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Abstract

Logical formalisation of agent behaviour is desirable, notonly in order to provide a clear
semantics of agent-based systems, but also to provide the foundation for sophisticated rea-
soning techniques to be used on, and by, the agents themselves. The possible worlds se-
mantics offered by modal logic has proved to be a successful framework in which to model
mental attitudes of agents such as beliefs, desires and intentions. The most popular choices
for modeling the informational attitudes involves annotating the agent with anS5 -like logic
for knowledge, or aKD45 -like logic for belief. However, using these logics in theirstan-
dard form, an agent cannot distinguish situations in which the evidence for a certain fact is
‘equally distributed’ over its alternatives, from situations in which there is only one, almost
negligible, counterexample to a ‘fact’. Probabilistic modal logics are a way to address this,
but they easily end up being both computationally and conceptually complex, for example
often lacking the property of compactness. In this paper, wepropose a probabilistic modal
logicPFKD45, in which the probabilities of the possible worlds range over a finite domain
of values, while still allowing the agent to reason about infinitely many options. In this way,
the logic remains compact, implying that the agent still hasto consider only finitely many
possibilities for probability distributions during a reasoning task. We demonstrate a sound,
compact and complete axiomatization forPFKD45 and show that it has several appealing
features. Then, we discuss an implemented decision procedure for the logic, and provide a
small example.
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1 Introduction

Agent technology is increasingly used in contemporary systems. The overall idea
is that an agent aims at maximizing its performance, based onenvironmental ev-
idence and its knowledge, or beliefs. In this context, the representation of beliefs
plays an important role in the agent description. This is thereason why, when con-
sidering the agent’s representation, the chosen formalismoften characterises the
agent’s state of “mind”. And as a consequence, reasoning with beliefs (within that
representation) becomes a crucial aspect for successful agent design.

One possible approach to an agent’s representation of knowledge (or belief) is the
use of a formal language, whose syntax and semantics are precisely defined. In
this way, a logical agent description and its associated semantics are consequently
strongly linked. As information about the world may be vague, imperfect, uncer-
tain, or ambiguous, agents should be able to represent and reason under uncertainty
in order to operate in such an environment. By considering interaction with the
“real” world, we require agent descriptions to incorporatesome elements of uncer-
tainty. Note that, in this paper, we will not consider multi-agent settings, in which
agents have uncertain predictions about other agents’ uncertainty.

Here we use a possible worlds semantics (also known as Kripkestructures, or mod-
els [18]) as the semantical basis that characterises modal logics of knowledge and
belief, and as a means of expressing uncertainty with respect to the true state of the
world. Given a situation of a system, one could draw a map of states considered
possible and, consequently, be able to determine what is believed in that situation.
In this context, a set of possible worlds would represent thedoxastic possibilities.
In other words, by having worlds that are named “possible”, an agent expresses its
“doubts” about which is the “real” situation, i.e., its uncertainty about the true state
of the world. The more worlds an agent considers possible, the more uncertain it is,
and the less it believes. This is what makes possible worlds aqualitative measure
of an agent’s uncertainty [14].

The most popular choices for modelling informational attitudes such as beliefs, in-
volves annotating the agent with aKD45-like logic [8,20]. However, when using
logics such asKD45 in its standard form, an agent cannot distinguish situations
in which the evidence for a certain fact is ‘equally distributed’ over its alternatives,
from situations in which there is only one, almost negligible, counterexample to
the ‘fact’. Probabilistic logics (cf. [22]) and probabilistic modal logics ([12]) are
a way to address this. In particular, probabilistic logics of knowledge and belief
([13,6,25]) aim at removing the limitations implied by classical epistemic and dox-
astic logic. In epistemic logic the formalization is restricted to sentences such as
“agent knowsϕ” or “agent does not knowϕ”, in which no quantification of the
agent’s certainty is possible.
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We present a logic that builds upon the natural framework of Kripke models, while
allowing us to reason about uncertainty. For us it is both important and interesting
to capture, and express, the notion of degrees of uncertainty within the agent itself.
This means, intuitively, that we want to express statementslike: “agent i believes
that the probability of statementb being true is greater thanx”. In this sense, the
agent can have more (or less) confidence in certain facts. More specifically, we in-
troduce thePFKD45 Logic which extends, in some aspects, the systemPFD given
in [25] (which in turn was inspired by the logic from [9]). We propose not only a
complete axiomatization for the logic, but also a decision procedure that permits
us to verify the satisfiability ofPFKD45-formulae. We claim thatPFKD45 rep-
resents a good candidate for representing and reasoning about uncertainty within
computational agents, especially because, contrary to many logical approaches to
probabilistic reasoning, it is conceptually simple and logically compact— we come
back to this in the concluding section.

This paper is organised as follows. In Section 2 we present a description of the lan-
guage, including basic definitions and a complete axiomatization. In the subsequent
section we provide the semantics and establish some meta-logical properties such
as soundness, completeness and the finite model property. Animplemented deci-
sion procedure for the logic is presented in Section 4. Finally, we consider related
work and provide concluding remarks in Section 5.

2 Logic: Language and Axioms

In this paper we introduce the logicPFKD45 , an extension of thePFD system,
introduced by van der Hoek in [25], which in turn was inspiredby the work of
Fattorosi and Amati [9]. ThePFKD45 basic modal operatorP> allows us to write
formulae such asP>

0.5ϕ, meaning that the “agent believes that the probability ofϕ

being true is strictly greater than0.5”. The other operators (with self-explanatory
meaning)P≥, P<, P≤ andP= can each be defined in terms of the basic one. Since
probabilities range from0 to 1, and the probability of a formula is given by the sum
of values associated to the worlds in which this formula holds,P≥

1 is identified with
the classical modal operatorB for belief.

A peculiar property of the semantics is that it only allows probability measures (for
each world) that are in some finite base setF . The motivation for this, as will be
explained in Section 5, is the restoration of compactness for the logic. In Section 2.1
it will also become clear that, although this restricts probability assignments to a
finite range, it is still possible to express and reason aboutarbitrary probabilities.
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2.1 Language Description

The languageL of PFKD45 (as forPFD originally described in [25]) consists
of a countable set of propositional symbols, the logical connectives¬ and∨ (with
standard definitions for⊥,⊤,∧,→,↔), and parentheses. We also define a modal
operatorP>

x , wherex is a rational number within the closed interval[0, 1].

The logic is defined relative to a finite fixed base setF with {0, 1} ⊆ F =
{x0, x1, ..., xn} ⊆ [0, 1]. It is assumed thatxi < xi+1, if i < n (implying 0 = x0

andxn = 1). This is no restriction on thelanguageof the logic: here, the basic
operator isP>

x , wherex ∈ [0, 1], with the intended meaning ofP>
x ϕ being: “it

is believed that the probability ofϕ being true is (strictly) greater thanx”. From
the definition of the basic modal operatorP> we derive the definitions of the other
modal operators (x representing an arbitrary value over[0, 1]):

D1. P≥
x ϕ ≡ ¬P>

1−x¬ϕ
D2. P<

x ϕ ≡ P>
1−x¬ϕ

D3. P≤
x ϕ ≡ ¬P<

1−xϕ

D4. P=
x ϕ ≡ ¬P>

x ϕ ∧ ¬P<
x ϕ

In Section 2.2 we establish that these operators have the expected properties. For
instance, we show thatP≤

x ϕ is equivalent to(P<
x ϕ ∨ P=

x ϕ).

The probability values used for assignments are taken from afinite set of rational
numbers, which we call setF . This set includes the extreme values0 and 1 in
order to reason about absolute certainty, and is moreover closed under restricted
(if the sum does not exceed1) addition— to represent reasoning about mutually
exclusive disjunctions– and complement with respect to1 — to deal with negation.
The formal definition of this set is as follows.

Definition 1 A setF is abasefor the logicPFKD45 if it satisfies:

(1) F is finite;
(2) {0, 1} ⊆ F ⊆ [0, 1];
(3) x, y ∈ F and(x+ y ≤ 1) ⇒ (x+ y) ∈ F ;
(4) x ∈ F ⇒ (1 − x) ∈ F .

Let d be such that0 < d ≤ 1. We say thatD is generatedby d, notationD = ~d, if
D = {x ∈ [0, 1] | ∃k ∈ N x = k · d}. Not only is every generated set a base set,
but the converse also holds:

Observation 2 F is a base set iffF = ~d for somed ∈ (0, 1].
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2.2 Axioms and some Theorems

We do not restrict thereasoningabout probabilites to numbers fromF , only seman-
tically the values for probabilites come from this set. In other words, even though
F is a finite set of specific values, one can still represent facts about numbers not
in F . So, letx andy be arbitrary values over[0, 1] and letxi, xi+1 be elements of
F (0 ≤ i < n), the inference rules (R1 andR2) and axioms (A1-A9) of PFKD45
are defined in the following way.

R1. Fromϕ andϕ⇒ ψ infer ψ (modus ponens)
R2. Fromϕ infer P≥

1 ϕ (necessitation rule)

A1. All propositional tautologies
A2. P≥

1 (ϕ→ ψ) → [(P>
x ϕ→ P>

x ψ) ∧ (P>
x ϕ→ P≥

x ψ) ∧ (P≥
x ϕ→ P≥

x ψ)]
A3. P≥

1 (ϕ→ ψ) → (P≥
x ϕ→ P>

y ψ) (wherey < x)
A4. P≥

0 ϕ

A5. P>
x+y(ϕ ∨ ψ) → (P>

x ϕ ∨ P>
y ψ) (wherex+ y ∈ [0, 1])

A6. P≥
1 ¬(ϕ ∧ ψ) → ((P>

x ϕ ∧ P≥
y ψ) → P>

x+y(ϕ ∨ ψ)) (wherex+ y ∈ [0, 1])
A7. P>

xi
ϕ→ P≥

xi+1
ϕ

A8. (P>
0 P

≥
x ϕ→ P≥

x ϕ) ∧ (P>
0 P

≤
x ϕ→ P≤

x ϕ)
A9. (P≥

x ϕ→ P≥
1 P

≥
x ϕ) ∧ (P≤

x ϕ→ P≥
1 P

≤
x ϕ)

We say thatPFKD45 ⊢ ϕ, if there is a proof forϕ, using the axioms and inference
rules ofPFKD45, and in such a case we say thatϕ is derivable. According to the
first axiom, all the propositional tautologies are part of the system. The axiomsA2-
A6 all reflect basic properties of probabilities. AxiomsA2 andA3 assume a certain
implication: it has probability 1. Given that,A2 expresses that any probability for
the consequent is at least the probability of the antecedent, and that ‘greater than’
implies ‘at least’. AxiomA3 says that the probability of the consequent is greater
than any number that is smaller than the lower bound for the antecedent. AxiomA4
guarantees that no probability is negative, andA5 guarantees that the probability
of a disjunction is obtained from the probability of its disjuncts. By AxiomA6 we
have that the probability of a disjunction of mutual exclusive assertions is at least
the sum of the individual probabilities of those assertions.

AxiomA7 reflects the peculiarity of having a base setF : it says that, if a probability
is bigger than a certain value inF , it must be at least the next value. In other words,
it enforces that arbitrary values collapse to the values present inF . AxiomsA8
andA9 are new w.r.t. [25] and emphasize the relation with the modallogicKD45,
making our agents doxastically introspective. (This will be made precise later in
Theorem 5.) AxiomA8 denotes that, if the agent assigns a positive probability to
some probabilistic judgment, then it incorporates this judgment. AxiomA9 states
that the agent is absolutely sure about its own probabilistic beliefs.
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To highlight the use ofPFKD45, we present a simple planning example proposed
in Kushmericket al. [19] and show howPFKD45 can be used to specify and
reason about its properties.

Example 3 (Robot With a Bomb) The example is described as follows. A robot
is given two packages, and told that exactly one of them contains a bomb. It needs
to defuse the bomb, and the only way to do so is to ‘dunk’ the package containing
the bomb in the toilet. Placing a package in the toilet might (as we consider here
with probability0.1) ‘clog’ the toilet, and that is to be avoided.

Suppose both goals are desired, i.e., we want to defuse bomb and have an unclogged
toilet. Furthermore, assume that we want this to happen withprobability at least
0.8.

Using the predicates2 in(Package,Bomb), dunk(Package), andclogged(Toilet),
a possible specification would be:

A. in(package1, bomb) ↔ ¬in(package2, bomb)
B. P=

0.5in(package1, bomb) ∧ P=
0.5in(package2, bomb)

C. One valuation chosen among the following:
(1) ¬dunk(package1) ∧ ¬dunk(package2)
(2) ¬dunk(package1) ∧ dunk(package2)
(3) dunk(package1) ∧ ¬dunk(package2)
(4) dunk(package1) ∧ dunk(package2)

D1. ¬dunk(package1) ∧ ¬dunk(package2) →
P=

1 (¬defused(bomb) ∧ P=
1 ¬clogged(toilet))

D2. ¬dunk(package1) ∧ dunk(package2) →
P=

0.5(¬defused(bomb) ∧ P=
0.9¬clogged(toilet))

D3. dunk(package1) ∧ ¬dunk(package2) →
P=

0.5(¬defused(bomb) ∧ P=
0.9¬clogged(toilet))

D4. dunk(package1) ∧ dunk(package2) →
P=

1 (defused(bomb) ∧ P=
0.8¬clogged(toilet))

E. P≥
0.8(defused(bomb) ∧ ¬clogged(toilet))

We now demonstrate some properties that follow from definitions and axioms pre-
sented above. All proofs are to be found in Appendix A, unlessstated otherwise.

Lemma 4 The following theorems are derivable fromPFKD45. A proof is to be
found in [25]:

L1. P≤
1 ϕ

L2. P≥
1 ϕ↔ P=

1 ϕ

2 Although we use predicate symbols for brevity, the example is purely propositional.
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Theorem 5 Define thebelief operator ‘B’ usingBϕ = P≥
1 ϕ. Based on this, we

can infer the following.

a) All KD45-properties ofB are derivable inPFKD45:
(1) ⊢ ϕ ⇒ ⊢ Bϕ
(2) ⊢ B(ϕ→ ψ) → (Bϕ→ Bψ)
(3) ⊢ Bϕ→ BBϕ (fromA9)

(4) ⊢ ¬Bϕ→ B¬Bϕ
b) We say that a formula inL is modalif it is built from atomic propositions, using

only the logical connectives and the modal operatorB. We claim that, for all
modal formulae,ϕ, PFKD45 ⊢ ϕ iff KD45 ⊢ ϕ.

Below we present some further theorems ofPFKD45 (Proofs are to be found
in [25]) sincePFKD45 extendsPFD, the proof is similar to that in [25]. In our
schemes,x, y represent arbitrary values over[0, 1]. We also define:

▽(ϕ1, ϕ2, ..., ϕk) ≡ (
∨

i

ϕi) ∧ (
∧

1≤i<j≤k

¬(ϕi ∧ ϕj)))

Theorem 6 For all ϕ, ψ in the language and allx ∈ [0, 1]:

T1. P≥
x ϕ↔ (P>

x ϕ ∨ P=
x ϕ) ∧ P≤

x ↔ (P<
x ϕ ∨ P=

x ϕ)
T2. ▽(P>

x ϕ, P
=
x ϕ, P

<
x ϕ)

T3. ¬(P=
x ϕ ∧ P=

y ϕ) (y 6= x)
T4. (¬P<

x ϕ↔ P≥
x ϕ) ∧ (¬P>

x ϕ↔ P≤
x ϕ)

T5. P=
x ϕ↔ (P≥

x ϕ ∧ P≤
x ϕ)

T6. P>
x ϕ→ P>

y ϕ (y ≤ x)
T7. P=

x ϕ ↔ P=
1−x¬ϕ

T8. (P≥
1 ¬(ϕ ∧ ψ) ∧ P=

x ϕ) ↔ (P=
y ψ → P=

x+y(ϕ ∨ ψ))

Recall that our logic is based on a finite set of probability valuesF . Although the
use of a base set may seem restrictive, we have seen that AxiomA7 ensures the
possibility of arbitrary values being used. In addition, the following lemma shows
a benefit of having a finite baseF : we can express, in the language, that every
formula has a probability. The proof is again similar to one given in [25].

Lemma 7 For all ϕ ∈ L, the following is aPFKD45-theorem:
▽(P=

x0
ϕ, P=

x1
ϕ, ..., P=

xn
ϕ) whereF = {0 = x0, x1, ..., xn = 1}

3 Semantics and Properties

Formulae are interpreted onProbabilistic Kripke Models overF (orPFKD45 mod-
els).P≥

x ϕ is true at a worldw if the probability values assigned to the possible

7



worlds that verifyϕ sum up to at leastx.

3.1 Semantics

The classical Kripke model semantics refers to a collectionof possible worlds.
Different worlds may have different interpretations for sentences. A probabilistic
Kripke model adds the concept of a probability distributionto the picture of pos-
sible worlds. That is, there is an assignment of probabilityvalues to the set of
possible worlds in accordance with the formulae specified. Naturally, once those
worlds model sentences of the language, we have an assignment of probabilities to
the sentences themselves. In our case, assignments are providedoverF , meaning
that probability values assigned are in the assumed base set.

Definition 8 For each base set, F,PFKD45 is the class of all modelsM = 〈W,PF , π〉
for which:

• W is a non-empty set (of worlds)
• PF is a functionPF : W → F , satisfying

∑

w∈W

PF (w) = 1

• π is a valuation:W × L→ {true, false}

The truth definition for formulae is inductively defined as:

• (M,w) |= p iff π(w, p) = true, for atomic sentencesp
• (M,w) |= ¬ϕ iff not M |= ϕ

• (M,w) |= ϕ ∧ ψ iff M |= ϕ andM |= ψ

• (M,w) |= P>
x ϕ iff (

∑

{w′|(M,w′)|=ϕ}

PF (w′)) > x

Here,M |= ϕ is short for∀w ∈ W , (M,w) |= ϕ, andPFKD45 |= ϕ abbreviates
that for eachPFKD45 modelM , we haveM |= ϕ. In that case, we say thatϕ is
valid.

In contrast to the definition ofPF found in [25] which allowed different sets of
worlds to have different probability distributions, the probability distribution we
define here is independent of the world. This topic is discussed in detail later, in
Section 3.3. Figure 1 shows an example of a probabilistic model.

One can relate this semantics to a more standard Kripke semantics as follows. Given
M = 〈W,PF , π〉, first choose an arbitrary worldw in the setW of the modelM .
Then, letW ′ be{w} ∪ {w′ | PF (w′) > 0}. Finally, defineR′(x, y) if, and only if,
PF (y) > 0, i.e., a world is accessible (from any world) if, and only if,its probability
is positive. LetM ′

w = 〈W ′, R′, π′〉 be the model thus obtained, withπ′ being the
restriction ofπ to W ′. The following (we omit the proof, but it follows directly
from Theorem 5) gives a semantic motivation for coining our systemPFKD45:
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Fig. 1. An example of a probabilistic belief model:p1 + p2 + p3 = 1.

Proposition 9 Given aPFKD45 modelM = 〈W,PF , π〉 and a worldw, letM ′
w =

〈W ′, R′, π′〉 be obtained as described above. Moreover, let a purely modalformula
fromPFKD45 be a formula in which all modal operators areP≥

1 or, equivalently,
B. Then:

(1) for every purely modal formulaϕ, we have(M,w) |= ϕ iff M ′
w, w |= ϕ;

(2) the accessibility relationR′ is serial, transitive and Euclidean.

Note that these are precisely the properties of models forKD45 modal logics [20].

3.2 Logical Properties

In Section 2.2 the axiomatic system ofPFKD45 was presented. This system is
soundwith respect to the semantics of Definition 8 if, for allϕ, we havePFKD45 ⊢
ϕ ⇒ PFKD45 |= ϕ. In other words, what is derivable is valid. Conversely,
PFKD45 is completeif the implication holds in the other direction. In other words,
what is valid is derivable.

Lemma 10 (PFKD45 Soundness)For all ϕ: PFKD45 ⊢ ϕ⇒ PFKD45 |= ϕ.

The completeness property refers to the opposite direction. Having a complete sys-
tem ensures that valid sentences are derivable from the theory. The completeness
of PFKD45 is what we show next. Letϕ be a consistent formula ofPFKD45 i.e.,
PFKD45 6⊢ ¬ϕ. LetΨ be the set of sub-formulae ofϕ closed under single negation
and satisfying, for any∼ within {<,>,≤,≥,=}, (P∼

x ψ ∈ Ψ) ⇒ {P=
xi
ψ | xi ∈

F} ⊆ Ψ. We will now show how to construct a model that satisfiesϕ. Given a
set of formulas∆, a setΣ is ∆-maximal consistent if(i) Σ ⊆ ∆, (ii) Σ is con-
sistent, and, finally(iii) for no δ ∈ ∆ \ Σ is Σ ∪ {δ} consistent. In words:Σ is
a maximal consistent part of∆. With Ψ being finite, say|Ψ| = k, we can define
theΨ-maximal consistent sets asΓ1,Γ2, ...,Γn, n ≤ 2k. Let γi be the conjunction
of formulae inΓi, i ≤ n. Let Ψ′ = Ψ ∪ {P=

x γi|x ∈ F, i ≤ n}. The following is
standard, and is not specific for our logic; we omit its proof.
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Proposition 11

i. ⊢ ¬(γi ∧ γj), wherei 6= j;
ii. ⊢ (γ1 ∨ ... ∨ γn)
iii. ⊢ ψ ↔ γψ1∨ ...∨γψr, whereγψ1∨ ...∨γψr are exactly thoseγ’s which contain
ψ as a conjunct, for eachψ ∈ Ψ.

Sinceϕ is consistent and hence there is at least oneΓi such thatϕ ∈ Γi, as
{ϕ} = Σ0 can be extended to aΨ-maximal consistent set in a finite variant of the
Lindenbaum construction, [1, p. 197] (enumerate the members ofΨ asψ1, . . . , ψk,
let Σj+1 be Σj ∪ {ψ} if the latter set is consistent, else putΣj+1 = Σj ; finally,
put Γi = Γϕ = Γk). Given thisΓϕ, we construct a setΦ ⊇ Γϕ as follows. From
Lemma 7, we know that for every consistent setΓ and formulaψ, at least one set
of the sequence (1) is also consistent:

Γ ∪ {P=
0 ψ},Γ ∪ {P=

r1
ψ}, . . . ,Γ ∪ {P=

rn−1
ψ},Γ ∪ {P=

1 ψ} (1)

Now, we obtainΦ from Γϕ as follows:

(1) letΦ0 = Γϕ (this set is consistent);
(2) for i = 1 to n, we know that there is somer ∈ F such thatΦi−1 ∪ {P=

r γi}
will be consistent, and we make the corresponding choice forΦi.

We letΦ beΦn; this is a consistent extension ofΓϕ, which contains a probability
in F for every “world” Γi (i ≤ n). We are now ready to define our canonical model
M c = 〈W c, P c

F , π
c〉 as follows:

(1) W c = {Γϕ} ∪ {Γi | ∃r > 0 P=
r γi ∈ Φ}.

(2) (P c
F (Γi) = r) ⇔ (P=

r γi ∈ Φ)
(3) π(Γi, p) = (p ∈ Γi)

Proposition 12 The modelM c is indeed aPFKD45 model.

This all leads us to the following coincidence lemma.

Lemma 13 (Coincidence)For all ψ ∈ Ψ andΓ ∈W c, M c,Γ |= ψ iff ψ ∈ Γ

Now completeness follows immediately, we only sketch the proof: if PFKD45 6⊢
ϕ, then¬ϕ is consistent and, by the Coincidence Lemma,¬ϕ is satisfied inM c,Γ
for some setΓ, and hencePFKD45 6|= ϕ. Also note thatM c is a finite model, which
follows from the fact that it is constructed for a givenϕ, which has finitely many
propositional atoms and, moreover, the setF is finite, and hence the probabilities
assigned byP c

F have a finite range.

Theorem 14 (Soundness and Completeness, Finite Models)For any formulaϕ,
we havePFKD45 |= ϕ iff PFKD45 ⊢ ϕ. Moreover, every consistent formula has

10



a finite model.

Observation 15 If n is the number of atoms occurring inϕ, andf the cardinality
ofF , it is easy to see that there are at most2n ·f 2n−1 pairs(M, s) = (〈W,PF , π〉, s)
that we need to consider forϕ’s satisfiability: there are2n different valuations as
candidate for the current states, and we can add all those different valuations to
W . The model is then determined if we have fixed a probabilityPF (w) for every
valuation inw, but the probability of the last of those is determined once the prob-
ability of the others is fixed. For eachw ∈ W except the last one, we can makef
different choices forPF (w). The modelM can possibly be smaller by deleting all
statesw fromW for whichPF (w) = 0.

3.3 Nested Beliefs

ConsideringPFKD45 as a language for representing properties within individual
agents, we next show thatnestedbelief formulae can be removed, i.e., any nested
belief formula is equivalent to some formula without nesting. First we show that
the truth of probabilistic formulas is independent of the world of evaluation.

Lemma 16 LetM = 〈W,PF , π〉 be aPFKD45 model.
Then,[∃w ∈W (M,w) |= P≥

γ β] ⇔ [∀u ∈W (M,u) |= P≥
γ β].

We are now going to show that nested beliefs are superfluous, in PFKD45. This
result is a generalisation of [20, THEOREM 1.7.6.4], where it is proved forS5. This
means that that result still goes through when weakening thelogic toKD45, and
even when having probabilistic operators.

Definition 17 We say that a formulaψ is in normal formif it is a disjunction of
conjunctions each of the form

δ = ω ∧ P≥
γ1
β1 ∧ P

≥
γ2
β2 ∧ ... ∧ P

≥
γn
βn ∧ P

>
κ1
α1 ∧ P

>
κ2
α2 ∧ . . . ∧ P

>
κk
αk,

whereω, βi, αj, (i ≤ n, j ≤ k) are all purely propositional formulae. The formula
δ is called the canonical conjunction and the sub-formulaeP≥

γi
βi andP>

κj
αj are

called prenex formulae.

Lemma 18 If ψ is in normal form and contains a prenex formulaσ, thenψ may be
supposed to have the formπ ∨ (λ ∧ σ) whereπ, λ andσ are in normal form.

This lemma guarantees that prenex formulae can be moved to the outermost level.

Lemma 19 (Removal of Nested Beliefs)We have the following two equivalences
in PFKD45:

|= P≥
α (π ∨ (λ ∧ P≥

γ β)) ↔ (P≥
α (π ∨ λ) ∧ P≥

γ β) ∨ (P≥
α π ∧ ¬P≥

γ β) (2)

11



|= P≥
α (π ∨ (λ ∧ P>

γ β)) ↔ (P≥
α (π ∨ λ) ∧ P>

γ β) ∨ (P≥
α π ∧ ¬P>

γ β) (3)

From this result it immediately follows (proof is omitted) that we can bring all the
probabilistic operators to the outermost level, giving us:

Theorem 20 Every formulaϕ is equivalent to a formula,ψ, in normal form, i.e., a
formula without nesting of probabilistic operators.

Intuitively, having nested beliefs being reduced to a non-nested formula corre-
sponds to the ideal rationality feature of the agents we aim to design. That is, an
agent that is certain about its own uncertainties.

For instance, supposeP=
0.8r. ThenP=

1 P
=
0.8r, and henceP=

1 (P=
0.8r ∨P

=
0.2q). If we as-

sume thatProb(r) 6= 0.8 andProb(q) 6= 0.2, thenProb(r) = R andProb(q) = Q

for someR (different from0.8) and someQ 6= 0.2. Consequently, it is everywhere
the case thatP=

1 (P=
R r ∨ P=

Q q). Moreover,P=
0 P

=
0.8r andP=

0 P
=
0.2q would hold, and

hence the probability of their disjunction is also0.

Hence we do not model situations in which, for example, an agent has a fair coin
with probability 0.5, and an unfair one (e.g.,Prob(head) = 0.8) with probabil-
ity 0.5, and it is then able to reason about the probability of the possible coin
toss outcomeh. In short,P=

0.5(P
=
0.5h) ∧ P=

0.5(P
=
0.8h). In fact, a formula such as

P=
0.5(P

=
0.8head) is always false in our semantics. This is so because the outermost

probability in this case must always be either0 or 1, once the probabilities are as-
signed by one and the sameperfect reasoneragent. Therefore, what wecanmodel
is the uncertainty of an agent who knows that the coin toss situation mentioned
above reduces toProb(h) = 0.5(0.5 + 0.8) = 0.65.

4 Decision Procedure

We now describe a practical decision procedure forPFKD45. This procedure aims
to find a finite model for the agent’s specification. That is, given the agent’s de-
scription (as a set of probabilistic formulae in the language), the objective of the
decision procedure is to determine a set of probability values that can be assigned
to the set of possible worlds in order to satisfy the given formula, if such a set of
values exists.

According to thePFKD45 semantics, we know thatP>
x ϕ holds if the sum of all

the accessible worlds that satisfyϕ is (strictly) greater thanx. In other words, each
probabilistic operator imposes a restriction on the valuesthat can be assigned to
the worlds that satisfy the formulae it describes. As a consequence, having a set
of probabilistic formulae is like having a set of constraints over the values to be

12



assigned to the possible worlds. This gives us a hint of how a simple decision pro-
cedure might be produced — by translating formulae into a setof numerical con-
straints on the possible valuations for propositions and then invoking an appropriate
constraint solver.

Thus, given a finite set ofPFKD45 formulae, we generate a finite set of constraint
(in)equalities. The components of the inequalities represent all the possible truth
valuations of the propositional symbols, and it is to those components that proba-
bility values (that express the graded beliefs of the agent)are assigned. Solving the
(in)equalities produces, as a result, the set of values thatcan be assigned to the set
of possible worlds in order to satisfy the formulae presented. Consequently, once
we have generated all the constraints for the formulae in thespecification, we send
this set of constraints to an appropriate solver. If the solver succeeds in finding a
solution, this gives a set of probability assignments to theset of possible worlds; if
the solver fails, no such assignment exists.

The approach can be summarized via the diagram in Figure 2, while the algorithm
comprising the decision procedure is given in Figure 3.

Fig. 2. Relation betweenPFKD45 and decision procedure.

How are the in-equalities generated from a given formula,ϕ, of which the satisfia-
bility is to be tested? First of all, we know from Theorem 20 that we may assume
thatϕ has an equivalent normal formϕ = δi ∨ . . . ∨ δm, where every formulaδ
is of the formω ∧ P≥

γ1
β1 ∧ P≥

γ2
β2 ∧ . . . ∧ P≥

γn
βn ∧ P>

κ1
α1 ∧ P>

κ2
α2 ∧ . . . ∧ P>

κk
αk.

All the formulasω, βi, αj (i ≤ n, j ≤ k) are propositional. Ifω has a proposi-
tional model, this is a candidate for the states (this is line 11 of the procedure)
for the pair(M, s) that we are after. Moreover, eachδ gives rise to a set of con-
straintsCon(At(ϕ), F, {P≥

γ1
β1, . . . , P

≥
γn
βn, P

>
κ1
α1, . . . , P

>
κk
αk}) as follows.At(ϕ)

is the set of all atomsp, q, r, . . . occurring inϕ. Put everyβi andαj into Disjunc-
tive Normal FormDNF (βi) andDNF (αj), respectively, where each atom from
At(ϕ) is used. For instance, ifβi = p∨ q, andAt(ϕ) = {p, q, r}, thenDNF (βi) =
(¬p∧q∧¬r)∨(¬p∧q∧r)∨(p∧¬q∧¬r)∨(p∧¬q∧r)∨(p∧q∧¬r)∨(p∧q∧r).

Now, let us take this example withAt(ϕ) = {p, q, r} andβi = p∨ q a little further.
Con(At(ϕ), F, {P≥

γ1
β1, . . . , P

≥
γn
βn, P

>
κ1
α1, . . . , P

>
κk
αk}) consists of the following

inequalities, where (*) is an overall-constraint,f0 . . . f7 areF -specific constriants,
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andC(P≥
γi
βi) is generated byP≥

γi
βi; similarly forC(P>

κj
αj).

(∗) p0q1r0 + p0q1r1 + p1q0r0 + p1q0r1 + p1q1r0 + p1q1r1 = 1

f0 p0q0r0 ∈ F

. . . . . . . . .

f7 p1q1r1 ∈ F

. . . . . . . . .

(C(P≥
γi

)βi) p1q0r0 + p1q0r1 + p1q1r0 + p1q1r1 + p0q1r0 + p0q1r1 ≥ γi

. . . . . . . . .

(C(P>
κj
αj)) . . . > κj

. . . . . . . . .

Think of an expression such asp0q0r0 + p0q0r1 > ρ as the constraint that the
probability of those worlds satisfying¬p∧¬q must be greater thanρ. The constraint
(*) expresses the fact that a tautology should have probability 1, but also that there
are no other worlds than those satisfying one of the combinations appearing as a
term within it.

We now establish correctness of the decision procedure. We begin by noting that,
if a PFKD45 formula is satisfiable, then any model produced must satisfyone of
the constraint setsCi generated by the procedure fromδi outlined above.

Lemma 21 Given aPFKD45 formulaϕ, and a translation of the formula into a
classC of sets of constraintsCi, one for eachδi in ϕ’s normal form (as described
above), then:M is a model forϕ if, and only if,M is a solution for a solvable set
of constraintsC ∈ C(ϕ).

Given the particular form of linear inequalities generated, and the fact that con-
straint solvers exist for such constraints, we also have thefollowing result.

Observation 22 A solution for any set of constraintsCi will be found if one exists.

Note that it is guaranteed that the solver finds a solution, ifthere is one. That is,
solving a finite set of constraint (in)equalities over a finite setF of probabilities is
a decidable problem.

Given these results, the correctness of the decision procedure is straightforward.

Theorem 23 (Decision Procedure)A formulaϕ in PFKD45, over the base setF ,
is satisfiable if, and only if, our decision procedure generates a model forϕ and,
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PFKD45 decision procedure:

Input: PFKD45 formulaϕ.

Output: “yes, (M, s)” for some(M, s) such thatM, s |= ϕ if it exists

“no, ∅” if ϕ is unsatisfiable.

1. function dec(ϕ) returns “yes, (M,s)” or “no, ∅”
2. let At(ϕ) be the set of atoms in ϕ
3. let ψ = δ1 ∨ . . . ∨ δm be the normal form of ϕ
4. // ∗ ∗ we find ψ using (the proof of) Theorem 20
5. i := 1;
6. found := false
7. // ∗ ∗ found = model for ϕ has been found
8. while ((i ≤ m) and (not found)) do
9. let δi = ω ∧ P≥

γ1
β1 ∧ P

≥
γ2
β2 ∧ ... ∧ P

≥
γn
βn ∧ P

>
κ1
α1 ∧ P

>
κ2
α2 ∧ . . . ∧ P

>
κk
αk

10. if ω has a propositional model π then
11. let s := π;
12. let Ci = Con(At(ϕ), F, {P≥

γ1
β1, . . . , P

≥
γn
βn, P

>
κ1
α1, . . . , P

>
κk
αk})

13. // ∗ ∗ cf. page 13
14. apply the constraint solver to Ci
15. if this has a solution then
16. read off M from it
17. found := true
18. end-if
19. end-if
20. i := i+1
21. end-while
22. if found then
23. return “yes, (M,s)”
24. else return “no, ∅”
25. end-if
26. end-function

Fig. 3. A decision procedure forPFKD45.

conversely, every solvable setCi in C corresponds to a model forϕ.

Example 3 (Continued) Depending on the action taken (valuation taken for both
dunk(package1) anddunk(package2)), the last sentence causes (or not — when
D4) the set of probabilistic beliefs to be unsatisfiable. In other words, what we can
show is that there are4 possible cases:3 in which the set of beliefs is unsatisfiable

¬dunk(package1) ∧ ¬dunk(package2),

¬dunk(package1) ∧ dunk(package2),

dunk(package1) ∧ ¬dunk(package2)
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and one that shows a consistent set

dunk(package1) ∧ dunk(package2) .

The implemented decision procedure automatically finds such a consistent set, in-
dicating how the action of the robot can be planned.

Of course, the number of models that we mention in Observation 15 is huge, and
indeed, finding a model for a formula (if it exists) is NP complete. This follows from
a an observation in [11] aboutInteger Programming, as which our satisfiability
problem can be phrased.

Definition 24 [11, p. 245] The following problem is called Integer Programming.
INSTANCE. Given are the following. A finite setX of pairs (x, b), wherex is an
m-tuple of integers andb is an integer, anm-tuplec of integers, and an integerB.
QUESTION: Is there anm-tupley of integers such thatx · y ≤ b for all (x, b) ∈
X and such thatc · y ≥ B (where the dot-productu · v of twom-tuplesu =
(u1, u2, . . . , um) andv = (v1, v2, . . . , vm) is given by

∑m
i=1 uivi?

Theorem 25 [11, p. 245] The problem of Integer Programming as defined in De-
finition 24 is NP-complete.

Recall how we assume our formulaϕ to be in normal formψ = δ1∨ . . .∨δm, where
eachδi is of the formδi = ω ∧ P≥

γ1
β1 ∧ P≥

γ2
β2 ∧ ... ∧ P≥

γn
βn ∧ P>

κ1
α1 ∧ P>

κ2
α2 ∧

. . . ∧ P>
κk
αk. We now argue how finding a solution for the inequalities induced by

δi (that is, steps12--14 in our procedure) is an Integer Programming problem.

First of all, the dimensionm of Defintion 24 is going to be2n, wheren is the
number of propositional atoms inϕ, say these atoms arep1, . . . pn. We know from
Observation 2 thatF is generated by somed, that is,F = {0, 1

d
, 2
d
, . . . , d

d
}. Now,

every entryyi in y corresponds tod · Pi, whereP0 is the variablep1
0p

2
0 . . . p

n−1
0 pn0 ,

P1 = p1
0p

2
0 . . . p

n−1
0 pn1 , P2 = p1

0p
2
0 . . . p

n−1
1 pn0 , etc. Now consider a subformulaP≥

γ β

in ∆i. We knowγ is a rational number, sayγ = s
t
. The constraint thatP≥

γ β gives
rise to looks like

k0 · p
1
0 . . . p

n
0 + . . .+ k2n · p1

1 . . . p
n
1 ≥

s

t
(4)

Where eachki is either 1 (if the corresponding disjunct occurs inDNF (β)) or 0
(otherwise). Equation (4) is equivalent to

t · d · k0 · p
1
0 . . . p

n
0 + . . .+ t · d · k2n · p1

1 . . . p
n
1 ≥ d · s (5)

and hence, for eachP≥
γ β, we add(x, b) toX, with x = (t · d · κ0, . . . , t · d · κ2n)

andb = d · s.
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Next, for every subformulaP>
κ α, the constraint that we would obtain looks like

k0 · p
1
0 . . . p

n
0 + . . .+ k2n · p1

1 . . . p
n
1 > α (6)

where, as before,ki is 1 if the corresponding disjunct occurs inα, and 0 otherwise.
But since we know that each value forp1

z1
p2
z2
. . . pnzn

is a multiple ofd, the left hand
side of (6) must also be a multiple ofd. Hence, letα>F be the smallest element inF
for whichα>F . It is easy to see that, given that each variablep1

z1
p2
z2
. . . pnzn

must be
in F , equation (6) is equivalent to (7), and we can proceed to add amember(x, b)
toX as we did above.

k0 · p
1
0 . . . p

n
0 + . . .+ k2n · p1

1 . . . p
n
1 ≥ α>F (7)

Finally, we address the overall constraint (*):

(∗) d · p1
0p

2
0 . . . p

n−1
0 pn0 + d · p1

0p
2
0 . . . p

n−1
1 pn0 + . . .+ d · p1

1p
2
1 . . . p

n−1
1 pn1 = d

For this constraint, we add(x, b) = ((1, 1, . . . , 1), d) to X, and we choose also
c = (1, 1, . . . , 1) andB = d.

It is easy to see that this shows that the question whetherδi = ω∧P≥
γ1
β1∧P

≥
γ2
β2∧...∧

P≥
γn
βn ∧ P

>
κ1
α1 ∧ P

>
κ2
α2 ∧ . . . ∧ P

>
κk
αk can be made true by assigning probabilities

in F to each combination of propositional atoms, is equivalent to the translated
Integer Programming problem.

Admittedly, Theorem 25 together with the observations above provide a negative
result for our decision procedure: even solving the constraints for the probabilistic
part is NP-complete, and, obviously, to check whether the propositional part of the
given formula (step10 in our procedure) is also NP-complete. We have not, looked
into whether there are ways to cope with this NP-completeness, but what wedid
do is implement a toy system that finds a model for a formula, ifit has one (see
[3]). The development of ourPFKD45 decision procedure involved Prolog pro-
gramming, making use of Sicstus Prolog v3.12.2 and its inbuilt moduleclp(FD),
a constraint logic programming solver over finite (integer)domains [2]. In short,
we have an executable module that receives, as input, a set ofprobabilistic belief
formulae and outputs all the possible probability assignments that satisfy the re-
strictions that those formulae impose. Furthermore, we also provide as input the set
F that should be considered for that particular set of formulae.

Further development of the system incorporates also temporal operators allowing
us to reason also about (discrete) time information ([3,4]). However, this is a story
to be told in detail at another occasion.
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5 Conclusion

We have shown how thePFKD45 logic preserves important results about sound-
ness, completeness, and decidability of its predecessorPFD [25]. We have also
presented new results about nested beliefs, and a description and implementation
of a decision procedure for the logic. A brief example was used to show how the
language can serve as an appropriate agent specification language.

Our logic is conceptually simple andcompact. Compactness refers to the fact that a
set of sentences is satisfiable if, and only if, every subset of it is satisfiable. Logics
that allow us to express thatProb(ϕ) ∼ r are, in general, not compact, witness the
set of premisesΓ

{Prob(q) > α | α ∈ Q ∩ [0, 1)}

Then, obviously, we haveΓ |= Prob(q) = 1, but there is no finite subset ofΓ that
proves this conclusion. This has a computational counterpart: a mechanical device
verifying whether a set of premises{Prob(ϕ) ∼ r} is satisfiable inQ ∩ [0, 1], in
principle has to check an infinite number of assignments of probabilities to for-
mulaeϕ. For these reasons, we assume that the range of allowed probabilities is a
finite setF ⊆ [0, 1]. Thus, the compactness of our approach has benefits, especially
with respect to computational tractability aspects. This is a decisive feature consid-
ering our aim of havingPFKD45 as part of our executable framework for agents.
A logic similar to ours (but also allowing predicates) and with the same motivation
was presented in [24]. Its semantics is based on measure spaces, and all formu-
las are interpreted on a set (of what we call states) – even thepropositional ones.
Decidability is reduced “to an easy problem of linear programming, which can be
easily solved” ([24, p. 3]). We are more explicit about the completeness proof and
the algorithm to find a model.

Although the use of the set baseF causes logical restrictions, it is possible to high-
light some interesting aspects (cf.[25]). For instance, ifwe takeF = {0, 1}, we
have the classical modal logic. Having Driankov’s linguistic estimates (as in [5])
impossible, extremely unlikely, very low chance, small chance, it may, meaningful
chance, most likely, extremely likely, certainwould be modelled by a 9-elementF .
And the same analogy can be used for any finite range of values to be assumed. In
other words, the granularity ofF can be chosen according to the intended agent’s
application.

PFKD45 is a system that combines logic and probability. In this sense, it is related
to other work that showed how this combination would be possible in alternative
ways [17,10]. One of those possible approaches is the interpretation of the modal
belief operator according to the concept of “likelihood” asin [16]. In this logic, in-
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stead of using numbers to express uncertainty one would haveexpressions like “p
is likely to be a consistent hypothesis” (since a state is taken as a set of hypotheses
“true for now”). That is, a qualitative notion of likelihoodof events rather than ex-
plicit probabilities. A more detailed comparison between the notions of likelihood
and probability can be found in [15].

ThePFKD45 logic was designed for reasoning with (exact) probabilities, and its
Probabilistic Kripke Model semantics is similar to the one presented in [7,6]. In
those formalisms, a formula is typically a Boolean combination of expressions
of the forma1w(ϕ1) + . . . + anw(ϕn) ≥ c, wherea1, ..., an, c are integers. The
system in [7,6] includes, as axioms, all the formulae of linear inequalities, and
consequently, their proofs of completeness to rely on results in the area of linear
programming. Our logic is conceptually simpler. Furthermore, inPFKD45 we can
express statements such as “p is true, although its probability is less than0.1”,
something that their formalism is unable to represent, oncethey do not allow “w-
free formulae”. The paper [13] is close to ours: it also considers a fixed probability
for the agent that does not depend on the current state, and identifies a probability
of 1 with belief.

Another approach can be found in [21]. The probabilistic epistemic logic used there
is a special case of the one presented in [6]. The additional feature in Milch and
Koller’s work is the fact of having an algorithm for finding the probability of the
defined formula model using Bayesian networks. This allows them to model the
formulae without constructing the probabilistic epistemic model explicitly. That
is, there is no explicit representation of an agent’s probability distribution, or enu-
meration of states/worlds. This is possible once it is assumed that agents have a
common prior probability distribution over outcomes and their beliefs differs only
by different observations.

Finally, PFKD45 differs mainly from other systems for representing beliefsand
probability by allowing only a finite range of probability values, an assumption
that at the same time imposes restrictions about the values that can be assigned
to the possible worlds and permits the restoration of compactness for the logic. In
[23], Ognjanović and Răsković present a probabilistic logic suitable for describing
events in a discrete sample space. Informally, their basic operator expresses that
the probability of a certain event is in a particular set, a notion intuitively similar to
ours.

In summary, we have a language that is conceptually simple and compact. Besides,
by having an implemented module for deciding the probability attribution to the
possible worlds, we have shown how that the language is a powerful tool not only
for theoretical reasoning, but also for effective implementation of computational
agents that deal with uncertainty.
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[23] Z. Ognjanović, M. Răsković, Some Probability Logics with New Types of Probability
Operators, Journal of Logic and Computation 9 (2) (1999) 181–195.
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A Proofs

Proof of Lemma 4:

L1. ¬P≤
1 ϕ ⇒D3 P

<
0 ¬ϕ ⇒D2 P

>
1 ϕ

⇒D1 ¬P
≥
0 ¬ϕ ⇒A4 ⊥

L2. P≥
1 ϕ ⇒L1 P

≥
1 ϕ ∧ P≤

1 ϕ ⇒D1,D3 ¬P
>
0 ¬ϕ ∧ ¬P<

0 ¬ϕ

⇒D2 ¬P
<
1 ϕ ∧ ¬P>

1 ϕ ⇒D4 P
=
1 ϕ

P=
1 ϕ ⇒D4 ¬P

>
1 ϕ ∧ ¬P<

1 ϕ ⇒A1 ¬P
<
1 ϕ

⇒D2 ¬P
>
0 ¬ϕ ⇒D1 P

≥
1 ϕ

21



�

Proof of Observation 2: From right to left is obvious, so supposeF is a base set.
Let d = min{y − x | x, y ∈ F, y − x > 0}. That is,d is the smallest positive
difference between any two members ofF . Letx andy be elements ofF for which
d = y − x. SinceF is a base,(1 − x) ∈ F and, since0 < d ≤ 1, we have
1 − d ∈ [0, 1), and hencey + (1 − x) = 1 − d is also inF . It follows thatd ∈ F ,
and hence allk · d ≤ 1 are such thatk · d ∈ F . But also, these must make upall
elements inF , since if for somef ∈ F , f would not be a multiple ofd, we would
either find ak such thatk · d < f < (k+1) · d or a biggestk with k · d < f < 1. In
both cases,f − k · d would be smaller thand, which is in contradiction with howd
is choosen, i.e., as the minimal distance between two members ofF . �

Proof of Theorem 5:

a) All KD45-properties ofB are derivable inPFKD45:
(1) ⊢ ϕ ⇒ ⊢ Bϕ (directly fromR2)

(2) ⊢ B(ϕ→ ψ) → (Bϕ→ Bψ) (fromA2)

(3) ⊢ ¬B⊥:

By R2, we have that⊢ P≥
1 (⊥ → ⊥) (†)

P≥
1 ⊥ ⇒(†),A1 P

≥
1 ⊥ ∧ P≥

1 (⊥ → ⊥)

⇒A3 P
>
0 ⊥ ⇒D2 P

<
1 ⊤

⇒A0 ¬(¬P<
1 ⊤ ∧ ¬P>

1 ⊤) ⇒D4 ¬P
=
1 ⊤

⇒R2,L2 ⊥

(4) ⊢ Bϕ→ BBϕ (fromA9)

(5) ⊢ ¬Bϕ→ B¬Bϕ

¬Bϕ ≡ ¬P≥
1 ϕ ≡ P>

0 ¬ϕ

⇒A7 P
≥
xi
¬ϕ ⇒A8 P

≥
1 P

≥
x1
¬ϕ

⇒R2 P
≥
1 P

≥
x1
¬ϕ ∧ P≥

1 (¬ϕ→ ¬ϕ)

⇒A3 P
≥
1 P

≥
x1
¬ϕ ∧ P≥

1 (P≥
x1
¬ϕ→ P>

0 ¬ϕ)

⇒A2 P
≥
1 P

>
0 ¬ϕ ≡ B¬Bϕ

b) The ’⇐’ part follows from itema above; the ’⇒’ part will be obvious from the
semantics forPFKD45 given later, together with the soundness ofPFKD45
and the completeness ofKD45.

�

Proof of Lemma 10: It is straightforward to check that all the axioms are valid on
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PFKD45 and that the inference rulesR1 andR2 preserve validity. �

Proof of Proposition 12: We have to show thatP c
F ({Γ | Γ ∈ W c}) = 1. We will

show that the following variant of AxiomA6 is derivable:
A6′ P≥

1 ¬(ϕ ∧ ψ) → ((P=
x ϕ ∧ P=

y ψ) → P=
x+y(ϕ ∨ ψ)) (wherex+ y ∈ [0, 1])

OnceA6′ has been established, we reason as follows: Letri be such thatP=
ri

(γi) ∈
Φ, i.e.,P c

F (Γi) = ri. By Lemma 7 andT3, we know that such anri exists, that it
is unique, and a member ofF . All γi’s are mutually exclusive and their disjunction
is derivable (Proposition 11). But then, usingA6′, we conclude, from(P=

r1
γ1 ∧

P=
r2
γ2) ∈ Φ, thatP=

r1+r2
(γ1 ∨ γ2) ∈ Φ. And since also(γ1 ∨ γ2) andγ3 are mutually

exclusive, we findP=
r1+r2+r3(γ1 ∨ γ2 ∨ γ3) ∈ Φ. Eventually, we findP=

r γ ∈ Φ,
wherer =

∑
i≤n ri andγ =

∨
i≤n γi. Since (use Proposition 11)P≥

1 γ ∈ Φ, we find∑
i≤n ri = 1, i.e.,P c

F ({Γ | Γ ∈W c}) = 1. We finally prove derivability ofA6′.

AssumeP≥
1 ¬(ϕ∧ψ)∧((P=

x ϕ∧P
=
y ψ). We know (Lemma 7 andT3) thatx, y ∈ F .

By Observation 2,F is generated by somed, so letx = k · d andy = m · d. If
k = m = x = y = 0, we have to prove thatP=

0 (ϕ ∨ ψ), which is easy: by
Axiom A4, the only other possibility for the disjunction would beP>

0 (ϕ∨ψ), and
then, by AxiomA5, we would haveP>

0 ϕ ∨ P>
0 ψ, which, (useT2) contradicts the

assumptionP=
0 ϕ ∧ P=

0 ψ. Without lack of generality, assume thatx = k · d 6= 0.
Let z be a number(k − 1) · d < z < k · d. Since we haveP=

x ϕ, usingA3,
we haveP>

z ϕ. UsingA6, we then concludeP≥
t (ϕ ∨ ψ), wheret = z + y, i.e.,

(m+k−1) ·d < t < (m+k) ·d, with (m+k) ·d the smallest number inF greater
thant. UsingA7, we findP≥

(m+k)·d(ϕ ∨ ψ), or P≥
x+y(ϕ ∨ ψ). This means we have

eitherP>
x+y(ϕ∨ψ) orP=

x+y(ϕ∨ψ). The first of these options cannot be, since with
A5 it would yieldP>

x ϕ ∨ P>
y ψ, which is impossible givenP=

x ϕ ∧ P=
y ψ. �

Proof of Lemma 13: We consider the modal case. SupposeP>
s δ ∈ Γ, and let

δ ≡ (γ1∨ . . .∨γv). EitherΓ = Γϕ, and we immediately obtainΦ ⊢ P>
s δ, or else let

γ be the characteristic formula forΓ, then, sinceΓϕ 6= Γ ∈W c, we haveΦ ⊢ P>
0 γ,

and, byA2, we haveΦ ⊢ P>
0 P

>
s δ. By A8, we concludeΦ ⊢ P>

s δ.

Then, Φ ⊢ P>
s (γ1 ∨ . . . ∨ γv), and, byT8, with s ↑ being the first member

of F greater thans, Φ ⊢
∨
ri≥s↑ P

=
ri

(γ1 ∨ . . . ∨ γv). Let t1, . . . , tv be such that
{P=

t1
γ1, . . . , P

=
tv
γv} ⊆ Φ. Let t = t1 + . . . + tv. By definition ofP c

F , we have
P c
F (Γi) = ti (i ≤ v), and, by induction,M c,Γi |= γi. Since every two differentγi

andγj logically exclude each other (Proposition 11), we haveP c
F ({Γi | M

c,Γi |=
γi}) = t, and henceM c,Γ |= P=

t δ. Now, obviouslyt > s, since we have thatΦ is
consistent,Φ ⊢ P>

s δ andΦ ⊢ P=
t δ. We conclude thatM c,Γ |= P>

s δ.

Conversely, supposeM c,Γ |= P>
s δ. Then, for somer ∈ F, bothr > s andP c

F ({∆ |
δ ∈ ∆}) = r. Again, assumingδ ≡ (γ1 ∨ . . . ∨ γv), there arer1, ..., rv, such
that r1 + ... + rv = r, γi ∈ Γi andP c

F (Γi) = ri (i ≤ v). By definition ofM c,
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we haveP=
rx
γrx ∈ Φ. If v = 1, we haveγ1 = δ and r1 = r, and henceP=

r δ.
For v ≥ 2, we show by induction onv that if ⊢ ¬(γi ∧ γj)(i 6= j ≤ v) then
⊢

∧
i≤v P

=
ri
γi → P=

r1+...+rv(γ1 ∨ . . . ∨ γv). For v = 2 this is immediate fromT8,
Theorem 6. Suppose it holds forv, and consider⊢ ¬(γi ∧ γj)(i 6= j ≤ v + 1).
It follows that⊢ P≥

1 ((γ1 ∨ . . . ∨ γv) ∧ γv+1). Now assumeP=
ri
γi (i ≤ v + 1). By

induction, we haveP=
r1+...rv

(γ1 ∨ . . . ∨ γv). UsingT8 again yieldsP=
r1+...rv+1

(γ1 ∨

. . .∨γv+1). This provesΦ ⊢ P=
r δ, and hence, byT1, Φ ⊢ P≥

r δ and byA3, Φ ⊢ P>
s δ

(‡). Now, to arrive at a contradiction, supposeP>
s δ 6∈ Γ. By construction of our set

of formulaeΨ then, we know that for somet ≤ s, P=
t δ ∈ Γ. SinceP c

F (Γ) > 0, we
haveΦ ⊢ P>

0 P
=
t δ, and hence, byA8, Φ ⊢ P=

t δ, which is in contradiction with (‡).
�

Proof of Lemma 16: The⇐ direction is trivial, sinceW 6= ∅. For⇒, observe that
(M,w) |= P≥

x ϕ iff PF ({w′ : (M,w′) |= ϕ}) ≥ x iff (M,u) |= P≥
x ϕ �

Proof of Lemma 18: ψ is in normal form, soψ = δ1 ∨ δ2 ∨ ...∨ δm, whereδi′s are
canonical conjunctions. Supposeσ occurs inδm. Thenσ must be some conjunct
P≥
γ , so thatδm can be written as(λ∧σ). Takingπ to be(δ1 ∨ δ2 ∨ ...∨ δm−1) gives

the desired resultψ = π ∨ (λ ∧ σ). �

Proof of Lemma 19: We sketch the proof of (2). As(M, s) |= P≥
γ β∨¬P≥

γ β, there
are two possible cases to consider.

First Case.Assuming(M, s) |= P≥
γ β we aim to show that

P≥
α (π ∨ (λ ∧ P≥

γ β)) ↔ (P≥
α (π ∨ λ) ∧ P≥

γ β)

For the ‘→’ direction, note that(π ∨ (λ ∧ P≥
γ β)) → (π ∨ λ) is a tautology. Hence,

the truth ofP≥
α (π ∨ (λ ∧ P≥

γ β)) in s implies that ofP≥
α (π ∨ λ) in s (usingA2).

This, together with(M, s) |= P≥
γ β leads to

(M, s) |= P≥
α (π ∨ (λ ∧ P≥

γ β)) → (P≥
α (π ∨ λ) ∧ P≥

γ β)

and this is valid for any state since(M, s) |= P≥
γ β iff ∀u ∈ S, (M,u) |= P≥

γ β.

Concerning the converse, fromP≥
α (π∨λ)∧P≥

γ β we have that bothP≥
α (π∨λ) and

P≥
γ β are true in allu ∈ S. (∀u) (M,u) |= λ iff λ ∧ P≥

γ β is also true. So,

(M, s) |= (P≥
α (π ∨ λ) ∧ P≥

γ β) → P≥
α (π ∨ (λ ∧ P≥

γ β)), and therefore,

(M, s) |= P≥
γ β → (P≥

α (π ∨ (λ ∧ P≥
γ β)) ↔ (P≥

α (π ∨ λ) ∧ P≥
γ β)) (A.1)

Second Case.Assuming that(M, s) |= ¬P≥
γ β, we will show that

(M, s) |= P≥
α (π ∨ (λ ∧ P≥

γ β)) ↔ (P≥
α π ∧ ¬P≥

γ β)
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For the ‘→’ direction, suppose that(M, s) |= P≥
α (π ∨ (λ∧P≥

γ β)). If this holds for
s, it holds for allu. So,

∀u, (M,u) |= P≥
α (π ∨ (λ ∧ P≥

γ β)) (A.2)

By a similar argument,∀u (M,u) |= ¬P≥
γ β, if (M, s) |= ¬P≥

γ β, and hence

(M,u) |= P≥
1 ¬P≥

γ β (A.3)

Combining A.2 and A.3, we getM,u |= P≥
α π. Hence:

(M, s) |= P≥
α (π ∨ (λ ∧ P≥

γ β)) → (P≥
α π ∧ ¬P≥

γ β)

For the converse,π → (π ∨ σ) is a tautology. So, we can say that

(M, s) |= (P≥
α π ∧ ¬P≥

γ β) → P≥
α (π ∨ (λ ∧ P≥

γ β)), and, consequently,

(M, s) |= ¬P≥
γ β → (P≥

α (π ∨ (λ ∧ P≥
γ β)) ↔ (P≥

α π ∧ ¬P≥
γ β)) (A.4)

After considering the two cases we can, finally, use the propositional tautology
[(p→ (q ↔ (p ∧ r))) ∧ (¬p→ (q ↔ (¬p ∧ s)))] → [(q ↔ ((r ∧ p) ∨ (s ∧ ¬p)))],
together with (A.1) and (A.4) to conclude (2). �

Proof of Lemma 21: If M is a model forϕ, it must be a model for oneδi’s in ϕ’s
normal form. It is clear that thisM then satisfies the constraintsCi ∈ C(ϕ), where
Ci is generated byδi. Conversely, every probabilistic modelMi that satisfies the
constraints ofCi ∈ C(ϕ), is a model forδi, and hence forϕ. �

Proof of Theorem 23: We split the proof into two cases.

• ϕ is satisfiable.
The constraints generated will be passed on to the constraint solver. By Lemma 21,
a solution must exist if a model exists, and by Observation 22, the solver will find
a solution if one exists.

• ϕ is unsatisfiable.
By Lemma 21, the constraints generated should have no solution since there is
no model. By Observation 22, the solver will, indeed, fail tofind a solution.

�
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