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Abstract

In this paper a normal form, callegeparated Normal Form (SNHpr temporal logic formulae is de-
scribed. A simple propositional temporal logic, based oiserdte linear model structure, is introduced
and a procedure for transforming an arbitrary formula o thgic into SNF is described. It is shown
that the transformation process preserves satisfiabititlyemsures that any model of the transformed
formula is a model of the original one. This normal form nolygorovides a simple and concise rep-
resentation for temporal formulae, but is also used as this fiar both a resolution proof method and
an execution mechanism for this type of temporal logic. Iditah to outlining these applications, we
show how the normal form can be extended to deal with firséot@nporal logic.

1 Introduction

This paper provides a description ®éparated Normal Form (SNFR) normal form for tem-
poral logic formulae. This normal form provides a simple and con@peesentation for
temporal statements, with formulae being represented solely in termeeefcbre temporal
operators. In addition to these representational benefits, SNF prokielésisis for a proof
method for discrete temporal logic based upon clausal resolution [18]SMF formulae
comprise the key elements required for temporal descriptions of dyreysiems, namely
information about the current state of the system, what the system caextiand what it
must do atsome timen the future, it is not surprising that SNF is also used as the bésis o
an execution mechanism for temporal logics. This language, callethMM [4, 17], has
been used to represent and animate temporal formulae describing a rangarafdyoncur-
rent and distributed systems. The practical implementations of botietimgoral resolution
method and the MTATEM family of languages make extensive use of the transformation into
SNF of the form described in this paper [17, 10]. This paper providefirzed and extended
account of SNF, the transformation of arbitrary formulae to SNF, amdpiplications of SNF.
As such, it collects together, and extends, work from a number of preyiapers.

In order to present SNF we introduce a simple propositional tempmga, based on a



linear discrete model of time, §R. Both the normal form and the procedure for transforming
arbitrary formulae of the logic into SNF are described and analysggl im §4, the principal
applications of SNF are outlined, while §%b the normal form is extended to a first-order
temporal logic. Finally, ir§6, both a summary and an indication of future work are presented.

2 Propositional Temporal Logic

This section describes a standard propositional temporal logic [118ddallL, based on a
discrete, linear model of time, with a finite past and infinite futurd.[Zhis temporal logic

can be seen as classical logic extended with various modalities, for exagpipte]’, and

“Q’. The intuitive meaning of these connectives is as follo)A is true now ifA is true
sometimeén the future;[_JAis true now ifA is truealwaysin the future; andDA is true now

if Ais true at thenextmomentin time. In this presentation, similar connectives are introduced
to enable reasoning about thast[26].

2.1 Syntax

We begin with the formal syntax of the language. Formulae of PTL arstnasted using the
following symbols.

e A set, L, of propositional symbolsepresented by strings of lower-case alphabetic
characters.

o Classical connectives,, V, A, true, falseand=-.
¢ Future-time temporal operators, categorised as

— unary operatorsQ), <>, [,
— binary operatorsu , andw .

e Past-time temporal operators, categorised as

— unary operators©@, @, ¢, H,
— binary operatorss, and z .

¢ ‘("and ‘)’ which are, as usual, used to avoid ambiguity.
The set ofwvell-formed formula®f PTL (WFF) is defined as follows.

e Any element ofL is in WFF,.

e |[f AandB are inWFFp, then so are

-A AVB AAB A=B (A
OA CJA AuB AwB OA
®A HA AsB AzB ®A OA

Formulae inwFF, can be classified as follows. HKteral is either a proposition (i.e., an
element ofzp), or the negation of a proposition. #tate-formulais either a literal or a
boolean combination of other state-formul&aiture-time formulagnon-strict) are defined
as follows.



o If Ais a state-formula, thefris a future-time formula.

¢ If AandB are future-time formulae, thepA, AAB, AVB, A= B, Au B, Aw B, OA,
A, and []B are all future-time formulae.

Strict past-time formulaare defined as follows.

¢ If AandB are either state-formulae or strict past-time formulae, @, @B, As B,
AzB, ® A andMlB are all strict past-time formulae.

¢ If AandB are strict past-time formulae, the\, AAB, AV B, andA = B are all strict
past-time formulae.

2.2 Semantics

Intuitively, the models for PTL formulae are based on discrete, lineactstres having a
finite past and infinite future, i.e., sequences such as
S0, 815 %25 885 - - -

where eacls;, called astate provides a propositional valuation. However, rather than repre-
senting the model structure in this way, we will define a modghs

o = (N, 1)
where
N is the Natural Numbers, which is used to represent the sequgrses,, Sz, - - ., and,

T, is a map fromN x £, to {T,F}, giving a propositional valuation for each state in the
sequence.

An interpretation for this logic is defined as a péi; i), whereo is the model andthe index
of the state at which the temporal statement is to be interpreted.

A semantics for well-formed temporal formulae is a relation between irg&fons and
formulae, and is defined inductively as follows, with the (infix) senarglation being rep-
resented byl='. The semantics of a proposition is defined by the valuation givendb th
proposition at a particular state:

(o,iyl=p iff mpi,p)=T [for pe Ly].

The semantics of the standard propositional connectives is as in clasgicaklq.,
(o,i) = AvB iff (o,iy=A or (o,i)=B.

The semantics of the unary future-time temporal operators is defined@s<ol

G,i)E OA iff (0, i+1)EA
(o,iy = GA  iff  there existsj € N such thatj > i and(o, j) = A
(o,iy = LJA iff  forall j eN,if j >ithen(o,j)=A

The informal semantics of these operators are as follgwa:means thaf must be satisfied

in the nextstate;>A means thaf must be satisfied aomestate in the future{ JA means
thatA must be satisfied atll states in the future. Additionally, the syntax includes two binary
future-time temporal operators, interpreted as follows.



(0,i) = AuB iff ~ there existk €N, such thak > i and(o,k) |= Band
forall jeN,ifi <j<kthen(o,j) =A

(0, AWB iff  (0,i) = AuB or (o,i)]= [IA

Both AuB andAw B mean thafA must be satisfied up until the point in time wh&és sat-
isfied. The difference between the two operators isAftaB implies thatB mustbe satisfied
at some point in the future, whils’ B does not. This gives the following equivalence.

(AwBA{$B) <« AuB

As temporal formulae are interpreted at a particular state-ingéken indices less thain
represent states that are ‘in the past’ with respect to stat&#he semantics of the unary
past-time operators is given as follows.

o,i) = @A ff (o,i—1)=A or i=0

V= OA if (0,i—1)=A and i>0
iy= @A iff thereexistsj €N, suchthat & j <iand(g,]j) = A
i)=MA iff forall jeN,if0O<j<ithen(o,j)=A

Note that, in contrast to the future-time operators, e (“sometime in the past”) andill’
(“always in the past”) operators are interpreted as bsingt, i.e., the current index is not
included in their definition. Also, as there is a unique start state,aerinebeginning of
time, two different last-time operators are used. The difference betweer@hand ‘@’
operators is that for any formuky @A is satisfied, while@A is not, when interpreted at the
beginning of time. In particula@falseis only satisfied when interpreted at the beginning of
time. Note that the following equivalence relates these two last-tireeatqrs.

0-A & @A

Apart from their strictness, the binary past-time operators are airtol their future-time
counterparts; their semantics is defined as follows.

(o,i) = AsB iff ~ there existsk € N, such that & k < i and{o,k) |= B and
forall jeN,if k< j <ithen(o,j) = A

(o,iy) = AzB iff  (0,i) F AsB or (o,i) = RA.

The<) and ] (and their past-time counterparts) can be derived fromttend s’ operators
(s and z respectively) as follows:

OA & trueuA
LA & Awfalse

We now give the definitions of the satisfaction of formulae by motdedswill be used later.

Definition 1 (Satisfaction) A well-formed formula,A, is satisfiedin a particular modelg,
at a state-index, if, and only if, (0,i) = A. Similarly, a well-formed formula4, is satisfied
in a model, g, if, and only if, Ais satisfied ino, at state-index 0.

Definition 2 (Satisfiability) A well-formed formula,A, is satisfiableif, and only if, there
exists a model in whicl is satisfied.



Thus, a formulaA, is satisfiable if, and only if 3c. (0,0) = A'. An alternative definition of
satisfiability, sometimes found in the literature, is that a formiias satisfiable if, and only

if, ‘3o. 3i eN. (o,i) |= A'. Note that satisfiability in terms of either of these definitions can
be transformed into satisfiability in terms of the other.

3 A Normal Form for Propositional Temporal Logic

The normal form that we introduce is called Separated Normal Form [18fadtoriginally

derived as part of the development of an executable subset of temporgUpgyil, but was

found to have wider applicability, particularly in temporal theorerawong. The variety we
introduce here is a slight generalisation of that found in our earliekwaut can easily be
transformed if necessary.

3.1 Separated Normal Form
Formulae in Separated Normal Form (SNF) are of the form
n
AR = R).
i=1

Here, eactP, is anon-strict past-time temporal formula and eaEhis anon-strictfuture-
time formula. Each of the® = F’ (calledrules) is further restricted to be of one the follow-
ing

n
®false = \/rc (aninitial rule)
c=1

| m n
Aparn O Ao = \/rc (al-rule)
a=1 b=1 c=1

| m
ApPaAh O A = s (@-rule)
a=1 b=1

where eaclpg, gy, rc Or sis a literal.

Recall that the formul@false canonly be satisfied at the beginning of time, thus ensur-
ing that the initial rule can only be applied there, while any formulénefform@A cannever
be satisfied at the beginning of time, thus ensuring that thand<{>-rules can be applied
everywhere.

In this simple propositional case, the conjunction of literals orl¢ftehand side of each
[ J-rule, i.e.

[
A\ Pa
a=1
can be moved on to the right-hand side by negating each conjunctionx&opée,
| m n
/\pa/\ O/\Qb = \/rc
a=1 b=1 c=1

IHere, ‘non-strict’ means “including the present”.




becomes |
n

m
OAdw=\-pav\re.
b=1 a=1 c=1
Such a transformation is used, for example, in the execution mechanisemfporal formu-
lae (se€4.2) where the left-hand sides of each rule simply represent ‘firing tiondi from
the previous state. Note, however, that in the first-order cas§%¥é®e above transformation

may not be desirable.

Benefits of Concise Representation

An important observation about SNF is that a wide range of temporidiatts can be repre-
sented using only a simple set of operators. These operators allowdasdnbe properties
of the current state, of the transitions that can occur between the curreriteamekt state,
and of situations that will occur at some, unspecified, state in the fukbis feature has im-
plications for the use of temporal logic as a programming language&4s2g where a range
of powerful temporal constructs can be coded in terms of these simple ofgeritence,
the programming language implementor need only efficiently implemeriabie temporal
operations, while programmers have a simple, yet powerful, deserifghguage at their
disposal.

3.2 Translating to SNF

In this section we describe an algorithm for transforming an arbitrdiy f®rmula into a
set of SNF rules (comprising purely past-time formulae on theitaftd sides, as described
above). Rather than justifying the correctness of the translation hereilvgemply describe
the main steps, returning to the discussion of correctnef% &

Before providing the detail of the algorithm we will review the teijue ofrenaming
which is used extensively in this algorithm.

Renaming Transformations

Renaming was originally used in classical logic to preserve the structdoemulae when
rewriting to a normal form [29, 9]. The technique simply considteeplacing a sub-formula
by a new proposition symbol and linking the truth value of thésvnsymbol to the sub-
formula that has been replaced. In PTL, we must also ensure that this lm&intained at
every momentin time.

Consider, as an example, the temporal fornfpii@ A (bw ¢)). If the subformulaba ¢
is renamed using the new proposition symbaglthe full formula becomes

Q@anx) A xe (buc)).

Note that, we can replace they’ in the additional renamed formula by, only under the
condition that the renamed subformula has positive polarity (iceyis under an even num-
ber of negations). Although such simplifications will be utilisatel we will not apply them
in the PTL to SNF translation described here. We also note that thour ‘es’ instead of



‘&’ preserves satisfiability, a model for the transformed set of rulestiguaranteed to be a
model for the original formufa
Although we have described this renaming as an operation on PTL forntuénically
represents a translation of formulae in Quantified Propositional Teahpogic (QPTL), an
extension of PTL in which quantification over propositions is allof&g]. Thus, the new
formulais really
Ix. $lanx) A (xe (buc)).

However, as we only use QPTL in order to introduce new propositiery.x, and as we do
not require that the new formula be logically equivalent to the neébone, we can ignore
this aspect until the correctness of this renaming procedure is discurs$8d3).

We now describe the procedure for translating an arbitrary PTL forintdeSNF.

From PTL to NNF

The first step in the transformation simply involves rewriting thrmula so that all negations
only appear when applied to propositions. This is analogous to trargstaassical formulae
into Negation Normal Form (NNF), and utilises the obvious corragpoces:

—|(A/\ B) — —=AV -B —|(A\/ B) — —=AA-B

—-true — false —false — true

-—A — A —|°A — .—\A

-OA —- O-A - @A — O-A

-[JA = O-A -HA - ®-A

-OA = [J-A -®A — H-A
ﬂ(A‘U B) — (ﬂB)‘W (ﬂA A —|B) —|(A5 B) — (ﬂB) Z (ﬂA A —|B)
—\(A‘I/V B) — (—\B)‘U (—\A A —|B) —\(AZ B) — (—\B).S (‘!A A —\B)

These are applied exhaustively to the formula, thus producing a nemufa in Negation
Normal Form for PTL (NNE).

From NNF, to Flat Rule Form

A formula in Rule Formis simply written as

OAR=F)

where eaclP is a (non-strict) past-time formula and eaghis a (non-strict) future-time
formula.Flat Rule Formis a further refinement of this where neiti®mnorF contain nested
temporal operators and whefecontains at most one temporal operator.

Translating from a general NNFormula to Flat Rule Form consists of three distinct
steps, as follows.

1. Apply
A— [|(@false= A)

2This follows from the fact that iX = Y, thenmodels(X)C models(Y)and so some models ¥f might not be
models ofX.



which ensures that the formula is of the correct general structuré (j(&X = Y)). This
transformation can be justified by recalling thatAao be satisfiable, some model must
be found such tha is satisfied by that model at the beginning of time. Thus, anchoring
the formula to the beginning of time (as above) has no effect on itfisdiiity.

2. Use renaming to ensure that the components of Bagh- are in the appropriateast
= futureform. Traditionally, this requireseparation24, 23], however we can utilise
renaming to achieve the same effect. For example, to extract a past-timer&ehiop-
mula,Q, from inside a formula containing the:"” operator, we can use the following
transformation rufé

(P=AUQl —> {P = A‘UX}

Q & x

3. Again use renaming, but this time to ensure that no nested tempenators occur.
For example, we might rename the rile= {>(Ru S) as follows.

P= ORuUS} — {;’ - %’S}

Again, both X' and 'y’ are anewproposition symbols.
In both steps (2) and (3) above we use renaming transformations géttezal form

(P=r(a)} — {Z " 27(2)}

where7 (4) is a temporal formula containing the sub-formala

Removing Unwanted Temporal Operators

We now turn to the removal of temporal operators from rules in flat e f We will present
a series of transformation rules which assume that the operator to beeémmgpears on its
own on either the left-hand or right-hand side of a rule. Before daagribhese transforma-
tions, we will review how to ensure that temporal operators appearednaivn at one side
of arule.

Recall that, in flat rule form, not only are there no nested temporal opsydtotr also
there is at most one temporal operator appearing on the right-handfsideltorule. As all
negation operators only apply to propositions, then the only opesabeside the principal
temporal operator, that can appear on either side of a rule/aend ‘A’. In order to ensure
that one side of a rule contains a formula with the temporal operatty tatp level we can
apply a variety of rewrite rules.

The first pair of rewrite rules can be used to ensure that the top-Ipezhtor of the
left-hand side of a rule is temporal.

{PVQ=F} — { g z E } (whereP, Q are arbitrary formulae)
{PAQ=F} — {P = -QVF} (whereQ is a non-temporal formula)

3We introduce rules of the formX < B’ for clarity, though these can later be reduced to a pair Efssuch as
‘A= B'and ‘-A = -B'. These new rules must, in turn, be translated into YNF



The second pair of rewrite rules carry out a similar process, but forigie-hand side of
rules.

{P=FAG} — { g z 2 } (whereF, G are arbitrary formulae)
{P=>FVG} — {PA-G = F} (whereG is a non-temporal formula)

Obviously, we must ensure that the second rules in each pair are not appii@tliously as
each could undo the action of the other.

We can now proceed to remove the unwanted future-time temporal operatorshe
rules in flat rule form, as follows.

| AAY
Removalof []:  {P= [JA} — { A/\y}

3

Removal of O: {P= OA} — {

'U'UO-UQ-UO-U
Jy Tl stV U

_ BV (AAW)
Removal ofw : {P = AwB} — { w BV (AAW) }
BV (AAW)
Removal of ¢ : {P=> AuB} — 0B
Ow < BV(AAW)

Note that the 21’ operator is transformed into a set of rules including t¢ operator. This

is related to the fact that/ * can be defined as a minimal fixpoint [33]. The transformation
rules for the past-time operators are derived in a similar way. For eeathe rules for the
‘s’ (a minimal fixpoint), and z’ (a maximal fixpoint) are as follows. However, note that
because of the finite past constraint, tige’‘operator is not required in the translation of*

V(AAX)) = F

V(AAX) & X

V(AAW) = F

V(AAW) & w

Note that in all these transformations removing temporal operat@ sythbolsw, x, y andz
again represemewproposition symbols.

Removalofs: {AsB=F} — { ES
Removalofz: {AzB=F} — (B
B

Into SNF

By this stage, we have reduced the temporal operators to those requidFpand have a
set of rules in the correct general form. The final step to SNF is to mangpillatclassical
operators on each side of these rules to ensure exactly the SNF forrmgDhis process,
we rewrite the right-hand side of each rule into Conjunctive NorRmaim (CNF), treating
formulae of the form}| as literals, and rewrite the left-hand side of each rule into Disjuectiv



Normal Form (DNF) in the usual way, but with the following additéd rewrite rules.

OPAOQ — @(PAQ)
OPANO®Q — O(PAQ)
OPA BQ — O(PAQ)
OPA OQ — O(PAQ)
Oo(PvVQ — OPV OQ
®OPVQ) — @OPV @Q

Finally, the following rewrites are exhaustively applied to each rule.

(P= (FAG) —» {P > F}

P = G
{(PVQ) = F} —» {g - E}
(@R=F} — {;fslse z E}

P=VREVOL} — {A-RAP= I}

The first two rules simply de-construct conjunctive formulae, thedthile ensures that the
* @’ operator only applies tafalse, while the final rule ensures thdt-rules contain nothing
but the>-formula on their right-hand side.

3.3 Correctness of PTL to SNF Translation Steps

We will now provide correctness results for the translation from RIISNF presented in
§3.2. As mentioned above, if we are working in the framework of QP EL.tthnslation pro-
cess results in a formula that is logically equivalent to the originahfda. Thus, assuming
that the transformation procedure is characterised’hwhere for any formula, T(A) is in
SNF, then we would expect that

For A< X T(A)

wherexis the set of new propositions introduced during the translationgss.
However, as we are considering a translation within PTL, rather thanLQ€& two
properties that we prove about the translation process are as follows.

Theorem 3 (Preservation of Satisfiability) Given a formulaA in WFF,, if A is satisfiable,
S0 isT(A).

Theorem 4 (Reliability of Models) Given a formulaA in wrF,, if T(A) is satisfied in a
modelo, thenAis also satisfied iw.

If we use renaming that introduces new rules of the foxm-' A, rather than X < A’, The-
orem 3 still holds, but Theorem 4 does not. Though both results airables for example if
we wish to execute the transformed formula ($£€), certain applications, such as temporal
resolution, only require Theorem 3 (si&1).

Before considering the full PTL to SNF translation process, we wilp that the basic
renaming procedure for PTL formulae has the above properties (assumimgused in the
renaming). In order to do this for the general case, we first introduamtieept of acontext

10



Definition 5 (Context) A contextis taken to be a function ovevFrF, which embeds its ar-
gument at a given position in an enclosing formula.

For example, we might define a contexas follows.
?(X) = $(anX)

whereX is any formula inwFF,
Given the above definition of a context, we can state the general theoretrrabauning,
as follows.

Theorem 6 (Renaming) Given a formula,z (B), where4 is a context and is in WFF,
then letC be the formula
a(b) A (b < B)

where b’ is a new propositional symbol (i.eb does not occur anywhere withim or B).
Given these constraints,
1. if 2(B) is satisfiable, the@ is satisfiable, i.e.
if Jo.(0,0) = a(B) then 3d'.(d’,0) = C,
and,

2. any model foC is a model forz (B), i.e.
Vo. if (0,0) = C then (0,0) = a(B).

Proof Assuming a particular formula(B), in which the subformul8 is to be renamed, we
prove the two parts of this theorem separately as follows.

1. if 2(B) is satisfiable, them (b) A [J(b < B) is satisfiable.
Prove by contradiction. Assume thatB) is satisfiable and, in particular, that it is

satisfied by the mode, i.e. (0,0) = 2 (B). Now also assume that(b) A [ 1(b < B)
is unsatisfiable. Given these assumptions, we can derive a contradict@lvas.

Given that(c,0) |= 4 (B), then either

(a) the satisfaction of the formuka(B) within o does not depend up@at any time,
or,

(b) the satisfaction of the formula(B) within o depends on the satisfaction Bfat
at least one point i@.

In the first case, we can replaBeby any proposition, so long as that proposition does
not already occur im, and satisfaction i will be preserved. In particular, we can
replaceB by the new proposition symbbland we know thato, 0) |= 4 (b), thus giving

a contradiction.

In the second case, by the semantics of PTL, whatever form the contekes, the
question of the satisfiability of (B) within o will depend upon the satisfiability &
within g, i.e., whethefo,i) = B for a particular index. Recall that the proposition

is defined in such a way that it is satisfied at a particular moment in timedfpaty

11



if, B is satisfied at that point. Thus, singe,i) |= B then we can construct a mod#|
that agrees witlw except tha{o’,i) = b if, and only if, (0,i) = B. Now, sincebis a
new proposition symbol, then we know that,0) = a (b)

Thus,(d’,0) = a(b) A [J(b & B), giving a contradiction.

2. if (0,0) = a(b) A [J(b < B), then(o,0) = a(B).
As (0,0) = a(b) A [](b & B) then, withino, the propositiorb is satisfied at exactly
those indices that the formullais satisfied at. In particular, wherever the formalg)
depends on the satisfaction lmfthenB will be satisfied at that point. Thus, whatever
the contexta is, thenc is also a model for (B).

Note again that, since the ‘new’ symbmHoes not occur at all withiez (B), then its
value does not affect whethar(B) is satisfied in any model or not.

Removal of Maximal Temporal Fixpoints

The other major transformation that we utilise in the PTL to SNFdiation is that of re-
placing various (future-time) temporal operators by their fixpoint dt&gims*. This is based
upon the simulation of fixpoints using QPTL [33], and particulaxiycerns the removal of
those temporal operators representethagimalfixpoints, i.e.,[ ] andw . Note that theu
operator can be represented as a combination of operators based upon maxoirasfagd
the > operator (which is retained within SNF), i.e.

PuQ = Pw QA $Q
Recall that a variety of temporal operators can be represented as fixpoints, e.g.
Pw Q = v QV (PAOY)

and we use the representation of such fixpoints in QPTL [33, 3] as tiefoasur transfor-

mations. Note that, while the fixpoint representation can also be uspddttime formulae,

each fixpoint formula will only have at most one solution (due ®@®fihiteness of the past).
Consequently, there is no distinction between maximal and minimal fitxpdn this past-

time case. We can state the properties we require of such transformatoa$armally, as

follows.

Theorem 7 (Fixpoint Removal) Consider a future-time temporal operator corresponding to
a maximal fixpoint, say&. F(§). If the operator occurs in a formula within a temporal con-
text, for example¢’, then occurrences of the operator can be replaced by a new proposition
‘r’, with the new formulal_I(r < F(r)) conjoined to the whole formula. This transformation
satisfies

1. if c(v€. F(&)) is satisfiable, thew (r) A [1(r & F(r)) is satisfiable, and,

2. any model forr (r) A [1(r & F(r)) is a model forc (V€. F(§)).

4The removal of past-time operators is achieved in a diftenery, associated with the finite-past restriction.

12



Proof A fixpoint of the form

VE. F(&)
can be represented by the following QPTL formula [33].

X xS FX) AV LYSFY) = (y=X AX
S—— ~~
Existence Maximality

The ‘existence’ part of this formula states that there is some priiqost, which satisfies the
fixpoint formulax < F (x), while the ‘maximality’ part ensures that this particular propositio
is the greatest solution of the fixpotnt
Now, recall that replacing the propositional variabteii Ix. x & F(x) by a new propo-
sition, ‘p’ (i.e., one that has not been used before) is an operation that preservesoour tw
required properties. This gives us
p& F(p)

together with the appropriate minimality/maximality constraint.wdwer, if we apply this
translation to maximal fixpoints, then we can remove the need to have hritaxaximality
constraint by enclosing the above formula byla”operator. For example, as

Pw Q = V& QV (PAQE)

then any occurrence & Q can be replaced by the (new) propositian tith the following
formula added.
(ue QV(PAQu)

Thus, the translation of maximal fixpoints into QPTL, the removatxibtential quantifica-
tion from the derived QPTL formula, and the removal of explicit maxityadonditions all
preserve the two desired properties.

Correctness of full PTL to SNF translation

We can now prove both Theorems 3 and 4. We do this by showing that eachfstep o
transformation from PTL to SNF preserves the two properties requissdely

e if aformulaAis satisfiable, then the transformed formul@), is also satisfiable, and,
e if the transformed formula,(A), has a model, then this is also a modePof

In fact, the majority of the translation steps preserve logical equivalehagh, in turn, im-
plies both these properties. In such cases, we will omit the proofs.
We consider each step in the translation process in turn.
1. From PTL to NNF
As this involves simply ‘pushing’ negation operators through temporal formula,
and as each patrticular rule applied can be justified directly from the semanBd4.of
this step produces a formula that is logically equivalent to the algin
2. From NNF to Flat Rule Form

This step consists of three particular transformations.

5Note thatx C y if, and only if, x = y.
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(@) A— [(@false= A)
Recall that we are only interested in the satisfaction of a formula at state 0
Thus, while the[ ] operator means the formula must be satisfiedllastates,
the ‘@false =’ ensures that the formula is anchored at state 0. Consequently, a
formula that is logically equivalent to the original is produced.

(b) Renaming for embedded past-time formulae.
Here, renaming is used and so, by Theorem 6, both the desired properties are
preserved.

(c) Renaming for embedded future-time formulae.
Again, by Theorem 6, both the desired properties are preserved.

3. Removing Unwanted Temporal Operators
This step utilises the removal of two forms of temporal operator.

(a) Simple transformations, such as the removalof:*

0z & A

From the semantics of PTL, we can immediately see that the desired properties
are preserved.

(b) Inthe case of future-time temporal operators, we rewrit@to a combination of
w and<{> operators and use Theorem 7 to show that removing maximal fixpoints
preserves the required properties.
In the case of the past-time temporal operatoend z , we observe that because
of the finite past employed in PTL, the maximal and minimal fixpoints ciole.
In particular, by unwinding the fixpoint definitions a finite numioétimes, we
can provide the value of either type of fixpoint, the only differenceppeheir
value at the beginning of time.

{P:>OA}—>{P = Z}

4. Into SNF

The rules applied in this step consist of classical rewrite rules suchoas tised to
transform to CNF and DNF, together with simple temporal rewrites agch

OPA OQ — O(PAQ).

All these transformations produce a formula that is logically eqaiviaio the original
formula. The proof of this follows simply from the semantics oflPT

Thus, we have shown that each of the transformation steps preserveplegties outlined in
Theorems 3 and 4.

Relaxing Constraints

We briefly mention the effect of using transformations that introduaglications, rather
than equivalences. We note that both the renaming procedure and the refnoadimal
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fixpoints can be refined to introduce>’, rather than <’. Although the set of SNF rules
produced in this case is smaller than it would have beersif we used, the Renaming
Theorem (Theorem 6) must be weakened. In particular, the second condéme|ynthat

any model for the transformed formula is a model for the originahiaa, is lost. Thus the
revised Renaming Theorem is as follows.

Theorem 8 (Renaming (Revised))Given a formula,a (B), wherea is a contextB is in
WFFp, andB occurs within an even number of negations withinthen letC be the formula

a(b) A O(b = B)

where b’ is a new propositional symbol (i.eb does not occur anywhere withim or B).
Given these constraints, if(B) is satisfiable, thef is satisfiable, i.e.

if Jo.(0,0) = a(B) then 30’ (d',0) = C.

3.4 Complexity of PTL to SNF Translation

To give an indication of the complexity of the transformation frofLRo SNF, we will
consider the main components of the transformation process separateligws.f

Complexity of Renaming Transformations

In classical propositional logic, the renaming of formulae to derivé&@Ninear in the length
of the formula [29]. In our transformation to SNF, a similar coaxity is found for renaming
transformations using=’, while exponential complexity occurs whes” is used.

Renaming using =’ Assuming that no temporal transformations are required, the worst
case is when each subformula of the initial formula must be renamed by progosition.

In this situation, both the following transformations must bplegal to rename all the subfor-
mulae of each component of a rule.

{ﬂMﬁF}—%{T%j:E}
(P= 7(B)} —9{P > “”}

y & B

In each case, the renamed subformula will be duplicated, giving a potexpiahential in-
crease in the size of the formula. Note, however, that in practice the rerfamadae tend
to be relatively simple.

Renaming using =’ The worst case, as above, is when each subformula of the initial
formula must be renamed by a new proposition. Again, both theviitig transformations
must be applied to rename all the subformulae of each component of a rule.

{ﬂMﬁF}—»{T%zzE}
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(P= 7B} — {'; - g(y)}

Here, however, the subformula& é&nd B) are not duplicated and there is simply a linear
increase in both the number of rules and the number of propositions.

Complexity of Transformations for Removing Temporal Operators

In a similar way to the renaming case above, several transformations thateeéemporal
operators not only add new rules, but also duplicate subformulaese thew rules. Again,
if ‘<’ is used, an exponential increase in the size of the formula is pessifbiile if ‘=" is
used, we can show that only a linear increase occurs.

For example, the transformation that involves the largest duplicaticubformulae is
that for removing the Z* operator:

@BV (AAW) = F}

{AzB=F} — {.(BV(A/\W)) = w

Once the past-time component is rewritten, this new set of rules dggarsix rules con-
taining three occurrences the subformilaogether with two occurrences of bodandB.
However, if we carry out three renaming transformatibeforethis temporal transformation,
we can ensure that the formulaeB andF are replaced by new proposition symbols. Thus,
renamingA, B andF by a, b and f respectively, the transformation Az B = F becomes:

;

A = a )
B = b
f = F
Ob = f
{AzB=F} — O(anw) = f
Ob = W
O(arnw) = w
@false = f
| @false = W

Thus, in the worst case, temporal transformations of this form ghireear increase in the
number of rules (though 9-fold in this case!) and a linear increase inutmder of proposi-
tion symbols.

Complexity of Remaining Transformations

Of the remaining transformations, the one that has the largest mteathplexity is that
occurring in the final phase where the left-hand side of each rule isttewimto DNF. Thus,
in the worse case, this will be an exponential operation, though in prastical cases the
formulae involved will be very small.

We have shown that the overall complexity of the transformatiorxporential at worst,
though in most practical situations the complexity will be governgdbether we use=’

or ‘c’. In particular, unless the DNF translation in the final part of thecpes dominates,
the transformation using=" will involve a linear increase in the number of rules and a linear
increase in the number of proposition symbols.
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3.5 Examples

In this section we present brief examples of the transformation frolt&@BNF.

Example 1

As an example of rewriting an arbitrary temporal formula into SNFsaber the following
(contradictory) formula.

(a=O@Aa) AaAl A OO

Converting this formula to SNF, the following set of rules is ganed.

@false
@false
@false
Oa
Oa a
Ob Ol

The first three rules represent the fact that, andb must be satisfied at the first state. The
fourth rule says that whenevatis satisfied, theh will be satisfied in the next state, and the
fifth rule says that ifa is satisfied, thea will also be satisfied in the next state. The final rule
states that ondeis satisfied{>—I will be satisfied in the next state.

Note that, as these rules are applied globally, aricas been satisfied, rule 5 ensures that
awill always be satisfied. In this case, rule 4 ensureslthall always be satisfied.

oupdwNpE
2
— T — o

Example 2

Consider the temporal formula
pu (asb) A & [c.

The translation process can be applied to produce the following setfof@hiks.

1 @false = dvf
2. of = <d
3. d = ¢

4 Od = d

5. @®false = evp
6. ®false = evw
7. @false = evg
8. 0g = e
9. Ow = evp
10. Ow = evw
11 Ob = e

12 ©(ane) = e

Here, rules 1-4 capture the formut& ¢, rules 4-10 capturegu €, and rules 11 and 12
defineeto be ‘asb'.
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4  Applications of SNF

The two main applications of SNF immediately follow from Theorems 3 and e first
is a temporal resolution method that can be applied to formulae in SNiEhwalies on
Theorem 3. The second is the direct execution of temporal formulae inv@héh relies on
both theorems.

4.1 Temporal Resolution

The classical resolution rule (for propositional logic) matches comgieany literals in dif-
ferent subformulae [30], i.e.

AV p

BvV-p

AvVB

The development of resolution has not only led to the developmeratsbttieorem-provers
for classical logics, but is also the basis for a variety of programnainguages [25]. Indeed,
proof procedures based on this rule are the most widely used method cdmiginh classical
logics [30, 35]. In spite of this, few resolution methods have b#ereloped for temporal
logics. The majority of theorem-proving tools for temporal logiesénbeen based on either
tableaux or automata [34, 31]. One resolution method that has been deéddpased on
non-clausalresolution [2], whileclausalresolution methods have been investigated by [8,
32].

So, what are the problems in transferring the form of resolutioa oultlined above to
temporal logics directly? In some cases there are no problems. For exdintipdeclauses
appear within the context of the “always in the future” operatbr,,‘ then the following
version of the resolution rule can be applied.

LI(AV p)
L1(BV-p)
C(AVB)

In fact, in certain cases, such a rule can even be applied to complementary litpedsiag
in different temporal contexts. For example, when the “sometime inuhed” operator,
(>, is used, the following resolution rule can be applied.

LI(AV p)
Q(BV-p)
O(AVB)

Thus, several combinations of temporal formulae can be resolved (ttioughlae such as
$(AvV p) and<>(BV —p) can not be resolved in this way as there is no guarantee that the
‘Av p’and ‘BV —p’ sub-formulae refer to the same moment in time). As the two operators,
‘[’ and {}’, are the basic connectives of modal logic, clausal resolution rules aftibee
form have been applied to modal logics [12].

Consequently, the main approaches have either involved the definitiesafition rules
for a range of possible combinations of temporal operators, e.g.claosal temporal res-
olution [2], or the use of a normal form such as SNF. The advantageedatter approach
is particularly that, as most of the temporal operators are removed imathgation, fewer
resolution rules are required.
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Thus, in using SNF, we are not only able to cope with a wide varietjutfre-time
temporal operators, such &3, [], and<{>, but are also able to represent temporal formulae
containingpast-timetemporal formulae. Further, SNF can also be extended to some standard
modal logics, providing a simple normal form for modal form§lae

Given a set of formulae in SNF, we would like to apply resolutioresubf the type de-
scribed above. In particular, it would also be useful to apply the faliguule.

LI(AV p)
¢ (BV-p)
$(AVB)

Unfortunately, in discrete temporal logics, both tli¢*‘and ‘[ ]’ operators can appear, and
can interact in an inductive way. In particular, a formula containing bbthese operators
may contain another hiddénl-formula. For example, consider the formula

[la= O@Aa) AaAl.

It is not immediately obvious that this formula impliesl, yet temporal resolution applied
to the above formula together with—I should generate a contradiction.

Thus, as well as defining a normal form, a temporal resolution rule thiatagognise
such[_]-formulae must also be provided. Because of the interaction betwee thand
‘]’ operators, recognising]-formulae requires some form of induction. For example, an
inductive argument is required in order to establish that the abovesfarimplies[ ]I. Such
a temporal resolution method, based upon SNF, has been developed [18].

As the formula is now written as a set of SNF rules, the non-temparabpthe resolution
process corresponds closely to classical resolution upon these rulemajdréemporalpart
of the procedure now consists of recognising hiddéffiormulae within sets of SNF rules.
The above formula, conjoined with the contradictdy:| formula is rewritten into the SNF
rules shown in Example 1 i§3.5. Since these rules appear in a concise form, it is possible
to define a procedure to find such ‘hiddén-formulae [18]. Indeed, a variety of algorithms
have been developed in order to achieve this [10].

4.2 Execution of Temporal Formulae

In recent years a number of programming languages based upon the directaexettein-
poral logic formulae have been developed, being utilised particulartiieé representation
and implementation of a range of dynamic behaviours [21]. A particataily of executable
temporal logics uses the normal form developed here as its basis.

The basic idea behind the MATEM framework [4, 17] is to directly use a temporal
formula in order to build a model (in our case, a sequence) for that faerrihlis corresponds
to execution in traditional programming languages and provides a laadghagcan be used
either for prototyping of temporal specifications, or as a high-lexeramming language in
its own right.

Rather than presenting a detailed description of tterMEM execution mechanism,
we will outline how SNF rules can be executed using the basic ideas framrniEM. The
intuition behind execution is provided by the simple observatiam, in SNF, the initial rules
provide constraints upon the initial state, while tieaysand<) rules provide constraints

60nce translated to modal logics, the normal form is simieatht provided by Mints [28].
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upon thenextstate. Thus, given a program, represented as a set of SNF rules, we canatonstru
the first state in the sequence. We can then construct the next state, gwamnrnt state
and, by applying this iteratively, can construct the whole state sequence.

Thus, the model structure produced is a sequence of states, with afiédiestart point,
state 0. Execution starts at this initial state, and steps through eaclnstiagestructure in
turn. When this process is complete (at some trans-finite momenttrineture will be a
model for the temporal formula represented by the SNF rules.

To give some idea of the execution process, we will consider the ergacofian SNF
rule of the formL = Rexecuted at an arbitrary statein the structure that we wish to label.
As mentioned ing3.1, we modify SNF slightly by moving all non-temporal literalstha
right-hand side of each rule by negating each conjunction. Thus, thiedett sides of each
rule simply represent conditions on the previous state.

We can split the discussion about the execution of our rule into twescasimely where
t =0 and wherée > 0, as follows.

t =0: As we wish to construct the initial state, we only consider rulebeform
®false = R

As R is a disjunction of literals, this provides us with a choice of labgti for the
initial state. The execution mechanism simply chooses one of these aticuesio
construct the next state £ 1).

If the execution mechanism turns out to have matbacchoice of disjunctions then
execution will eventually backtrack to this choice point.

t > 0: As we wish to construct stategiven that Q...,t — 1 have already been constructed,
we consider only non-initial rules. The antecedent of the rulés evaluated in the
model at the current state, However, sincd. is guaranteed to be of the forr®M’
(see above), we instead evalukten the previous state ¢ 1).

If M evaluates to false, then there is nothing more to be done with tlasbylvirtue
of the meaning of%’, because®false = Ris true regardless d?.

If M is evaluated to true, i.do,t — 1) = M, then we must ensure th@t,t) |= (@M =
R) is preserved by forcingo,t) E R.

Again, R can either be an eventuality, or a disjunction of literaldR 1§ an eventuality
that can be satisfied, it will be, otherwise it will be recorded. In either @shoice of
labelling is made fot and construction continues ontte- 1.

When the program consists of several rules, and the interpreter is &teaveiere the an-
tecedents of more than one rule evaluate to true, the consequents of¢lessful rules are
conjoined to form a single formula which must be made true. Thuseiforogram consists
of rulesL; = R;, andL,,...,L, evaluate to true in the current model, then the formula to be
made true iRy A --- ARn.

In this way, a model for the program can be iteratively constructed. Matedue to the
finite model property of PTL, we can constrain the execution so that &hwdlil eventually
be produced (possibly after a period of backtracking), this is not the icathe first-order
extension. In this case, execution is seen just astemptto build a model [5].

For a longer description of KITATEM, including elements such as I/O, strategies for satis-
fying eventualities, backtracking, loop-checking mechanisms and corre¢¢sass, see [4,
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17]. Although much of the development of SMATEM has been suspended in favour of
Concurrent MeTATEM [20, 15], the language has applications in system modelling [13],
databases [14] and meta-level representation and planning [6].

5 First-Order SNF

In this section, we outline how SNF can be extended to cope with fidgrdemporal logic.

In order to present this, we first extend PTL to a first-order tempogat) called FTL, which
incorporates both theonstant domaimssumption with regard to quantification, and the use
of rigid designators.

5.1 Syntax of First-Order Temporal Logic

Well-formed formula®f FTL (WFF;) are generated from the symbols of PTL together with
the following.

o Aset,Lp, of predicate symbolsepresented by strings of lower-case alphabetic charac-
ters.

Associated with each predicate symhaljs a non-negative integearity(p).
(Note that ther , associated with PTL represents the subset of the abpeensisting
of predicates with arity 0.)

e A set,ry, of variable symbolsx, y, z, etc.
e A set, z¢, of constant symbols, b, c, etc.

e Aset, ., of function symbolsf, g, h, etc.
Associated with each function symbdl,is an arity, given byarity(f).

e Quantifiersy and3.
The set oterms ~t, is defined as follows.

1. Bothry andzc are subsets of;.

2. Ifty,...,thare inL;, andf is a function symbol of arity, thenf (ty,...,tn) isin ;.
The set of well-formed formulae of FTIWFF;) is defined as follows.

1. Ifty,..., tn are inLt, andpis a predicate symbol of arity, thenp(ty, . .., t,) is in WFF;.

2. if AandB are inwFF;, then the following are inFF;
-A AvB AAB  A=B (A
OA CJA AuB AwWB OA
®A  HA AsB AzB OA @A

3. If Ais in wrF; andvis in Ly, then3v. Aandvv. A are both inwrF;.

Sub-classifications of/FF; are the obvious extensions of those definedier,,.
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5.2 Semantics of First-Order Temporal Logic
To provide a model structure for FTL, the model structure for P¥é&xitended to be
0 = (N, T, T, T, D)
where
¢ N is the Natural Numbers,
e T, is now a map fronN x £, to »" — {T,F}, wheren s the arity ofp,
e T;is a map fromec to 0,
e T1; is a map frome to 2" — D, wheren is the arity off, and,
e D is the domain over which quantifiers range.

Thus, for a particular state-indeixand a particular predicafeof arity n, 1,(i, p) represents
a map from n-tuples of elements ofto T or F. Note that theconstant domaimssumption
is used, i.e., thab is constant throughout the model.

Next, variable assignmentandterm assignmentare defined. A variable assignment is
a mapping fromzy to elements ofp. Given a variable assignment, and the valuation
functions,c andTt;, associated with a particular model structure, a term assignmeista
mapping fromz; to », defined inductively as follows.

e if ce LcthenTyn(C) = T(C)
o if fersthentyn(f(ty,... tn)) =10 (F)(Tyn(ts), ..., Tyn(tn)) [where arity f) = n]
o if ve Ly then typ(v) =V (v)

The semantics of a well-formed formula is given with respect to a modedtstre, a state at
which the temporal formula is to be interpreted, and a variable assignfilea satisfaction
relation, ="', again relates such tuples to well-formed formulae.

The semantics of a predicate is given by the truth value of the predicalieajmm as
defined in the model:

(0,i,V) = p(X1,....%n) iff T(1, p)(Tyn(X1), ..., Tun(X%n)) = T.
Finally, the semantics of quantifiers is defined as follows.
(o,ib,V)E ¥x. ¢ iff forallde o, (0,i,VTix—d)E?d
(0,i,V)E Ix. ¢ iff  there existsd € , such thafo,i,V t[x—d]) = ¢

As an interpretation now consists of a triple, comprising model, statex, and assignment
components, a well-formed formuld, is now said to be satisfied in a particular modelat
an indexi, and under a particular variable assignm#htif, and only if, (0,i,V) = A. The
definition of satisfiability, given earlier, is similarly extended.

In this paper, closed formulae, i.e. formulae containing no free variablksnainly be
used. In this case, the empty mappifigis used as the initial variable assignment.
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5.3 First-Order SNF

We can now extend the definition of SNF to cover FTL, giving us FinsteD SNF [19]. A
formula in First-Order SNF (SN is of the form

OAVE (R = F)

i=1
where ¥’ represents a vector of variables,, X,, ..., Xi,,. Consequentlyyx; represents
iy VXipe o VX
andP, (x;,Y;) represents
H(Xil,XiZ, e :Ximayilsyiza e :yik) .
Now, in SN, each rule is further restricted to be one of the following.

n

®false = 3z \/rc(%,2)

c=1

| m n
[VY- A pa(%.9) A © /\qb(fiﬂ] = 3z \/r(%.2

a=1 b=1 c=1
| m

[w—. A %911 © /\qu—-,yw] S 5Ok
a=1 b=1

where eaclhpa, Qy, rc Or sis a literal. (Note the similarity between the original SNF and
SNF.)

Before describing the extra transformation rules for transfornfily to SNF (over
those given ir§3.1), we will outline some of the problems traditionally encouedsin pro-
ducing a normal-form for first-order temporal (and, indeed, modalt$og

Some problems with quantifiers

The major problem encountered in first-order temporal (and modal) lagiteiinteraction
between quantifiers and temporal operators. In particular, equivalences such as

Gvx.px) & vx.Opx)

do not, in general, hold. Howevegnamingcan again be used to replace certain subformulae.
For example, the formul@Vx. p(x) can be rewritten as

Qy A Ly & vx p(x))

Note that the new subformula defining the value of the propasiiibis itself in an ‘SNF-
like’ form. We use this property to define renaming transformatiamns=TL in the next
section.
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5.4 First-Order Renaming Transformations
We can state a first-order version of tRenaming TheoreifTheorem 6), as follows.

Theorem 9 (First-Order Renaming) Given a formula,a (B(X)), where4 is a context and
B is a formula inwrF; with free variablesy, then letC be the formula

A(b(x)) A LIvy. (b(y) < B(Y))
where b’ is a new predicate symbol ang < |y|. Given these constraints,

1. if 2(B(X)) is satisfiable, thef is satisfiable, i.e.
if Jo.3V.(0,0,V) = a(B(X)) then 30’.3V'. (d',0,V') E C,
and,

2. any model foC is a model fora (B(x)), i.e.
Vo.W. if (o,0V)|=C then (0,0,V)]= a(B(X))

The transformation process, together with its correctness argumdig; foose presented
for SNF in§3.2 and§3.3. Rather than detail the whole process, we just mention a few of the
transformation rules based upon renaming.

The following two transformations can be used to remove quantifiera #mbedded
temporal contexts. (Note that, in the transformation rules thadvigithe variables andy ™
are assumed to be universally quantified across the formulae.)

{P(X) = 7 (Vw. B(x,w)) } — { E((})"(;j) : vasbg?}w) }

{QX) = 7(3zC(x2)} — {CQ(%?) Z, 52(%)27)2)}

Similarly, we can provide transformations which can be used to ensatdltere are no
embedded quantifiers on the left-hand side of a rule. These rules aredaisetithose given
above. For example, embedded existential quantifiers can be removed usfotjctivang
rule (wherep is a general past-time context).

(rewew) = FRL — { G000 2 L0

The other transformation rules, for example those relating to thevahof temporal opera-
tors, carry over from their propositional versions.

5.5 Examples

In order to give a flavour of the FTL to SNRranslation, we provide the following two
examples.
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Example 1

Given the formulad ] vx. p(x) = <>(vz [Jq(x,2)), the above transformations can be applied
to give
Ovx. px) = by
A
[JVx. b(x) < Vz [Jq(x 2

Then the temporal formuld, Jg(x,z), can be removed from the context of the quantifier, and
the resulting formulae can be put in rule form, giving

p(X) = Ob(x)
b(x) = c(x,2
—b(x) = 3z -c(x,2)
cly,w) = qy.w)
cly,w) = ay.w)
Oat,v) = qt,v)
Oat,v) = a(t,v)
—'C(y,W) = <>_‘q(y,W)

Example 2

In this example, we will show how, as in the propositional cas€,can be used in renaming,
rather than&'. We will start with a formula that is already in the ‘past impliesuig’ form:

[IVx. [@3z c(zX)] = [a(X)w (VY. b(x,y))]

First, the embedded quantifier is removed from the future-time compogenerating the
following rules (again, we assume that all variables not explicitlytatare universally bound
at the outer level).

1. [©@3zc(zx)] = aX)w q(Xx)
2. gix) = Vy.b(xy)

Similarly, the embedded quantifier is removed from the past-time coemipgiving the
following.

1. Q@e(x) = axX)wq(x)
3. —ex) = Vz-c(zX)

All the quantifiers now occur at the outer level of each component, soitheoperator can
be replaced by its fixpoint definition, giving the following.

1. Oex) = qX V(a(X) Au(x))
4. Qu(x) = q(x) Vv (a(X) Au(x))

Next, the universal quantifiers that appear in the future-time compspéntles 2 and 3 are
moved to the outer level, giving the following replacements for thatesr (Note that the
variablesy andz are now implicitly universally quantified at the outer level.)

2.9 = b(xy)
3 czx) = eXx
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Finally, rules 1 and 4 are split to ensure that the future-time compasferach rule is a
disjunction of literals. This splits rule 1 into new rules 1a anddid splits rule 4 into the
new rules 4a and 4b. Thus, the final set of $SM#es produced from the original formula is

la. Qe(x) = q(x)Va(x
1b. Oew) = q(w)V uw)
2 ax) = b(xy)
3 c(zx) = ex
4a. Qu(y) = qg) a(y)

4. Ouz = q@Vvu®

Recall that the scope of each variable is restricted to a single rule. Thugatiable X' in
rule 2 is not the same as the variakl@a rule 3.

5.6 Properties ofSNF;

Any arbitrary FTL formulae can be transformed into SNFhis preserves analogous prop-
erties to those of the transformation to SNF, namely that the procedure

1. preserves satisfiability, and,

2. any model for the transformed formula is a model for the origioahiula.

6 Conclusions

In this paper a normal form for discrete, linear temporal logic has been pegsérne proce-
dure by which arbitrary formulae are transformed into this normanfloas been investigated.
This procedure has been implemented as part of a number of systems,riguwdéh tempo-
ral proof and temporal execution.

The key observation about this normal form is that a range of temparibees can be
represented using only a simple set of operators. Theseoperators allow us to describe
properties of the current state, of the transitions that can occur betweeunrteat and the
nextstate, and of situations that will occur at some, unspecified, state inttive fWWe argue
that these aspects represent the essential features of dynamic systenes, Wwattlave shown
how, by representing temporal formulae in this way, both proof and ¢éxecmechanisms
become both simpler to state (and implement) and more readily understood

6.1 Related Work

Manna and Pnueli have shown that every PTL formula can be written as @nctiop of a
safety and a liveness formula [27]. SNF extends this further so dmatttte safety formula
can be given as a set of transition rules (L.8-formulae), while the liveness formula can be
characterised by non-neste(* operators.

Cavali and del Cerro [8] provided an alternative normal form for temparahéilae and
applied it to temporal resolution. However, their normal form is naliyanore complex
than the one described here, but also not as easy to extend to full temgacalSomilarly,
Venkatesh [32] provides a normal form for use with a clausal proof noethgain, our
normal form is both simpler and extends to past-time temporal faenul
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Related normal forms have been developed for modal logics, in particulanjaybert
and del Cerro [12], and by Mints [28].

6.2 Future Work

There are several obvious areas leading from this work. For example wodkes required
on refining the complexity bounds for the transformation procestat®d to this is the ques-
tion of how much these bounds can be reduced by using more specific rertactingques
(such as using=' rather than <’ in certain cases [29]). Although a translator from FTL to
SNF; has already been produced, #féicientimplementation of the transformation process
would then also be undertaken.

The transformations described in this paper have been applied to a sgeujficral logic.

A patrticularly important area of future work involves the developnoénarieties of SNF for
extensions of PTL. For example, we are considering alternative temmpaaéls, such as
densdemporal logics [7], which require a version of SNF with bagti and ‘« * as the basic
operators, and temporal logics witifinite past where SNF is extended to incorpora*.
We are also investigating the translation of more expressive pitaptd temporal languages,
such agitl [3], to SNF.

An important direction to explore is what, if any, are the useful ietgtns of SNF (e.qg.,
temporal horn clauses [1]). We are looking at the definition of theseigisnhs, their ex-
pressive power and the complexity of the transformation from ayittormulae to these
restricted classes.

Finally, the applications developed using SNF continue to be imegsiil. Work both on
more refined temporal resolution techniques, and on improved executimnitiahgs contin-
ues.
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