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1. Introduction

Our overall programme of research is to “provide a logical framework allow-
ing us to describe both individual rational agents and complex organisational
structures”. In this paper we describe one particular aspect of this work
extending the above statement with “.... and to incorporate bounds on the
reasoning (about belief and time) the agent can carry out”. Further still, we
aim to ensure that the logical descriptions we produce for resource-bounded
agents are, in turn, executable. This aim to have executable logical specifi-
cations leads us to extend our statement of research one last time with “....
and to ensure that these logical descriptions are directly executable”. Thus,
in this paper we provide an overview of our previous and future work in this
area, summarising results from the papers [10, 11, 12, 13].

2. Background

We see that, in the early 21st century, software is increasingly able tomi-
grate through large physical/virtual distances,spawnnew computations on
a wide variety of platforms, andaccessvast amounts of information, etc.
Sophisticated software applications are also expected to handle more and
more tasks bothautonomouslyand ‘intelligently’. However, this autonomous
and ‘intelligent’ behaviour is also allowing software to evolveunexpected
autonomous behaviour. This presents developers with several problems: “how
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2 Fisher & Ghidini

can weunderstandwhat such software is doing” and “how can we describe
exactly what itshouldbe doing”? It was partially in an attempt to answer such
questions that the concept of anautonomous agentwas introduced [22, 21].

2.1. AGENTS

An agent is an autonomous entity controlling not only its own state (as an
object does), but also controlling its own actions and choices [22]. While
the general concept of an agent has been very influential in the modelling
and development of autonomous systems, a more specific categorisation is
increasingly useful. The concept of arational agentembodies an agent that
is not only autonomous, but is in some sense ‘intelligent’. Rational agents
typically have their own goals and information and carry out reasoning in or-
der to decide what to do next. By contrast with simpler agents, rational agents
are expected to make decisions that are both ‘rational’ and explainable, em-
ploying flexible autonomous action. As such, the concept of a rational agent
provides a key abstraction for describing and reasoning about such sophisti-
cated systems [23]. Rational agents must be able to adapt their autonomous
behaviour to cater for the dynamic nature of their dynamic environment,
requirements, and knowledge (with any resource constraints). Traditionally,
such agents involve pro-activeness, social ability, and deliberation [20].

2.2. FORMAL AGENT SPECIFICATIONS

The key problems concerning autonomous software, even when modelled in
terms of rational agents, remain as

1. programmingsoftware to do what we require, and

2. verifyingsoftware to ensure the required behaviour will occur.

Formal logic helps with both of these, providing an unambiguous notation,
in which the formal properties of logical descriptions are well understood.
Importantly, logics can be designed to capture many agent varieties. In par-
ticular, choosing the appropriate logic provides a level of abstraction close to
the key concepts of the software.

Unsurprisingly, there are many (logic-based) rational agent theories.
The predominant approach is that of theBelief-Desire-Intention (BDI)the-
ory [18]. Here, beliefs represent the information the agent has aboutitself
and its environment, desires represent its long-term goals and intentions rep-
resent the goals that the agent is actively trying to achieve. Many theories, and
indeed many practical systems, have been built upon these basic concepts. In
providing a logical formalism for rational agents in general (including BDI
agents), combinations ofmodaland temporallogics are typically used [5].
For example, modal logics (technically,KD45 or S5 modal logics) are often
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used to representknowledgeor belief aspects, while temporal (and sometimes
dynamic) logics are used to represent the underlying dynamic nature of such
agents. Motivational aspects, such asdesires, goals, intentions, or wishesare
also typically captured using modal logics (technically,KD modal logics).

Such logical combinations have been used in many works on the formal
specification of rational agents, for example [19, 17, 20, 8].

2.3. EXECUTABLE SPECIFICATIONS

Formal specifications are very useful for describing the (required) behaviour
of rational agents, but how can we use these specifications? One approach is
to use the specifications as a basis from which to develop agent implementa-
tions. Indeed, there are now very many agent programming languages [2].
But what is the link between the practical programming language and its
semantics [3]? And how can we be sure that the program produceddoes
actually implement the logical specification?

Our particular aim has been to bring logical agent theories and pro-
gramming languages closer together, providing both clear program semantics
and formal agent verification. One approach is to attempt todirectly execute
rational agent specifications — in this way, we can be more confident that
the required behaviour is being exhibited by the system. Here, execution of
a formula,ϕ, of a logic,L, is taken to mean constructing a model,M, for
ϕ, i.e. M |=

L
ϕ. This not only provides a close link between the theory

and implementation, but also provides high-level, logical concepts within the
programming language [6].

Our approach actually begins simply with agent specifications given in
a linear temporal logic. Temporal logic [5] is an extension of classical logic
with the notion of temporal order built in. With such logics we can describe
many complex, dynamic properties, though they all reduce to describing what
must be truenow, what must be truenext, and what is guaranteed to be true at
somepoint in the future. This, seemingly simple, view gives us the flexibility
to represent a wide range of computational activities [7].

In its basic form, temporal logic can be seen as an extension of classical
logic, incorporating additional operators relating to temporal order1. These
operators are typically:

‘ h’ . . . . . . . . . . . . . . . . . . . . . . . . “in the next moment in time”;

‘ ’ . . . . . . . . . . . . . . . . . . . . . . . . . . . “at every future moment”;

‘♦’ . . . . . . . . . . . . . . . . . . . . . . . . . . . “at some future moment”.

1 For simplicity, we use a discrete, linear model of time, isomorphic to the Natural
Numbers.
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4 Fisher & Ghidini

These operators give us useful expressive power, and even with such a simple
temporal logic as a basis, we are able to describe individual agents, not only
their dynamic behaviour, but also how their knowledge/beliefs evolve and
how their goals evolve. In a multi-agent context, this also allows us to de-
scribe the structure and evolution of communication, dynamic organisational
structures, and how computation within each organisation evolves.

Our approach to executable agent specifications can be best described
by starting with the basic temporal logic given above and then extending
the logic executed in various ways. So, given a simple temporal formula, as
outlined above, we execute this using theImperative Futureapproach [1]:

− transform the temporal specification into anormal form[7];

− from the initial constraints,forward chainthrough the set of temporal
rules constraining thenextstate of the agent; and

− constrain the execution by attempting to satisfy eventualities (aka goals),
such as♦g (i.e.g eventually becomes true).

In addition, we require some strategy for handlingoutstandingeventualities
(see below). The normal form [7] essentially categorises formulae into 3 va-
rieties:initial rules, of the formstart ⇒ ϕ, which indicate properties of the
initial state;step rules, of the formψ ⇒ hϕ, which indicate properties of
the next state; andsometime rules, of the formψ ⇒ ♦ϕ, which indicate
properties of the future.

2.4. EXECUTION EXAMPLE

Imagine a ‘car’ agent which canstart engine, turn and stop, but can also
break (start fails) or start (started). In addition, it is able to broadcast infor-
mation to other agents. A simple specification, already in our normal form,
might be:

1. start ⇒ ¬moving

2. ¬moving ⇒ hstart engine

3. start engine ⇒ h(start fails ∨ started)

4. true ⇒ h¬(start fails ∧ moving)

5. start engine ⇒ ♦moving

6. start fails ⇒ hstart fails

7. (started ∧ moving) ⇒ hbcast(“here we go!”)
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8. bcast(“here we go!”) ⇒ h(start fails ∨ moving)

Informally, the meaning of these formulae (or ‘rules’) is as follows.

1. movingis false at the beginning of time.

2. If movingis false,start enginewill be true in the next moment.

3. Wheneverstart engineis true, then eitherstart fails or startedwill be
made true in the next moment in time.

4. At any future time, we cannot have bothstart fails andmovingbeing true.

5. Wheneverstart engineis true, a commitment to eventually makemoving
true is given.

6. If start fails is true, then it will also be true in the next state (note that
this effectively means that, oncestart fails is true, then it will always be
true).

7. If both startedandmovingare true then, in he next moment, the agent
broadcasts “here we go!”.

8. Finally, once it has broadcast this, then eitherstart fails or movingwill
again be made true in the next moment in time.

We will briefly show how execution is attempted under theimperative future
view and so how model construction occurs2.

Step 1: from rule 1, build an initial state in whichmovingis false.

⊙

¬moving

Step 2: from rule 2, build a next state in whichstart engineis true.

© →
⊙

¬moving start
engine

2 In the following, ‘ f’ represents a constructed state, ‘⊙’ represents the current state, and
‘⊗’ represents a state we have backtracked from.
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6 Fisher & Ghidini

Step 3: rule 3 gives us a choice of making eitherstart fails or startedtrue
in the next state. We begin by exploring the ‘start fails’ possibility, and note
that rule 5 means that we must also makemovingtrue somewhere down this
branch.

⊙

ր ¬moving,
start fails

© → ©
¬moving start

engine

Step 4: after some further execution it is recognised that we actually cannot
satisfy♦moving sincestart fails is true along this branch, forcingmovingto
be false everywhere along this branch. So, we fail in exploring/executing this
branch. We return to the other option in rule 3, namely thatstartedbecomes
true in the next state. We can now also satisfy♦moving from rule 5, by
makingmovingtrue here.

⊗

ր ¬moving,
start fails

© → ©
¬moving start

engine ց ⊙
started,
moving

Step 5: sincestartedandmovingare both true, then rule 7 leads us to broad-
cast “here we go!”. Other agents in the same environment can receive this
message. Within the execution, however, we are now not allowed to backtrack
past this broadcast event (effectively like a ‘cut’ in Prolog); this is graphically
represented by ‘⇑’.

⊗

ր ¬moving,
start fails

© → ©
¬moving start

engine ց
© → ⇑

⊙
started,
moving “here we go!”
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Step 6: now, rule 8 provides us with a choice and, again, if we take the
start fails option, this leads us to problems.

⊗

ր ¬moving,
start fails

© → ©
⊙

¬moving start
engine ց ր start fails

© → ⇑©
started,
moving “here we go!”

Step 7: however, if we take themovingchoice then execution (and model
construction) can continue.

⊗

ր ¬moving,
start fails

© → ©
⊗

¬moving start
engine ց ր start fails

© → ⇑©
started,
moving “here we go!” ց ⊙

moving

And so on. Execution can continue in this way, can recognise that a previous
state has re-occurred (and so can loop round), or can terminate (if all branches
explored lead to contradictions). Various correctness results are available in
the original papers; see [1], for example.

2.5. DELIBERATION

An important aspect in the above execution approach is the handling of even-
tualities of the form ‘♦ϕ’. These are effectivelygoalsthat the agent is trying
to satisfy during execution. In the above example, there was just one eventu-
ality, but there are usually several. However, it is likely that only a subsetof
these can be satisfied at any moment in time (for example,♦p and♦¬p). So,
we must decide which eventualities to attempt at each moment in time. This
turns out to be crucial both to the correctness of the execution mechanism,
and to the agent’s ability todeliberate.

Outstanding eventualities (i.e. those that must be satisfied, but have yet
to be) are stored in a list. The eventualities are attempted in order from the
beginning of the list. However, in between each state constructed, the list can
be re-ordered. In order to retain correctness, this re-ordering mustbefair [9].
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This ensures that no eventuality will remain ‘untried’, i.e. that all eventualities
are attempted sometimes.

As well as affecting correctness, this re-ordering of eventualities is cen-
tral to deliberation. If we recall the standard view of deliberation within
agent-based systems, it is essentially the process of deciding which goals
the agent should tackle at present, and which approaches the agent should
use to tackle these goals. Since goals in standard (for example, BDI) agents
correspond to eventualities within our framework, then our re-ordering of
eventualities can be seen as providing an ordered list of goals to tackle. In
addition, since the re-ordering process can take into account various other
aspects, then we can incorporate deciding what plans (if we have a notionof
plans) to use in satisfying the goals.

To explain further, consider the simple example below.

2.6. DELIBERATION EXAMPLE

Suppose we begin with the following list of goals/eventualities:

[♦be famous,♦sleep,♦eat lunch,♦make lunch] .

What shall the execution mechanism do?

− The standard approach would be to execute these oldest-first, say:

[♦be famous,♦sleep,♦eat lunch,♦make lunch] .

− However, during deliberation the agent might decide to re-order this list
based on, for example, theimportanceof each goal to the agent. Thus,
the agent might decide that becoming famous is the most important goal
(and that sleeping is less important):

[♦be famous,♦eat lunch,♦sleep,♦make lunch] .

− Again, the agent might re-order the list, this time based on what it has
available plans for. For example, the agent might not have any mecha-
nism for becoming famous, so it moves this goal to lower priority (i.e.
later in the list). However, it does have a way to makeeat lunch true and
so it moves this goal to the front of the list. While examining this goal, it
notes that a sub-goal, in this casemake lunch, must be achieved before
eat lunch and so it puts this sub-goal at the front of the list:

[♦make lunch,♦eat lunch,♦sleep,♦be famous] .

− And so on....
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In this way, agents have a flexible and powerful mechanism for deciding
between (and swapping between) goals/eventualities.

2.7. BELIEF CONTEXTS

In addition to a basic temporal specification of an agent, providing the dy-
namic behaviour for that agent, we also incorporate a number of other formal
components. The most relevant to our discussion here is that of agentbeliefs.
These represent the agent’s view of itself, other agents and its environment.
Such beliefs need not necessarily describe facts, they just capture theagent’s
understanding (and possible misunderstanding) of its world.

Formally, adding beliefs to the agent specification involves adding a
belief operatorBiφ, meaning that “agenti believesφ”. This allows us to
describe more sophisticated agents that are able to reason about their beliefs.
For example, agenti is now able to represent and reason about its own beliefs:

(buy ticket ∧Bilucky) ⇒ Bi♦lottery winner

and is able to interpret external events/communications:

in view(frog) ⇒ BBart can see(frog)
advertisement(donut) ⇒ BHomer good(donut)

While it is standard for such beliefs to be described using aKD45 modal
logic [16], we instead use amulti-context logic of belief[15, 14]. This can
simulate aKD45 modal logic, but allows us much greater control of the belief
structures constructed. As we will see later, this is important when we want
to restrict the depth of beliefs explored during execution.

The reason why multi-context logic facilitates the control of the belief
structures is that it distributes nested belief into different and separated mod-
ules (also calledcontexts) which interact with each other. Let us restrict our
discussion just to the simple case of a single agenti who is acting in a world,
who has both beliefs about this world and beliefs about its own beliefs and
it is able to reason about them. Multi-context logic represents agenti via a
chain of contexts3:

3 For a more detailed description of multi-context logic for belief, see [4] and [14].
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10 Fisher & Ghidini

i Level 0: basic beliefs ofi;

ii Level 1: beliefs thati ascribes to itself;

iii Level 2: beliefs about beliefs thati ascribes to itself;

Leveln: and so on...

Bi

Bi

Bi

The structure depicted above can be easily extended to represent an agent i
having beliefs about the world, beliefs about its own beliefs and beliefs about
other agents beliefs. For instance, we represent agenti having beliefs also
about another agentj as follows

i

ii ij

iii iij iji ijj

Level 0: basic beliefs ofi;

Level 1: beliefs thati ascribes to itself or toj;

Level 3: and so on...

Bi Bj

Bi Bj Bi Bj

We can simulate all the typical properties of belief, and in particular those
of modalKD45 through constraints between adjacent pairs of contexts, con-
nected viaBx labelled edges. For instance, we can simulate modalK by
imposing the condition that

Biφ is in a context at leveln if, and only if,φ is in anyn+1 level context
reachable via aBi labelled edge;

or we can simulate the propertyBiφ ⇒ BiBiφ of modal4 by imposing a
constraint such as:

if Biφ is in a context at leveln thenBiφ is in anyn + 1 level context
reachable via aBi labelled edge.

The precise logical formalisation of these intuitive constraints, together with
its sound and complete axiomatisation, can be found in [14].
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The linear or tree shaped structure is potentially of infinite depth. Infinite
structures reflect the fact that, in using modal logic, people modeli as an ideal
agent able to express and reason about beliefs of arbitrary nesting. The pecu-
liarity of multi-context logic is that we can also bind the length of the chain
to a certain depthn, thus ensuring that there are noBx reachable contexts
beyond a certain level, still allowingi to express formulae of arbitrary nested
belief. The main idea is to treat belief formulae as propositional atoms and to
constrain the truth value ofBiφ in a context at leveln with that ofφ in all
n+1 level contexts reachable via aBi labelled edge, if any. Thus, assume that
i is an agent able to manage only formulae with2 nested beliefs. A formula
BiBiBilucky will be true in contexti

i BiBiBilucky ;

if, and only if,BiBilucky will be true in contextii

i BiBiBilucky ;

ii BiBilucky ;

Bi

if, and only if,Bilucky will be true at the ”bottom” contextiii

i BiBiBilucky ;

ii BiBilucky ;

iii Bilucky ;

Bi

Bi

Once level2 is reached there are no furtherBi labelled edges and the formula
Bilucky is treated as a propositional atomic formula with an arbitrary truth
value. In this work, to mimic the behaviour of modalKD45, we set the truth
value ofBilucky (and all formulaeBiφ) at this “bottom” context tofalse.
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12 Fisher & Ghidini

2.8. ADDING BELIEF TO THE TEMPORAL STRUCTURE

Now, agent specifications include beliefs. Thus, as we execute a specifica-
tion, we must explore a belief structure in addition to a temporal structure.
In addition we might also explore temporal sequences within belief worlds,
obtaining more complex structures as the one in Figure 1.

B1

TL TL TL

B1 B2

B2(TL) B2(TL)

B1B2(TL) B1B2(TL)

B1

Figure 1. Model exploration during execution

Here, the basic temporal sequence (labelled by ‘TL’) is being constructed.
However, at certain points, belief contexts (e.g.B1 andB2) must be explored
in order to decide how to proceed. In addition, within these belief contexts,
temporal execution itself can be simulated, e.g.B2(TL) andB1B2(TL). The
extension of the basic execution algorithm to incorporate belief is described
in [10].

3. Resource-Bounded Agents

With unlimited time and space, we can let the agents carry out all the ex-
ploration necessary to build potentially large/deep structures like the one in
Figure 1 and therefore take their time in constructing the execution. However,
in more realistic scenarios we wish torestrict the exploration/reasoning that
the agent can carry out. Below we consider two, complementary, approaches
restricting belief exploration [10] and temporal exploration [12].

3.1. BOUNDS ONBELIEF EXPLORATION

If, in the original agent specification, beliefs are heavily nested, then reason-
ing about such beliefs tends to be very resource-intensive. It is hardenough
to reason about beliefs or beliefs about beliefs, but reasoning aboutbeliefs
about beliefs about beliefs, and so on, is very difficult. So, we here adopt a
form of resource-bounding which restricts the depth of nesting of beliefs that
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can be considered. This captures a form of resource-bounded reasoning and
ensures that the agent does not spend all its time ‘thinking’.

As we said in the previous section, Figure 1 shows a sample ‘normal’
execution for an agent. Once we set a belief bound we cut off exploration
below this in the hierarchy of belief contexts, as in Figure 2.

B1

TL TL TL

B1 B2

B2(TL) B2(TL)

B1B2(TL) B1B2(TL)

B1

Figure 2. Exploration with a restricting belief bound

Three specific things to notice about the structures in this approach:

1. Once the depth boundk is reached there are effectively no furtherBi

labelled edges to explore. At this pointBiφ = ¬Bi¬φ = false.

2. We allow syntactic control of the belief bound by means of “spe-
cial” propositional constants of the formbelief bound(k). Therefore
belief bound(100 ) would allow quite a lot of reasoning, whilebelief bound(1 )
would allow very little. On the negative side, this approach reduces the
expressivity of the language to syntactically specify changes in the belief
depth bound only among a finite set of values; on the positive side, this
enables us to maintain the formalisation as simple as possible and to
use the execution mechanism described in [10] in order to provide the
prototype implementation.

3. The value ofbelief bound(.) can change over time. The main idea
is that in any temporal state of the basic temporal sequence ‘TL’, if
belief bound(k) is satisfied, then exploration of belief contexts is lim-
ited to depthk at that point. Clearly, we must impose the following
properties onbelief bound(.) in order to ensure that the bound is always
well-defined.

a) In every state, there is at most onek such thatbelief bound(k) is
satisfied.

m∧

k=0

m∧

h=0,h 6=k

¬(belief bound(k) ∧ belief bound(h))
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14 Fisher & Ghidini

b) In every state, there is at least onek such thatbelief bound(k) is
satisfied.

m∨

k=0

belief bound(k)

Thus, for every specification, the above two properties must be estab-
lished. A particular problem here is (b). This only states that there issome
belief depth bound. In reality we would have further formulae specifying
how the value of the bound relates to previous values. Pushing this idea
forward we could also have agents able to reason about their own limits
in a more sophisticated way, and able to decide about these limits. A
discussion about these aspects ofbelief bound(.) can be found in Section
4.

3.2. BOUNDS ONTEMPORAL EXPLORATION

An obvious analogue of restricting reasoning about belief is to restrict the
hypothetical temporal reasoning that is allowed [12]. This bounded temporal
exploration allows us to restrict the diagram from Figure 2 still further, to give
that in Figure 3.

B1

TL TL TL

B1 B2

B2(TL) B2(TL)

B1B2(TL) B1B2(TL)

B1

Figure 3. Restricting hypothetical temporal exploration in addition to belief exploration.

Thus, in addition to bounding the depth of nesting of belief contexts, as ear-
lier, we can also bound the depth of nesting of simulated temporal states. We
might do this as an alternative to belief bounds, or in combination with it. For
example, in Figure 3, we restrict both the belief and temporal dimensions.

This restriction of temporal exploration works in a similar way to the be-
lief bounding, limiting the number of temporal states that can be constructed
in a hypothetical sequence (i.e. one within a belief context). This restriction
can be achieved in a number of ways. The most obvious is to provide a dualto
belief bound(.), namelytl bound(.) which provides a numerical bound on
the number of temporal states that can be constructed. Again the bound will
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be selected from a fixed set of numbers. An alternative approach, explored
in [12], is to use specific varieties of temporal operators with which we can
describe finite sequences. For example, we might say that we are only allowed
5 nested ‘ h’ operators before we reach the end of the possible temporal
sequence.

This approach allows us to bound the temporal, in addition to the belief,
exploration within agent execution.

3.3. EXAMPLE

We now look at an example, derived from that presented in [13, 11]. Consider
two teams of agents, acting as football players, in the situation depicted in
Figure 4.

B2

B1
A3

A2

A1

B2

B1
A3

A2

A1

Figure 4. Two possibilities: (a)A1 shoots; (b)A1 passes toA2.

A1,A2, andA3 belong to the same team, teamA, whereasB1 andB2 belong
to the opposing team, teamB. A1 is the player currently in control of the
ball. The goal ofA1 is to help its own team to score. More preciselyA1 must
establish what is the action that (from its point of view) is more likely to help
its own team in scoring. For the sake of simplicity we suppose thatA1 can
choose between two possible actions, namely

1. trying to score, and

2. giving the ball to another member of its own team.

In order to decide what to do next,A1 should reason about its knowledge
about the game and its beliefs about both the current situation and the other
players. Nevertheless, at different stages of the game,A1 may have different
constraints on how much time it can spend on reasoning. We here consider
two simple cases. In the first scenario,A1 has plenty of resources and so it
may have a reasonable amount of time for reasoning about beliefs. In the
second scenario the game is going to end very soon and a quick decision is
required. This fact will modify the amount of timeA1 is able to spend in
reasoning about beliefs. In particular we consider here the extreme situation
in whichA1 does not have time to performanyreasoning about belief, but it
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16 Fisher & Ghidini

has to decide what to do next considering only its own basic knowledge about
the current situation.

Let us consider a simplified version of the example presented in [11],
where we concentrate on the relevant knowledge ofA1.

1. start ⇒ ball(A1)

2. start ⇒ pass(A1, A2) ∨ shoot(A1)

3. start ⇒ BA1
[shoot(A1) ⇒♦possible score(A1)]

4. start ⇒ BA1
[pass(A1, A2) ⇒ eBA2

[pass(A2, A3)∧ eBA3
(shoot(A3)∧♦likely score(A3))]]

5. ball(X) ∧ pass(X, Y ) ⇒ eball(Y )

6. [ball(X)
V

Y ∈S,X 6=Y ¬pass(X, Y )] ⇒ eball(X)

7. [ball(Y ) ∧ ¬pass(Y, X)] ⇒ e¬ball(X)

8. ball(X) ⇒
V

Y ∈S,X 6=Y ¬ball(Y )

9. ball(X) ⇒ BXball(X)

Informally, the meaning of these formulae (or rules) is as follows.

1. A1 is in charge of the ball at the beginning of time;

2. A1 can pass the ball toA2 or shoot;

3. A1 believes to have some possibility of scoring in the case of shooting;

4. A1 believes that it can pass the ball toA2, and thatA2 will pass toA3

who is in a better position to score;

5. if a playerX is in control of the ball, andX passes the ball to a playerY ,
then at the next moment in timeY is in control of the ball;

6. if a playerX is in control of the ball, and does not pass the ball then at
the next moment in timeX is still in control of the ball;

7. if a playerX does not receive the ball then at the next moment in timeX

is still not in control of the ball

8. at each moment in time there is a unique playerX in control of the ball;

9. if X is in control of the ball thenX believes it is in control of the ball.

jolli08.tex; 28/01/2008; 11:09; p.16



Exploring the Future with Resource-Bounded Agents 17

ball(A1)
pass(A1, A2) ∨ shoot(A1)

ball(A1) shoot(A1)
possible score(A1)

ball(A1)
pass(A1, A2)

ball(A2)

ball(A2)
pass(A2, A3)

ball(A3)

shoot(A3)
likely score(A3)

BA1
BA1

NEXT

BA2

NEXT

BA3

Figure 5. Execution of the football example.

Rules 5 – 9 are valid in any belief context. We omit the transformation of
these formulae in normal form and show directly how execution is attempted
and how the model depicted in Figure 5 is constructed.

Step 1: from rules 1 and 2 build an initial state in whichball(A1) and
pass(A1, A2) ∨ shoot(A1) are true.

Step 2: two alternative paths are explored, one in whichshoot(A1) is true,
and the other in whichpass(A1, A2) is true. In the formerpossible score(A1)
is made true using rule 3.

Step 3: the execution continues exploring the second alternative, and uses
rule 5 to make hball(A2) true.

Step 4: now rule 4 is used to explore the beliefs ofA1 aboutA2 thatA2 will
pass the ball toA3, and then again rule 5 to effectively pass the ball toA3 in
the next moment in time.

Step 5: Finally rule 4 is used again to explore the beliefs ofA1 aboutA2

aboutA3 saying thatA3 will shoot and likely score if he is in charge of the
ball.

If we assume thatA1 has some internal ordering concerning eventualities
and♦likely score(.) is preferred to♦possible score(.), then the agent may
choose to pass the ball toA2 on the basis of the hypothetical reasoning it
has performed. As we can see from Figure 5 this hypothetical reasoningcan
happen under the assumption thatA1 has enough resources to explore belief
about belief about belief. Assume now that the game is going to end soon, and
thatA1 prefers to react immediately to the current situation than to spend time
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ball(A1)
pass(A1, A2) ∨ shoot(A1)

ball(A1) shoot(A1)
possible score(A1)

ball(A1)
pass(A1, A2)

ball(A2)

ball(A2)
pass(A2, A3)

ball(A3)

shoot(A3)
likely score(A3)

BA1
BA1

NEXT

BA2

NEXT

BA3

Figure 6. Adding belief bound to the football example.

”thinking”. In this situation the agent could have a very small belief bound
such asbelief bound(1 ). In this case most of the hypothetical reasoning is
cut away, as we can see in Figure 6, and the agentA1 only has the choice of
shooting directly and trying to score.

4. Exploring the Future

Once we have bounding of belief and temporal exploration, and we have
syntactic control of this, through predicates such asbelief bound() and
tl bound(), then we can consider a variety of more sophisticated extensions.
In this section, we will outline some of these aspects.

4.1. AGENTSADAPTING THEIR BOUNDS TO THEENVIRONMENT

With an explicit representation of the agent’s limitations, through predicates
such asbelief bound() andtl bound(), we can think of ways (using formu-
lae) of specifying how the value of the bound relates to previous values or
to the current situation of the agent. As a very simple example of this con-
sider the following formulae which define how the belief bound might evolve
depending upon whether the agent is indanger, ishappy, or iscautious.

(belief bound(k) ∧ danger ⇒ ebelief bound(kdanger ))

(belief bound(k) ∧ ¬danger ∧ happy ⇒ ebelief bound(ihappy ))

(belief bound(k) ∧ ¬danger ∧ ¬happy ∧ cautious ⇒ ebelief bound(icautious))

(belief bound(k) ∧ ¬danger ∧ ¬happy ∧ ¬cautious ⇒ ebelief bound(k))
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Here the values ofkdanger, is khappy, andkcautious are provided “a priori”
within the specification, but nevertheless provide a simple and effective way
of adapting to different situations.

4.2. AGENTSREASONING ABOUT THEIR OWNL IMITS

Once an agent has an explicit representation of its limitations, through pred-
icates such asbelief bound() andtl bound(), then it is able to reason about
these. In particular, the agent can assess its own bounds to decide whatto
do. For example, it may be that, under the constraint thatbelief bound(34 )
then we can only doα, but if belief bound(35 ) then the agent has a choice
of doing α or β. So, deliberation must be extended to incorporate beliefs
aboutbelief bound() and tl bound(), for exampleBA1belief bound(50 ).
This allows the agent to select its activities based on whether it believes it
has enough time/space to consider these. (It is important to note that, when
BA1belief bound(50 ) is true, this doesn’t imply thatbelief bound(50 ) is
necessarily true, but just describes agentA1’s belief about its belief bound —
it could be wrong!)

This leads on to questions of estimating futurebelief bound() or
tl bound() values (for example, what value willbelief bound() have in the
nextmoment?), what will the agent do if it does not have enough resources
(for example, ask another agent to carry out some of the exploration?),and
should we even take the cost of deliberation into account?!

4.3. WORKING WITH OTHER AGENTS’ LIMITS

While an agent might well know its ownbelief bound() and tl bound()
values, it is unlikely to know this for other agents. Unless told explicitly
by another agent, an agent must estimate (or even guess!) these, for exam-
ple from observations or execution histories. Once an agent can describe
another’sbelief bound() or tl bound(), then it can reason about them and
use them in deliberation.

Reasoning about another agent’s limits can help with

− cooperation— in that the agent can plan/decide to do something that
the other agent can cope with,

− competition— if the agent knows that others have small limits, then the
agent can tackle complex problems with less competition,

− negotiation— similarly if an agent knows the extent of an opponents
capabilities, it might use more sophisticated arguments or negotiation
strategies.
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4.4. DECIDING ON YOUR LIMITS

Once the agent is able toset its own bounds, then it can decide in which
situations to set them appropriately. Thus the agent might deliberate about its
environment and decide whether to have a smallbelief bound()/tl bound()
(i.e. for a quick response) or a large one (i.e. the agent can take its time)?

4.5. EXTENDING THE POWER

In the examples given in this paper, agents are able to specify belief/temporal
bounds usingbelief bound()/tl bound(), where the particular bound is taken
from a fixed set of possibilities. Though this is simple and tractable, there
might well be situations where more complex constraints on bounding are
required. Can we extend the complexity of the bound, for example incorpo-
rating arithmetic or real numbers, while still retaining some tractability?

5. Concluding Remarks

In this paper we have provided an overview of work on executable agent
specifications, particularly focusing on resource-boundedness. Within our
framework, this resource boundedness is achieved through explicit bounds
on the depth of nesting of both belief and temporal contexts. This allows
close control of model exploration as execution proceeds; full details ofthis
approach can be found in [13].

In addition to providing an overview of this work, we have indicated
some extensions being explored. With all such extensions, it is usually a
case of balancing the additional expressive power achieved and enhanced
applicability with both tractability and implementation issues, while at the
same time ensuring continued correctness.
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