,, sum up to at least.
3.1 Semantics

The classical Kripke model semantics refers to a collectbpossible worlds.
Different worlds may have different interpretations fontances. A probabilistic
Kripke model adds the concept of a probability distributiorthe picture of pos-
sible worlds. That is, there is an assignment of probabu#iues to the set of
possible worlds in accordance with the formulae specifieatuhally, once those
worlds model sentences of the language, we have an assigofrignbabilities to

the sentences themselves. In our case, assignments aréegrover /', meaning

that probability values assigned are in the assumed base set

Definition 8 For each base set, R/ D45 is the class of all models! = (W, Pg, )
for which:

e IV is a non-empty set (of worlds)

e PrisafunctionPr : W — F, satisfying )~ Pp(w) =1
weW

e 7is avaluation:lW x L — {true, false}

The truth definition for formulae is inductively defined as:

) &= p iff 7(w,p) = true, for atomic sentences

) |~ iff not M |= ¢

)JEeAViff M=pandM =4

JEPZeif (Y Pe(w) >
{w|(Mw")=¢}

(M, w
(M, w
(M, w
(M, w

Y

Here, M |= ¢ is short forvw € W, (M, w) = ¢, and Pr K D45 = ¢ abbreviates
that for eachPrX D45 model M, we haveM = ¢. In that case, we say that is
valid.

In contrast to the definition of» found in [25] which allowed different sets of
worlds to have different probability distributions, theopability distribution we
define here is independent of the world. This topic is disediss detail later, in
Section 3.3. Figure 1 shows an example of a probabilisticehod

One can relate this semantics to a more standard Kripke sm$1aa follows. Given
M = (W, Pp, ), first choose an arbitrary world in the setl” of the model)M.
Then, letW’ be{w} U {w' | Pr(w’) > 0}. Finally, defineR’(x, y) if, and only if,
Pr(y) > 0,i.e.,aworld is accessible (from any world) if, and onlyiti§,probability
is positive. LetM, = (W', R, ') be the model thus obtained, with being the
restriction of 7 to W’. The following (we omit the proof, but it follows directly
from Theorem 5) gives a semantic motivation for coining ogtemPr K D45:
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Fig. 1. An example of a probabilistic belief modgk: + ps + p3 = 1.

Proposition 9 Given aPr K D45 modelM = (W, Pp, w) and aworldw, let M/, =

(W', R', 7"} be obtained as described above. Moreover, let a purely modadula
from Pr K D45 be a formula in which all modal operators af&~ or, equivalently,
B. Then:

(1) for every purely modal formula, we have M, w) = ¢ iff M, w | ¢;
(2) the accessibility relatioi’ is serial, transitive and Euclidean.

Note that these are precisely the properties of model& x5 modal logics [20].

3.2 Logical Properties

In Section 2.2 the axiomatic system Bf K D45 was presented. This system is
soundwith respect to the semantics of Definition 8 if, for al]lwe havePr K D45 +

¢ = PrpKD45 | ¢. In other words, what is derivable is valid. Conversely,
Pr K D45 is completef the implication holds in the other direction. In other wisy
what is valid is derivable.

Lemma 10 (Pr K D45 Soundness)For all ¢: Pr K D45+ ¢ = PrKD45 = .

The completeness property refers to the opposite direddaning a complete sys-
tem ensures that valid sentences are derivable from theythBoe completeness
of Pr K D45 is what we show next. Lebt be a consistent formula df- K D45 i.e.,
PrK D45t —p. Let U be the set of sub-formulae gfclosed under single negation
and satisfying, for any~ within {<, >, <,> =}, (P;y € V) = {P_¢ | z; €
F} C . We will now show how to construct a model that satisfresGiven a
set of formulasj, a set¥ is A-maximal consistent ifi) ¥ C A, (ii) X is con-
sistent, and, finallyiii) fornod € A\ ¥ is ¥ U {J} consistent. In wordsZ is
a maximal consistent part &f. With ¥ being finite, say¥| = k, we can define
the U-maximal consistent sets &s, 1, ...,I',,,n < 2*. Let v; be the conjunction
of formulae inl';,7 < n. LetV' = ¥ U {P; |z € F, ¢ < n}. The following is
standard, and is not specific for our logic; we omit its proof.



Proposition 11

i. B (v Av;), wherei # j;

i F (V. V )

0. F 1 < Y1 V... Vg, Whereyy, V...V vy, are exactly those’s which contain
1 as a conjunct, for eachr € W.

Since ¢ is consistent and hence there is at least bpesuch thaty € T, as
{¢} = %, can be extended to®-maximal consistent set in a finite variant of the
Lindenbaum construction, [1, p. 197] (enumerate the mesntlel asvq, . . ., ¢y,

let ¥4, beX; U {¢} if the latter set is consistent, else pot,; = X;; finally,
putl’; = I', = I';). Given thisT',, we construct a seb O I',, as follows. From
Lemma 7, we know that for every consistent Beand formulaz), at least one set
of the sequence (1) is also consistent:

CU{F}, DU P}, ... T U (P v} T U{PCY) (1)

Now, we obtain® from I, as follows:

(1) letd, =T, (this set is consistent);
(2) fori = 1 ton, we know that there is someec F such thatb;, ; U {P~~;}
will be consistent, and we make the corresponding choicé for

We letd be ®,,; this is a consistent extension Bf, which contains a probability
in F for every “world” T"; (: < n). We are now ready to define our canonical model
Me = (We, P&, ¢ as follows:

(1) We = {T,} U{L; | Ir > 0 P=; € D}

2) (Pp(ly) =r) & (Prvi € ?)
@) 7(l's,p) = (peT)

Proposition 12 The modelM/€ is indeed aPxX D45 model.
This all leads us to the following coincidence lemma.
Lemma 13 (Coincidence)For all » € W andI’ € W¢, M T = iff € T

Now completeness follows immediately, we only sketch treofprif Pr K D45 t/

v, then—yp is consistent and, by the Coincidence Lemma,is satisfied in\/¢, T’
for some sel’, and henc® K D45 (£~ ¢. Also note thatV/¢ is a finite model, which
follows from the fact that it is constructed for a givenwhich has finitely many
propositional atoms and, moreover, the Bes finite, and hence the probabilities
assigned byPs have a finite range.

Theorem 14 (Soundness and Completeness, Finite ModelBdr any formulap,
we havePrK D45 = ¢ iff PrK D45 - ¢. Moreover, every consistent formula has

10



a finite model.

Observation 15 If n is the number of atoms occurring ity and f the cardinality

of I/, itis easy to see that there are at mpst /2"~ pairs (M, s) = ((W, Pg, ), s)
that we need to consider fgr's satisfiability: there are2” different valuations as
candidate for the current state and we can add all those different valuations to
W. The model is then determined if we have fixed a probalflityw) for every
valuation inw, but the probability of the last of those is determined omeerob-
ability of the others is fixed. For eaah € W except the last one, we can make
different choices foPr(w). The modelM can possibly be smaller by deleting all
statesw from W for which Pr(w) = 0.

3.3 Nested Beliefs

ConsideringPr K D45 as a language for representing properties within indiMidua
agents, we next show thaestedbelief formulae can be removed, i.e., any nested
belief formula is equivalent to some formula without negtifirst we show that
the truth of probabilistic formulas is independent of the'ld@f evaluation.

Lemma 16 Let M = (W, Pp, w) be aPrK D45 model.
Then,[3w € W(M,w) £ PZ3] & [Vu € W(M,u) E PZ4).

We are now going to show that nested beliefs are superfluoud; K D45. This
result is a generalisation of [20HEOREM 1.7.6.4], where it is proved fa¥5. This
means that that result still goes through when weakenindptiie to K D45, and
even when having probabilistic operators.

Definition 17 We say that a formula is in normal formif it is a disjunction of
conjunctions each of the form
0 =wWAPZBL NPy N ... NPZ By NP ay AP as A... AP ay,

1 1

wherew, 3;, o, (¢ < n, 7 < k) are all purely propositional formulae. The formula
0 is called the canonical conjunction and the sub-formufag_a@i and P;,ozj are
called prenex formulae.

Lemma 18 If ¢ is in normal form and contains a prenex formulatheny) may be
supposed to have the formv (A A o) wherer, A ando are in normal form.

This lemma guarantees that prenex formulae can be moved tmtermost level.

Lemma 19 (Removal of Nested Beliefs)We have the following two equivalences
in Pk DA45:

E PZ(mV(AAPZB)) < (PZ(mVA) APZB)V (Pim A=P7p3) 2)

11



= PZ(rV (AAP;B)) — (PZ(mVA)AP;B)V (Pim A =P j3) ©)

From this result it immediately follows (proof is omittediat we can bring all the
probabilistic operators to the outermost level, giving us:

Theorem 20 Every formulay is equivalent to a formula), in normal form, i.e., a
formula without nesting of probabilistic operators.

Intuitively, having nested beliefs being reduced to a nested formula corre-
sponds to the ideal rationality feature of the agents we aigtesign. That is, an
agent that is certain about its own uncertainties.

For instance, suppod& . ThenP~ Pir, and hence’~ (P V PyLq). If we as-
sume thatProb(r) # 0.8 andProb(q) # 0.2, thenProb(r) = R andProb(q) = Q
for someR (different from0.8) and some) # 0.2. Consequently, it is everywhere
the case thal’~(Pzr Vv P;q). Moreover, Py~ Py and Fy~ Py ,q would hold, and
hence the probability of their disjunction is aléo

Hence we do not model situations in which, for example, amtlgas a fair coin
with probability 0.5, and an unfair one (e.gEFrob(head) = 0.8) with probabil-
ity 0.5, and it is then able to reason about the probability of thesibtes coin
toss outcomér. In short, P (Pysh) A FPis(FPsgh). In fact, a formula such as
Pi(P5shead) is always false in our semantics. This is so because thernagr
probability in this case must always be eitleor 1, once the probabilities are as-
signed by one and the samperfect reasoneagent. Therefore, what weanmodel

is the uncertainty of an agent who knows that the coin tosgmtitn mentioned
above reduces t&rob(h) = 0.5(0.5 + 0.8) = 0.65.

4 Decision Procedure

We now describe a practical decision proceduredpk D45. This procedure aims
to find a finite model for the agent’s specification. That isegi the agent’s de-
scription (as a set of probabilistic formulae in the lang)aghe objective of the
decision procedure is to determine a set of probabilityeslinat can be assigned
to the set of possible worlds in order to satisfy the givemfialia, if such a set of
values exists.

According to thePr K D45 semantics, we know that. ¢ holds if the sum of all

the accessible worlds that satisfyis (strictly) greater tham. In other words, each
probabilistic operator imposes a restriction on the vathes can be assigned to
the worlds that satisfy the formulae it describes. As a cgueece, having a set
of probabilistic formulae is like having a set of constraintver the values to be

12



assigned to the possible worlds. This gives us a hint of hoiwmple decision pro-
cedure might be produced — by translating formulae into atatimerical con-
straints on the possible valuations for propositions aed thvoking an appropriate
constraint solver.

Thus, given a finite set aPr» K D45 formulae, we generate a finite set of constraint
(in)equalities. The components of the inequalities regmeall the possible truth
valuations of the propositional symbols, and it is to thoseponents that proba-
bility values (that express the graded beliefs of the agaethssigned. Solving the
(in)equalities produces, as a result, the set of valuesctirabe assigned to the set
of possible worlds in order to satisfy the formulae presgén@onsequently, once
we have generated all the constraints for the formulae iispleeification, we send
this set of constraints to an appropriate solver. If the esobucceeds in finding a
solution, this gives a set of probability assignments tostiteof possible worlds; if
the solver fails, no such assignment exists.

The approach can be summarized via the diagram in Figurei thie algorithm
comprising the decision procedure is given in Figure 3.

P KD45 translation
F

> constraints

formula
semantic probability
i ; values
interpretation
T Decision
Probabilistic y
del robabilit procedure
o P y model

assignment

Fig. 2. Relation betweeRr K D45 and decision procedure.

How are the in-equalities generated from a given formylaf which the satisfia-
bility is to be tested? First of all, we know from Theorem 2@ttlve may assume
that o has an equivalent normal formm = §; vV ... V §,,, where every formula
is of the formw A P25y A PGB A ... A P73y N PZan A PLag A ... AP ay.
All the formulasw, 5;,; (i < n,j < k) are propositional. Iftv has a proposi-
tional model, this is a candidate for the statéhis is line 11 of the procedure)
for the pair(M, s) that we are after. Moreover, eagélgives rise to a set of con-
straintsCon(At(p), F,{P;f1,..., P b, P;a1,..., P, a;}) as follows. At(y)

is the set of all atomsg, ¢, r, ... occurring inp. Put everys; anda; into Disjunc-
tive Normal FormDN F(3;) and DN F'(«;), respectively, where each atom from
At(y) is used. For instance, if, = pV ¢, andAt(p) = {p, ¢, 7}, thenDNF(;) =
(pAGA=T)V (=pAgAT)NV (PA=GA=T)V (DA=gAT)V (PAGA=T)V (DAGAT).

Now, let us take this example witht(¢) = {p, q,r} andg; = p Vv ¢ a little further.

Con(At(p), F,{PZ i, ..., P fn, P7aq,..., P, a;}) consists of the following
inequalities, where (*) is an overall-constrairfi,. . . f; are F-specific constriants,
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andC'(P; ;) is generated by 5;; similarly for C(P; o).

() p0qlr0 + pOglrl + plqOr0 + plgOrl + plglr0 + plglrl = 1
Jo p0q0r0 e F
7 plqlrl € F

(C(P;)Bi) plgOr0+ plqOrl 4 plglr0+ plglrl 4 pOqlr0 + pOglrl > =

(C(P;ay)) -.. > K

Ky

Think of an expression such a8q0r0 + p0gOrl > p as the constraint that the
probability of those worlds satisfyingp/A—q must be greater tham The constraint

(*) expresses the fact that a tautology should have proibabil but also that there
are no other worlds than those satisfying one of the comibinsitappearing as a
term within it.

We now establish correctness of the decision procedure.alfm by noting that,
if a PpK D45 formula is satisfiable, then any model produced must satiséyof
the constraint setS; generated by the procedure franoutlined above.

Lemma 21 Given aPrK D45 formulap, and a translation of the formula into a
classC of sets of constraint§’;, one for eachy; in ¢'s normal form (as described
above), then is a model fory if, and only if, M is a solution for a solvable set
of constraints” € C(y).

Given the particular form of linear inequalities generataadd the fact that con-
straint solvers exist for such constraints, we also havéaifeving result.

Observation 22 A solution for any set of constrain€s will be found if one exists.

Note that it is guaranteed that the solver finds a solutiothefe is one. That is,
solving a finite set of constraint (in)equalities over a @rsetF’ of probabilities is
a decidable problem.

Given these results, the correctness of the decision puoeesl straightforward.

Theorem 23 (Decision Procedure)A formulay in Pr K D45, over the base séf,
is satisfiable if, and only if, our decision procedure genesaa model forp and,
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PrK D45 decision procedure
Input  PrK D45 formulae.

Output “yes, (M, s)” for some (M, s) such thatV/, s |= ¢ if it exists

“no, " if ¢ is unsatisfiable.

1. function dec(yp) returns “yes, (M, s)” or “no, ("

2 let At(¢) be the set of atomsin ¢

3 lety =6, V...V, bethe normal form of ¢

4, //*=we find ¢ using (the proof of) Theorem 20

5. i=1;

6 found := false

7 // *=found = nodel for ¢ has been found

8 while ((i < m) and (not found)) do

9. let 6; = w A PZ 31 APZBa Ao NP2 By A PZan AP an A AP ay,
10. if w has a propositional model 7 then

11. let s ;== m;

12. let C; = Con(At(p), F, {P%ﬂl, . ,anﬂn, PZay,...,P;og})
13. // *xcf. page 13

14. apply the constraint solver to C;

15. if this has a solution then

16. read off M from it

17. found := true

18. end-if

19. end-if

20. =i+l

21. end-while
22. if found then

23. return “yes, (M, s)”
24. else return “no, ("
25. end-if

26. end-function

Fig. 3. A decision procedure fdPr K D45.
conversely, every solvable sétin C corresponds to a model fas.

Example 3 (Continued) Depending on the action taken (valuation taken for both
dunk(packagel) and dunk(package2)), the last sentence causes (or not — when
D4) the set of probabilistic beliefs to be unsatisfiable. Inevtivords, what we can
show is that there are¢ possible cases3 in which the set of beliefs is unsatisfiable

—dunk(packagel) N ~dunk(package?2),
—dunk(packagel) A dunk(package?2),
dunk(packagel) N ~dunk(package2)
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and one that shows a consistent set
dunk(packagel) A dunk(package2) .

The implemented decision procedure automatically finde saumonsistent set, in-
dicating how the action of the robot can be planned.

Of course, the number of models that we mention in Obsenvdttois huge, and
indeed, finding a model for a formula (if it exists) is NP coetpl This follows from
a an observation in [11] aboumteger Programmingas which our satisfiability
problem can be phrased.

Definition 24 [11, p. 245] The following problem is called Integer Programmg.
INSTANCE. Given are the following. A finite s€tof pairs (7, b), wherez is an
m-tuple of integers and is an integer, anm-tuplec of integers, and an integds.
QUESTION: Is there am:-tuple of integers such that - 3 < b for all (7,b) €
X and such that - 7 > B (where the dot-product - 7 of two m-tuplesu =
(ur,ugy ..., Upy) @NAT = (v, v, ..., vy) IS given by> " | w;v;?

Theorem 25 [11, p. 245] The problem of Integer Programming as defined & D
finition 24 is NP-complete.

Recall how we assume our formutao be in normal form) = 6, Vv...Vé,,, where
eachd; is of the formé; = w A P31 A P By A ... A P73, A PZay AN P o A
... N PZ a. We now argue how finding a solution for the inequalities icetliby
0; (that is, stepd.2- - 14 in our procedure) is an Integer Programming problem.

First of all, the dimensionn of Defintion 24 is going to b&", wheren is the
number of propositional atoms in, say these atoms ag#, . .. p". We know from
Observation 2 thaf’ is generated by somé that is, " = {0,3,2,..., 4}. Now,
every entryy; in 7 corresponds td - P;, whereP, is the variablepip . .. pg~'pz,
Py =pipd ..oyt Pa = pipd - - . i~ vy, etc. Now consider a subformulze 3
in A;. We knowy is a rational number, say = ;. The constraint thaP$6 gives
rise to looks like

7 n S
b BB et b gl 2 @

Where eaclk; is either 1 (if the corresponding disjunct occursinV F'(3)) or O
(otherwise). Equation (4) is equivalent to

tod ko py...ph+...+t-d kom-pr...pl>d-s (5)

and hence, for eacR 3, we add(z,b) to X, With T = (¢t - d - ko, ..., t - d - ko)
andb =d - s.
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Next, for every subformul#®: «, the constraint that we would obtain looks like

ko po...Dy+ ..+ ko pi...pf >« (6)

where, as beforé;; is 1 if the corresponding disjunct occursdnand O otherwise.
But since we know that each value @iﬁng ...p% isamultiple ofd, the left hand
side of (6) must also be a multiple éf Hence, letv. be the smallest element i
for which a. It is easy to see that, given that each varigBle?, ...p? must be
in F', equation (6) is equivalent to (7), and we can proceed to addraber(z, b)
to X as we did above.

ko -ph.. .08+ ... +kon-pi...p}>az (7)

Finally, we address the overall constraint (*):

n—1,n

(%) d-pipd...p0 P +d-pipd. . PP 4 4+ dplpt. T =d

For this constraint, we ad@t,b) = ((1,1,...,1),d) to X, and we choose also
c=(1,1,...,1)andB = d.

Itis easy to see that this shows that the question whéthewAP; 31 AP G A...A
anﬁn N PZai NP oy A... A\ P; oy, can be made true by assigning probabilities
in F' to each combination of propositional atoms, is equivalerthe translated
Integer Programming problem.

Admittedly, Theorem 25 together with the observations abonovide a negative
result for our decision procedure: even solving the comgidor the probabilistic
part is NP-complete, and, obviously, to check whether t@gsitional part of the
given formula (sted 0 in our procedure) is also NP-complete. We have not, looked
into whether there are ways to cope with this NP-completenas what wedid
do is implement a toy system that finds a model for a formul#,hbs one (see
[3]). The development of ouPr K D45 decision procedure involved Prolog pro-
gramming, making use of Sicstus Prolog v3.12.2 and its Ihimadulecl| p( FD) ,

a constraint logic programming solver over finite (integdonains [2]. In short,
we have an executable module that receives, as input, a pedlodbilistic belief
formulae and outputs all the possible probability assigmséhat satisfy the re-
strictions that those formulae impose. Furthermore, we @lsvide as input the set
F that should be considered for that particular set of formula

Further development of the system incorporates also teshpperators allowing

us to reason also about (discrete) time information ([3H4fwever, this is a story
to be told in detail at another occasion.
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5 Conclusion

We have shown how th&r K D45 logic preserves important results about sound-
ness, completeness, and decidability of its predeceBsdr [25]. We have also
presented new results about nested beliefs, and a desorgoid implementation
of a decision procedure for the logic. A brief example wasduseshow how the
language can serve as an appropriate agent specificatiguelge.

Our logic is conceptually simple ambmpact Compactness refers to the fact that a
set of sentences is satisfiable if, and only if, every sublséisatisfiable. Logics
that allow us to express th&rob(y) ~ r are, in general, not compact, witness the
set of premise§

{Prob(q) >a|aecQni0,1)}

Then, obviously, we havE = Prob(q) = 1, but there is no finite subset dfthat
proves this conclusion. This has a computational counterpanechanical device
verifying whether a set of premisé$’rob(¢) ~ r} is satisfiable inQ N [0, 1], in
principle has to check an infinite number of assignments obabilities to for-
mulaep. For these reasons, we assume that the range of allowedgiitesis a
finite setl” C [0, 1]. Thus, the compactness of our approach has benefits, dfpecia
with respect to computational tractability aspects. Téis decisive feature consid-
ering our aim of having”r K D45 as part of our executable framework for agents.
A logic similar to ours (but also allowing predicates) andhithe same motivation
was presented in [24]. Its semantics is based on measuresspa all formu-
las are interpreted on a set (of what we call states) — eveprtpositional ones.
Decidability is reduced “to an easy problem of linear prognang, which can be
easily solved” ([24, p. 3]). We are more explicit about thenpdeteness proof and
the algorithm to find a model.

Although the use of the set basecauses logical restrictions, it is possible to high-
light some interesting aspects (cf.[25]). For instanceyeftake " = {0, 1}, we
have the classical modal logic. Having Driankov’s lingitisistimates (as in [5])
impossible, extremely unlikely, very low chance, smalhckait may, meaningful
chance, most likely, extremely likely, certavould be modelled by a 9-elemenht

And the same analogy can be used for any finite range of vabugs assumed. In
other words, the granularity df can be chosen according to the intended agent’s
application.

Pr K D45 is a system that combines logic and probability. In this egit$s related
to other work that showed how this combination would be gmesn alternative
ways [17,10]. One of those possible approaches is the netatpon of the modal
belief operator according to the concept of “likelihoodia$16]. In this logic, in-
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stead of using numbers to express uncertainty one woulddqwessions like

is likely to be a consistent hypothéssince a state is taken as a set of hypotheses
“true for now”). That is, a qualitative notion of likelihoaaf events rather than ex-
plicit probabilities. A more detailed comparison betwelea notions of likelihood
and probability can be found in [15].

The Pr K D45 logic was designed for reasoning with (exact) probabgitend its
Probabilistic Kripke Model semantics is similar to the onmegented in [7,6]. In
those formalisms, a formula is typically a Boolean comboraiof expressions
of the forma,w(ypy) + ... + a,w(p,) > ¢, whereay, ..., a,, c are integers. The
system in [7,6] includes, as axioms, all the formulae of dinamequalities, and
consequently, their proofs of completeness to rely on tesualthe area of linear
programming. Our logic is conceptually simpler. Furthereyan Pr K D45 we can
express statements such gsi$ true, although its probability is less than1”,
something that their formalism is unable to represent, dheg do not allow -
free formulae”. The paper [13] is close to ours: it also cdess a fixed probability
for the agent that does not depend on the current state, entifids a probability
of 1 with belief.

Another approach can be found in [21]. The probabilististgnic logic used there
is a special case of the one presented in [6]. The additi@zufe in Milch and
Koller's work is the fact of having an algorithm for findingetprobability of the
defined formula model using Bayesian networks. This alldvesrt to model the
formulae without constructing the probabilistic epistermodel explicitly. That
is, there is no explicit representation of an agent’s prdivallistribution, or enu-
meration of states/worlds. This is possible once it is agglithat agents have a
common prior probability distribution over outcomes ane€lithbeliefs differs only
by different observations.

Finally, Pr K D45 differs mainly from other systems for representing beleafisl
probability by allowing only a finite range of probability s, an assumption
that at the same time imposes restrictions about the vahstscan be assigned
to the possible worlds and permits the restoration of cotmess for the logic. In
[23], Ognjanovit and Raskovit present a probabilisigi¢ suitable for describing
events in a discrete sample space. Informally, their bgséraior expresses that
the probability of a certain event is in a particular set, arointuitively similar to
ours.

In summary, we have a language that is conceptually simpleampact. Besides,
by having an implemented module for deciding the probabditribution to the
possible worlds, we have shown how that the language is anfaveol not only
for theoretical reasoning, but also for effective impletagion of computational
agents that deal with uncertainty.
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A Proofs

Proof of Lemma 4:

L1. ~Pf¢ =ps P~ =py PPy
=D1 —\Pozﬁgp =4 L
L2. P12<p =71 Plzgo A\ Plggo =p1,p3 7 Fy ¢ N =Fy—-p
=p2 "PSp AN =P =py PTyp
Pro =ps~Pro A =Pro =a Py

>
=pe Py =p1 Pre
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Proof of Observation 2: From right to left is obvious, so supposeis a base set.
Letd = min{y —z | z,y € F,y —x > 0}. That is,d is the smallest positive
difference between any two membersiafLet x andy be elements of” for which
d = y— z. SinceF is a base(l — z) € F and, since) < d < 1, we have
1—de[0,1),and hence + (1 —z) =1 —dis alsoinF. It follows thatd € F,
and hence alk - d < 1 are such that - d € F. But also, these must make ap
elements inF’, since if for somef € F, f would not be a multiple ofl, we would
either find ak suchthat: - d < f < (k+1)-dorabiggest withk-d < f < 1.In
both casesf — k - d would be smaller thad, which is in contradiction with how
is choosen, i.e., as the minimal distance between two menabér. O

Proof of Theorem 5:

a) All K D45-properties ofB are derivable inPr K D45:

1) F¢ =F By (directly from R2)
(2) F B(¢ — ¢) — (By — BY) (from A2)
(3) F-BL:
By R2, we have that PP (L — 1) ()
PPl =wm PELAPT(L— 1)
=43 Py L =po PST

= A0 —\(—\P1<T A —\P1>T) = D4 —\P1:—|—

=nror2 L
(4) - Bo — BBy (from A9)
(5) - =By — BBy
- By = —\Plzap = Py —p
= a7 Pr - = A8 PFPEWP

=nre Pr P5—p A PE (=g — =)

= a3 P{ PZ—p A\ PP (PZ—p — Py =)

= A2 P1ZP0>TO = B-Byp
b) The <’ part follows from itema above; the =’ part will be obvious from the
semantics forPr K D45 given later, together with the soundnessiofi D45
and the completeness afD45.

Proof of Lemma 10: It is straightforward to check that all the axioms are valid o
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PrK D45 and that the inference rulésl and R2 preserve validity. O

Proof of Proposition 12: We have to show thaPs({T" | T' € W¢}) = 1. We will
show that the following variant of AxiomA6 is derivable:
A6 Pr=(p ) — (PR APy) — Py (@ Vo)) (wherez +y € [0, 1))

OnceA6’ has been established, we reason as followsre¢ such that, (v;) €

®, i.e., Pi(I;) = r;. By Lemma 7 andI'3, we know that such an; exists, that it
is unique, and a member &f. All ;’s are mutually exclusive and their disjunction
is derivable (Proposition 11). But then, usiAg’, we conclude, from(P-v; A
PZv2) € ®,thatP . (71V72) € ®. And since alsdy, V 2) and~ys are mutually
exclusive, we findP-_ . ... (71 V 12V y3) € ®. Eventually, we findP~y € @,
wherer = Y, r; andy = V,-,, 7. Since (use Proposition 1B~ € @, we find
Yicnri = 1, 1., PE({T" | T € W¢}) = 1. We finally prove derivability ofA6’.

AssumeP; — (o A1) A (Pre AP ). We know (Lemma 7 and'3) thatz, y € F.
By Observation 2} is generated by somé so letx = k- d andy = m - d. If
k=m =z =y = 0, we have to prove thaP; (¢ V ), which is easy: by
Axiom A4, the only other possibility for the disjunction would bg (¢ V ), and
then, by AxiomA5, we would haveP; ¢ \V Py v, which, (us€T'2) contradicts the
assumption;" ¢ A Py 1. Without lack of generality, assume that= % - d # 0.
Let z be a numberk — 1) - d < z < k- d. Since we haveP ¢, using A3,
we haveP>¢. Using A6, we then concludé’=(p V 1), wheret = z + v, i.e.,
(m+k—1)-d <t < (m+k)-d,with (m+k)-dthe smallest number ifi greater
thant. Using A7, we find P, ,( V %), or Py, (¢ V ). This means we have

(m+k
eitherP (¢ V) or P, (¢ V). The first of these options cannot be, since with
A5 itwould yield P v P+, which is impossible give® ¢ A P71, O

Proof of Lemma 13: We consider the modal case. Suppdse) € I', and let
§ = (11 V...Vy,). Eitherl' = T',, and we immediately obtaid - P4, or else let
7 be the characteristic formula foy, then, sincd’, # I' € W*¢, we haved - Py,
and, byA2, we haved - Py P; 6. By A8, we concludeb - P 6.

Then,® + P7(y; V...V 7,), and, byT8, with s 1 being the first member
of I greater thars, ® = V, > P (1 V...V v). Lett, ... t, be such that
{P v,....P v} € ®. Lett =t + ... + t,. By definition of P£, we have
P&(T;) = t; (i <w), and, by induction) ¢, T'; |= ;. Since every two different;
and~; logically exclude each other (Proposition 11), we h#&g{l’; | M°.T; |=
vi}) = t, and hence\/¢,T" = P~6. Now, obviouslyt > s, since we have thab is
consistent® - P>§ and® - P~§. We conclude thad/¢,T" = P74.

Conversely, suppose“,I" = P 4. Then, for some € F, bothr > sandPg({A |
d € A}) = r. Again, assuming = (v V ...V v,), there arery, ..., r,, such
thatry + ... + 7, = r, v € I'; and P&(I";) = r; (i < v). By definition of M¢,
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we haveP"~, € ®.If v = 1, we havey; = 6 andr; = r, and henceP~ 6.
Forv > 2, we show by induction o that if = —(y; A v;)(¢ # 7 < v) then
F N<o Prvi = Py (1 V...V ). Foru = 2 this is immediate fron¥'s,
Theorem 6. Suppose it holds for and consider —(v; A v;)(i # j < v+ 1).
It follows that PZ((71 V ... V %) A Yus1). Now assume’—v; (i < v+ 1). By
induction, we haveP T, . (11 V...V 7,). UsingT8 again yieldsP , . . (11 V
...V9+1). This provesp - P=4, and hence, by'1, ® - P=§ and byA3, ® - P76
(1)- Now, to arrive at a contradiction, suppaBgé ¢ I'. By construction of our set
of formulaeV then, we know that for some< s, P~ € I'. SinceP§(I") > 0, we
have® - Py P9, and hence, byi8, ® - P,~§, which is in contradiction with{).

O

Proof of Lemma 16: The < direction is trivial, sincéV” +# (). For=-, observe that
(M, w) | PZo iff Pr({w': (M,w') = ¢}) > 2 iff (M,u) = PFe 0

Proof of Lemma 18: ¢ is in normal form, sa) = §; V3 V ... V 6,,, whered,., are
canonical conjunctions. Supposeoccurs ind,,. Theno must be some conjunct
Pf, so thaty,,, can be written ag\ A o). Takingz to be(d; Vda V... V d,,—1) gives
the desired resutt = 7 VvV (A A o). D

Proof of Lemma 19: We sketch the proof of (2). ASV/, s) = P73V —-P7 3, there
are two possible cases to consider.

First Case.Assuming(M, s) = P 3 we aim to show that
Pz(nV (ANPZP)) < (PZ(mVA) A PEB)
For the =’ direction, note thatr vV (A A P73)) — (7 V \) is a tautology. Hence,
the truth of P (7 v (A A P73)) in s implies that of P7 (7 Vv \) in s (using A2).
This, together witf{ M, s) = P73 leads to
(M, ) | PZ(r v (A\A P2B)) — (PZ(nV A) A P2p)
and this is valid for any state sin¢&/, s) = P73 iff Yu € S, (M, u) = P75.

Concerning the converse, froRy’ (7 VV A\) A P73 we have that boti> (7 v \) and
Pz aretrueinalk € S. (Yu) (M, u) = X iff XA P73 is also true. So,

(M, s) = (P7(mV A) A P73) — P (mV (AA P73)), and therefore,

(M,s) | P26 — (PZ(rv (AAPZ) < (PE(rV A APZG) (Ad)

Second CaseAssuming that M, s) |= =P 3, we will show that

(M, s) = PZ(mV (AN P7B)) < (Pem A=PFp)
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For the '’ direction, suppose thdt\/, s) |= P; (7 V (A A P7(3)). If this holds for
s, it holds for allu. So,

Vu, (M,u) E PZ(7V (AA Pfﬂ)) (A.2)

By a similar argumentyu (M, u) = —=P; 3, if (M, s) = =P, and hence

(M,u) = PF-P; 3 (A.3)

Combining A.2 and A.3, we ge¥/, u = P=r. Hence:
(M, s) = PZ(rV (AN P7B)) — (PEm A =P5 )
For the conversey — (7 V o) is a tautology. So, we can say that
(M, s) = (Pym A—P73) — P7(m vV (A A P73)), and, consequently,

(M, 5) |F~P7B — (P2 (7 V (AAPEB)) < (Pim AP B)) (A.4)

After considering the two cases we can, finally, use the psibipoal tautology

[(p—= (@ @AM))A(mp— (g (=pAs)))] = [(g< ((rAp) Vv (sA-p)))l,
together with (A.1) and (A.4) to conclude (2). o

Proof of Lemma 21: If M is a model forp, it must be a model for ong&’s in ¢’s
normal form. It is clear that thi/ then satisfies the constrainds € C(y), where
C; is generated by,. Conversely, every probabilistic mod&l; that satisfies the
constraints of”; € C(y), is a model fow;, and hence fop. D

Proof of Theorem 23: We split the proof into two cases.

e ¢ is satisfiable.
The constraints generated will be passed on to the conss@irer. By Lemma 21,
a solution must exist if a model exists, and by Observatiqnig2solver will find
a solution if one exists.

e ¢ is unsatisfiable.
By Lemma 21, the constraints generated should have no @olsiince there is
no model. By Observation 22, the solver will, indeed, faifita a solution.
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