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Abstract

In this paper a normal form, calledSeparated Normal Form (SNF), for temporal logic formulae is de-
scribed. A simple propositional temporal logic, based on a discrete linear model structure, is introduced
and a procedure for transforming an arbitrary formula of this logic into SNF is described. It is shown
that the transformation process preserves satisfiability and ensures that any model of the transformed
formula is a model of the original one. This normal form not only provides a simple and concise rep-
resentation for temporal formulae, but is also used as the basis for both a resolution proof method and
an execution mechanism for this type of temporal logic. In addition to outlining these applications, we
show how the normal form can be extended to deal with first-order temporal logic.

1 Introduction

This paper provides a description ofSeparated Normal Form (SNF), a normal form for tem-
poral logic formulae. This normal form provides a simple and concise representation for
temporal statements, with formulae being represented solely in terms of three core temporal
operators. In addition to these representational benefits, SNF provides the basis for a proof
method for discrete temporal logic based upon clausal resolution [18]. As SNF formulae
comprise the key elements required for temporal descriptions of dynamicsystems, namely
information about the current state of the system, what the system can donextand what it
must do atsome timein the future, it is not surprising that SNF is also used as the basis of
an execution mechanism for temporal logics. This language, called METATEM [4, 17], has
been used to represent and animate temporal formulae describing a range of dynamic, concur-
rent and distributed systems. The practical implementations of both thetemporal resolution
method and the METATEM family of languages make extensive use of the transformation into
SNF of the form described in this paper [17, 10]. This paper provides a refined and extended
account of SNF, the transformation of arbitrary formulae to SNF, and the applications of SNF.
As such, it collects together, and extends, work from a number of previous papers.

In order to present SNF we introduce a simple propositional temporallogic, based on a
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linear discrete model of time, inx2. Both the normal form and the procedure for transforming
arbitrary formulae of the logic into SNF are described and analysed inx3. In x4, the principal
applications of SNF are outlined, while inx5 the normal form is extended to a first-order
temporal logic. Finally, inx6, both a summary and an indication of future work are presented.

2 Propositional Temporal Logic

This section describes a standard propositional temporal logic [11], called PTL, based on a
discrete, linear model of time, with a finite past and infinite future [22]. This temporal logic
can be seen as classical logic extended with various modalities, for example ‘}’, ‘ ’, and
‘ g’. The intuitive meaning of these connectives is as follows:}A is true now ifA is true
sometimein the future; A is true now ifA is truealwaysin the future; andgA is true now
if A is true at thenextmoment in time. In this presentation, similar connectives are introduced
to enable reasoning about thepast[26].

2.1 Syntax

We begin with the formal syntax of the language. Formulae of PTL are constructed using the
following symbols.� A set, L p, of propositional symbolsrepresented by strings of lower-case alphabetic

characters.� Classical connectives,:, _, ^, true, falseand).� Future-time temporal operators, categorised as

– unary operators:g,}, ,

– binary operators:U , andW .� Past-time temporal operators, categorised as

– unary operators: ccdeefgg, w,}� , ,

– binary operators:S , andZ .� ‘(’ and ‘)’ which are, as usual, used to avoid ambiguity.

The set ofwell-formed formulaeof PTL (WFFp) is defined as follows.� Any element ofL p is in WFFp.� If A andB are inWFFp, then so are:A A_B A^B A) B (A)}A A AU B AW B gA}� A A AS B AZ B wA ccdeefggA

Formulae inWFFp can be classified as follows. Aliteral is either a proposition (i.e., an
element ofL p), or the negation of a proposition. Astate-formulais either a literal or a
boolean combination of other state-formulae.Future-time formulae(non-strict) are defined
as follows.
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� If A is a state-formula, thenA is a future-time formula.� If A andB are future-time formulae, then:A, A^B, A_B, A) B, AU B, AW B, gA,}A, and B are all future-time formulae.

Strict past-time formulaeare defined as follows.� If A andB are either state-formulae or strict past-time formulae, thenccdeefggA, wB, AS B,
AZ B,}� A, and B are all strict past-time formulae.� If A andB are strict past-time formulae, then:A, A^B, A_B, andA) B are all strict
past-time formulae.

2.2 Semantics

Intuitively, the models for PTL formulae are based on discrete, linear structures having a
finite past and infinite future, i.e., sequences such as

s0; s1; s2; s3; : : :
where eachsi , called astate, provides a propositional valuation. However, rather than repre-
senting the model structure in this way, we will define a model,σ, as

σ = hN;πpi
where

N is the Natural Numbers, which is used to represent the sequences0;s1;s2;s3; : : :, and,

πp is a map fromN�L p to fT;Fg, giving a propositional valuation for each state in the
sequence.

An interpretation for this logic is defined as a pairhσ; ii, whereσ is the model andi the index
of the state at which the temporal statement is to be interpreted.

A semantics for well-formed temporal formulae is a relation between interpretations and
formulae, and is defined inductively as follows, with the (infix) semantic relation being rep-
resented by ‘j=’. The semantics of a proposition is defined by the valuation given to that
proposition at a particular state:hσ; ii j= p iff πp(i; p) = T [for p2 L p]:
The semantics of the standard propositional connectives is as in classical logic, e.g.,hσ; ii j= A_B iff hσ; ii j= A or hσ; ii j= B:
The semantics of the unary future-time temporal operators is defined as follows.hσ; ii j= gA iff hσ; i +1i j= Ahσ; ii j= }A iff there existsj 2N such thatj � i andhσ; ji j= Ahσ; ii j= A iff for all j 2N, if j � i thenhσ; ji j= A

The informal semantics of these operators are as follows:gA means thatA must be satisfied
in thenextstate;}A means thatA must be satisfied atsomestate in the future; A means
thatA must be satisfied atall states in the future. Additionally, the syntax includes two binary
future-time temporal operators, interpreted as follows.
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hσ; ii j= AUB iff there existsk2N, such thatk� i andhσ;ki j= B and
for all j 2N, if i � j < k thenhσ; ji j= Ahσ; ii j= AW B iff hσ; ii j= AUB or hσ; ii j= A

Both AUB andAW B mean thatA must be satisfied up until the point in time whereB is sat-
isfied. The difference between the two operators is thatAUB implies thatB mustbe satisfied
at some point in the future, whileAW B does not. This gives the following equivalence.(AW B^}B) , AUB

As temporal formulae are interpreted at a particular state-index,i, then indices less thani
represent states that are ‘in the past’ with respect to statesi . The semantics of the unary
past-time operators is given as follows.hσ; ii j= wA iff hσ; i�1i j= A or i = 0hσ; ii j= ccdeefggA iff hσ; i�1i j= A and i > 0hσ; ii j= }� A iff there existsj 2N, such that 0� j < i andhσ; ji j= Ahσ; ii j= A iff for all j 2N, if 0 � j < i thenhσ; ji j= A

Note that, in contrast to the future-time operators, the ‘}� ’ (“sometime in the past”) and ‘ ’
(“always in the past”) operators are interpreted as beingstrict, i.e., the current index is not
included in their definition. Also, as there is a unique start state, termed thebeginning of
time, two different last-time operators are used. The difference between the ‘ccdeefgg’ and ‘ w’
operators is that for any formulaA, wA is satisfied, while ccdeefggA is not, when interpreted at the
beginning of time. In particular,wfalseis onlysatisfied when interpreted at the beginning of
time. Note that the following equivalence relates these two last-time operators.ccdeefgg:A , : wA

Apart from their strictness, the binary past-time operators are similar to their future-time
counterparts; their semantics is defined as follows.hσ; ii j= ASB iff there existsk2N, such that 0� k< i andhσ;ki j= B and

for all j 2N, if k< j < i thenhσ; ji j= Ahσ; ii j= AZB iff hσ; ii j= ASB or hσ; ii j= A:
The} and (and their past-time counterparts) can be derived from theU andW operators
(S andZ respectively) as follows:}A , trueUA

A , AW false

We now give the definitions of the satisfaction of formulae by modelsthat will be used later.

Definition 1 (Satisfaction) A well-formed formula,A, is satisfiedin a particular model,σ,
at a state-index,i, if, and only if,hσ; ii j= A. Similarly, a well-formed formula,A, is satisfied
in a model, σ, if, and only if,A is satisfied inσ, at state-index 0.

Definition 2 (Satisfiability) A well-formed formula,A, is satisfiable if, and only if, there
exists a model in whichA is satisfied.
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Thus, a formula,A, is satisfiable if, and only if, ‘9σ: hσ;0i j= A’. An alternative definition of
satisfiability, sometimes found in the literature, is that a formula,A, is satisfiable if, and only
if, ‘ 9σ: 9i 2N: hσ; ii j= A’. Note that satisfiability in terms of either of these definitions can
be transformed into satisfiability in terms of the other.

3 A Normal Form for Propositional Temporal Logic

The normal form that we introduce is called Separated Normal Form [18]. Itwas originally
derived as part of the development of an executable subset of temporal logic[4, 16], but was
found to have wider applicability, particularly in temporal theorem-proving. The variety we
introduce here is a slight generalisation of that found in our earlier work, but can easily be
transformed if necessary.

3.1 Separated Normal Form

Formulae in Separated Normal Form (SNF) are of the form

n̂

i=1

(Pi ) Fi) :
Here, eachPi is anon-strict1 past-time temporal formula and eachFi is anon-strictfuture-
time formula. Each of the ‘Pi ) Fi ’ (called rules) is further restricted to be of one the follow-
ing wfalse ) n_

c=1

rc (an initial rule)

l̂

a=1

pa ^ ccdeefgg m̂

b=1

qb ) n_
c=1

rc (a -rule)

l̂

a=1

pa ^ ccdeefgg m̂

b=1

qb ) }s (a}-rule)

where eachpa, qb, rc or s is a literal.
Recall that the formulawfalsecanonlybe satisfied at the beginning of time, thus ensur-

ing that the initial rule can only be applied there, while any formula ofthe form ccdeefggA cannever
be satisfied at the beginning of time, thus ensuring that theand}-rules can be applied
everywhere.

In this simple propositional case, the conjunction of literals on theleft-hand side of each
-rule, i.e.

l̂

a=1

pa

can be moved on to the right-hand side by negating each conjunction. For example,

l̂

a=1

pa ^ ccdeefgg m̂

b=1

qb ) n_
c=1

rc

1Here, ‘non-strict’ means “including the present”.
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becomes ccdeefgg m̂

b=1

qb ) l_
a=1

:pa _ n_
c=1

rc :
Such a transformation is used, for example, in the execution mechanism for temporal formu-
lae (seex4.2) where the left-hand sides of each rule simply represent ‘firing conditions’ from
the previous state. Note, however, that in the first-order case (seex5) the above transformation
may not be desirable.

Benefits of Concise Representation

An important observation about SNF is that a wide range of temporal attributes can be repre-
sented using only a simple set of operators. These operators allow us todescribe properties
of the current state, of the transitions that can occur between the current and thenextstate,
and of situations that will occur at some, unspecified, state in the future.This feature has im-
plications for the use of temporal logic as a programming language (seex4.2), where a range
of powerful temporal constructs can be coded in terms of these simple operators. Hence,
the programming language implementor need only efficiently implement thebasic temporal
operations, while programmers have a simple, yet powerful, description language at their
disposal.

3.2 Translating to SNF

In this section we describe an algorithm for transforming an arbitrary PTL formula into a
set of SNF rules (comprising purely past-time formulae on their left-hand sides, as described
above). Rather than justifying the correctness of the translation here, wewill simply describe
the main steps, returning to the discussion of correctness inx3.3.

Before providing the detail of the algorithm we will review the technique of renaming
which is used extensively in this algorithm.

Renaming Transformations

Renaming was originally used in classical logic to preserve the structureof formulae when
rewriting to a normal form [29, 9]. The technique simply consistsof replacing a sub-formula
by a new proposition symbol and linking the truth value of this new symbol to the sub-
formula that has been replaced. In PTL, we must also ensure that this link is maintained at
every moment in time.

Consider, as an example, the temporal formula}(a ^ (bU c)). If the subformula ‘bU c’
is renamed using the new proposition symbol ‘x’, the full formula becomes}(a ^ x) ^ (x, (bU c)) :
Note that, we can replace the ‘,’ in the additional renamed formula by ‘)’, only under the
condition that the renamed subformula has positive polarity (i.e., occurs under an even num-
ber of negations). Although such simplifications will be utilised later we will not apply them
in the PTL to SNF translation described here. We also note that though using ‘)’ instead of

6



‘,’ preserves satisfiability, a model for the transformed set of rules is not guaranteed to be a
model for the original formula2.

Although we have described this renaming as an operation on PTL formulae,it technically
represents a translation of formulae in Quantified Propositional Temporal Logic (QPTL), an
extension of PTL in which quantification over propositions is allowed[33]. Thus, the new
formula is really 9x:}(a^ x) ^ (x, (bU c)) :
However, as we only use QPTL in order to introduce new propositions, e.g.x, and as we do
not require that the new formula be logically equivalent to the original one, we can ignore
this aspect until the correctness of this renaming procedure is discussed (in x3.3).

We now describe the procedure for translating an arbitrary PTL formulainto SNF.

From PTL to NNF p

The first step in the transformation simply involves rewriting the formula so that all negations
only appear when applied to propositions. This is analogous to translating classical formulae
into Negation Normal Form (NNF), and utilises the obvious correspondences::(A^B) ! :A_ :B:true ! false::A ! A: gA ! g:A: A ! }:A:}A ! :A:(AU B) ! (:B)W (:A^ :B):(AW B) ! (:B)U (:A^ :B)

:(A_B) ! :A^ :B:false ! true: ccdeefggA ! w:A: wA ! ccdeefgg:A: A ! }� :A:}� A ! :A:(AS B) ! (:B)Z (:A^ :B):(AZ B) ! (:B)S (:A^ :B)
These are applied exhaustively to the formula, thus producing a new formula in Negation
Normal Form for PTL (NNFp).

From NNFp to Flat Rule Form

A formula in Rule Formis simply written as

î

(Pi ) Fi)
where eachPi is a (non-strict) past-time formula and eachFi is a (non-strict) future-time
formula.Flat Rule Formis a further refinement of this where neitherPi norFi contain nested
temporal operators and whereFi contains at most one temporal operator.

Translating from a general NNFp formula to Flat Rule Form consists of three distinct
steps, as follows.

1. Apply
A�! ( wfalse) A)

2This follows from the fact that ifX) Y, thenmodels(X)�models(Y)and so some models ofY might not be
models ofX.
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which ensures that the formula is of the correct general structure (i.e.(X)Y)). This
transformation can be justified by recalling that forA to be satisfiable, some model must
be found such thatA is satisfied by that model at the beginning of time. Thus, anchoring
the formula to the beginning of time (as above) has no effect on its satisfiability.

2. Use renaming to ensure that the components of eachP) F are in the appropriatepast) future form. Traditionally, this requiresseparation[24, 23], however we can utilise
renaming to achieve the same effect. For example, to extract a past-time temporal for-
mula,Q, from inside a formula containing the ‘U ’ operator, we can use the following
transformation rule3.fP ) AU Qg �! �

P ) AU x
Q , x

�
3. Again use renaming, but this time to ensure that no nested temporal operators occur.

For example, we might rename the ruleP ) }(RU S) as follows.fP ) }(RU S)g �! �
P ) }y
y , RU S

�
Again, both ‘x’ and ‘y’ are anewproposition symbols.

In both steps (2) and (3) above we use renaming transformations of thegeneral formfP ) F (A )g �! �
P ) F (z)
A , z

�
whereF (A ) is a temporal formula containing the sub-formulaA .

Removing Unwanted Temporal Operators

We now turn to the removal of temporal operators from rules in flat rule form. We will present
a series of transformation rules which assume that the operator to be removed appears on its
own on either the left-hand or right-hand side of a rule. Before describing these transforma-
tions, we will review how to ensure that temporal operators appear on their own at one side
of a rule.

Recall that, in flat rule form, not only are there no nested temporal operators, but also
there is at most one temporal operator appearing on the right-hand side of each rule. As all
negation operators only apply to propositions, then the only operators, beside the principal
temporal operator, that can appear on either side of a rule are ‘_’ and ‘^’. In order to ensure
that one side of a rule contains a formula with the temporal operator atits top level we can
apply a variety of rewrite rules.

The first pair of rewrite rules can be used to ensure that the top-level operator of the
left-hand side of a rule is temporal.fP_Q ) Fg �! �

P ) F
Q ) F

�
(whereP, Q are arbitrary formulae)fP^Q ) Fg �! �

P ) :Q_ F
	

(whereQ is a non-temporal formula)

3We introduce rules of the form ‘A, B’ for clarity, though these can later be reduced to a pair of rules such as
‘A) B’ and ‘:A):B’. These new rules must, in turn, be translated into NNFp.
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The second pair of rewrite rules carry out a similar process, but for theright-hand side of
rules.fP ) F ^Gg �! �

P ) F
P ) G

�
(whereF , G are arbitrary formulae)fP ) F _Gg �! �

P^ :G ) F
	

(whereG is a non-temporal formula)

Obviously, we must ensure that the second rules in each pair are not appliedcontinuously as
each could undo the action of the other.

We can now proceed to remove the unwanted future-time temporal operators from the
rules in flat rule form, as follows.

Removal of : fP ) Ag �! �
P ) A^yccdeefggy , A^y

�
Removal of g: fP ) gAg �! �

P ) zccdeefggz , A

�
Removal ofW : fP ) AW Bg �! �

P ) B_ (A^w)ccdeefggw , B_ (A^w) �
Removal ofU : fP ) AU Bg �! 8<: P ) B_ (A^w)

P ) }Bccdeefggw , B_ (A^w) 9=;
Note that the ‘U ’ operator is transformed into a set of rules including the ‘}’ operator. This
is related to the fact that ‘U ’ can be defined as a minimal fixpoint [33]. The transformation
rules for the past-time operators are derived in a similar way. For example, the rules for the
‘ S ’ (a minimal fixpoint), and ‘Z ’ (a maximal fixpoint) are as follows. However, note that
because of the finite past constraint, the ‘}� ’ operator is not required in the translation of ‘S ’.

Removal of S : fAS B ) Fg �! � ccdeefgg(B_ (A^x)) ) Fccdeefgg(B_ (A^x)) , x

�
Removal of Z : fAZ B ) Fg �! � w(B_ (A^w)) ) Fw(B_ (A^w)) , w

�
Note that in all these transformations removing temporal operators, the symbolsw, x, y andz
again representnewproposition symbols.

Into SNF

By this stage, we have reduced the temporal operators to those required for SNF, and have a
set of rules in the correct general form. The final step to SNF is to manipulate the classical
operators on each side of these rules to ensure exactly the SNF form. During this process,
we rewrite the right-hand side of each rule into Conjunctive NormalForm (CNF), treating
formulae of the form}l as literals, and rewrite the left-hand side of each rule into Disjunctive
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Normal Form (DNF) in the usual way, but with the following additional rewrite rules.wP^ wQ �! w(P^Q)ccdeefggP^ wQ �! ccdeefgg(P^Q)wP^ ccdeefggQ �! ccdeefgg(P^Q)ccdeefggP^ ccdeefggQ �! ccdeefgg(P^Q)ccdeefgg(P_Q) �! ccdeefggP_ ccdeefggQw(P_Q) �! wP_ wQ

Finally, the following rewrites are exhaustively applied to each rule.fP ) (F ^G)g �! �
P ) F
P ) G

�f(P_Q) ) Fg �! �
P ) F
Q ) F

�f wR) Fg �! � wfalse ) FccdeefggR ) F

�fP ) _
i

Fi _}lg �! f
î

:Fi ^ P ) }lg
The first two rules simply de-construct conjunctive formulae, the third rule ensures that the
‘ w’ operator only applies to ‘false’, while the final rule ensures that}-rules contain nothing
but the}-formula on their right-hand side.

3.3 Correctness of PTL to SNF Translation Steps

We will now provide correctness results for the translation from PTLto SNF presented inx3.2. As mentioned above, if we are working in the framework of QPTL the translation pro-
cess results in a formula that is logically equivalent to the original formula. Thus, assuming
that the transformation procedure is characterised by ‘τ’, where for any formulaA, τ(A) is in
SNF, then we would expect that `QPTL A,9x̄:τ(A)
wherex̄ is the set of new propositions introduced during the translation process.

However, as we are considering a translation within PTL, rather than QPTL, the two
properties that we prove about the translation process are as follows.

Theorem 3 (Preservation of Satisfiability) Given a formulaA in WFFp, if A is satisfiable,
so isτ(A).
Theorem 4 (Reliability of Models) Given a formulaA in WFFp, if τ(A) is satisfied in a
modelσ, thenA is also satisfied inσ.

If we use renaming that introduces new rules of the form ‘x) A’, rather than ‘x, A’, The-
orem 3 still holds, but Theorem 4 does not. Though both results are desirable, for example if
we wish to execute the transformed formula (seex4.2), certain applications, such as temporal
resolution, only require Theorem 3 (seex4.1).

Before considering the full PTL to SNF translation process, we will prove that the basic
renaming procedure for PTL formulae has the above properties (assuming‘,’ is used in the
renaming). In order to do this for the general case, we first introduce theconcept of acontext.
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Definition 5 (Context) A contextis taken to be a function overWFFp which embeds its ar-
gument at a given position in an enclosing formula.

For example, we might define a contextP as follows.

P (X) � }(a^ X)
whereX is any formula inWFFp.

Given the above definition of a context, we can state the general theorem about renaming,
as follows.

Theorem 6 (Renaming) Given a formula,A (B), whereA is a context andB is in WFFp,
then letC be the formula

A (b) ^ (b , B)
where ‘b’ is a new propositional symbol (i.e.b does not occur anywhere withinA or B).
Given these constraints,

1. if A (B) is satisfiable, thenC is satisfiable, i.e.

if 9σ: hσ;0i j= A (B) then 9σ0: hσ0;0i j= C,

and,

2. any model forC is a model forA (B), i.e.8σ: if hσ;0i j= C then hσ;0i j= A (B).
Proof Assuming a particular formulaA (B), in which the subformulaB is to be renamed, we
prove the two parts of this theorem separately as follows.

1. if A (B) is satisfiable, thenA (b) ^ (b , B) is satisfiable.

Prove by contradiction. Assume thatA (B) is satisfiable and, in particular, that it is
satisfied by the modelσ, i.e. hσ;0i j= A (B). Now also assume thatA (b) ^ (b , B)
is unsatisfiable. Given these assumptions, we can derive a contradiction asfollows.

Given thathσ;0i j= A (B), then either

(a) the satisfaction of the formulaA (B) within σ does not depend uponB at any time,
or,

(b) the satisfaction of the formulaA (B) within σ depends on the satisfaction ofB at
at least one point inσ.

In the first case, we can replaceB by any proposition, so long as that proposition does
not already occur inA , and satisfaction inσ will be preserved. In particular, we can
replaceBby the new proposition symbolb and we know thathσ;0i j= A (b), thus giving
a contradiction.

In the second case, by the semantics of PTL, whatever form the contextA takes, the
question of the satisfiability ofA (B) within σ will depend upon the satisfiability ofB
within σ, i.e., whetherhσ; ii j= B for a particular indexi. Recall that the propositionb
is defined in such a way that it is satisfied at a particular moment in time if, and only
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if, B is satisfied at that point. Thus, sincehσ; ii j= B then we can construct a modelσ0
that agrees withσ except thathσ0; ii j= b if, and only if, hσ; ii j= B. Now, sinceb is a
new proposition symbol, then we know thathσ0;0i j= A (b)
Thus,hσ0;0i j= A (b) ^ (b , B), giving a contradiction.

2. if hσ;0i j= A (b) ^ (b , B), thenhσ;0i j= A (B).
As hσ;0i j= A (b) ^ (b , B) then, withinσ, the propositionb is satisfied at exactly
those indices that the formulaB is satisfied at. In particular, wherever the formulaA (b)
depends on the satisfaction ofb, thenB will be satisfied at that point. Thus, whatever
the contextA is, thenσ is also a model forA (B).
Note again that, since the ‘new’ symbolb does not occur at all withinA (B), then its
value does not affect whetherA (B) is satisfied in any model or not.

Removal of Maximal Temporal Fixpoints

The other major transformation that we utilise in the PTL to SNF translation is that of re-
placing various (future-time) temporal operators by their fixpoint definitions4. This is based
upon the simulation of fixpoints using QPTL [33], and particularlyconcerns the removal of
those temporal operators represented asmaximalfixpoints, i.e., andW . Note that theU
operator can be represented as a combination of operators based upon maximal fixpoints and
the} operator (which is retained within SNF), i.e.

PU Q � PW Q^}Q

Recall that a variety of temporal operators can be represented as fixpoints, e.g.

PW Q � νξ: Q_ (P^ gξ)
and we use the representation of such fixpoints in QPTL [33, 3] as the basis for our transfor-
mations. Note that, while the fixpoint representation can also be used for past-time formulae,
each fixpoint formula will only have at most one solution (due to the finiteness of the past).
Consequently, there is no distinction between maximal and minimal fixpoints in this past-
time case. We can state the properties we require of such transformations more formally, as
follows.

Theorem 7 (Fixpoint Removal) Consider a future-time temporal operator corresponding to
a maximal fixpoint, sayνξ: F(ξ). If the operator occurs in a formula within a temporal con-
text, for example ‘C ’, then occurrences of the operator can be replaced by a new proposition
‘ r ’, with the new formula (r , F(r)) conjoined to the whole formula. This transformation
satisfies

1. if C (νξ: F(ξ)) is satisfiable, thenC (r) ^ (r , F(r)) is satisfiable, and,

2. any model forC (r) ^ (r , F(r)) is a model forC (νξ: F(ξ)).
4The removal of past-time operators is achieved in a different way, associated with the finite-past restriction.
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Proof A fixpoint of the form
νξ: F(ξ)

can be represented by the following QPTL formula [33].9x: x, F(x)| {z }
Existencê

8y: (y, F(y)) ) (y) x)| {z }
Maximality

^ x

The ‘existence’ part of this formula states that there is some proposition,x, which satisfies the
fixpoint formulax,F(x), while the ‘maximality’ part ensures that this particular proposition
is the greatest solution of the fixpoint5.

Now, recall that replacing the propositional variable ‘x’ in 9x: x, F(x) by a new propo-
sition, ‘p’ (i.e., one that has not been used before) is an operation that preserves our two
required properties. This gives us

p, F(p)
together with the appropriate minimality/maximality constraint. However, if we apply this
translation to maximal fixpoints, then we can remove the need to have an explicit maximality
constraint by enclosing the above formula by a ‘’ operator. For example, as

PW Q � νξ: Q_ (P^ gξ)
then any occurrence ofPW Qcan be replaced by the (new) proposition ‘u’, with the following
formula added. (u,Q_ (P^ gu)
Thus, the translation of maximal fixpoints into QPTL, the removal ofexistential quantifica-
tion from the derived QPTL formula, and the removal of explicit maximality conditions all
preserve the two desired properties.

Correctness of full PTL to SNF translation

We can now prove both Theorems 3 and 4. We do this by showing that each step of the
transformation from PTL to SNF preserves the two properties required,namely� if a formulaA is satisfiable, then the transformed formula,τ(A), is also satisfiable, and,� if the transformed formula,τ(A), has a model, then this is also a model ofA.

In fact, the majority of the translation steps preserve logical equivalencewhich, in turn, im-
plies both these properties. In such cases, we will omit the proofs.

We consider each step in the translation process in turn.

1. From PTL to NNF p

As this involves simply ‘pushing’ negation operators through the temporal formula,
and as each particular rule applied can be justified directly from the semantics ofPTL,
this step produces a formula that is logically equivalent to the original.

2. From NNFp to Flat Rule Form

This step consists of three particular transformations.

5Note thatxv y if, and only if, x) y.
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(a) A�! ( wfalse) A)
Recall that we are only interested in the satisfaction of a formula at state 0.
Thus, while the operator means the formula must be satisfied atall states,
the ‘ wfalse)’ ensures that the formula is anchored at state 0. Consequently, a
formula that is logically equivalent to the original is produced.

(b) Renaming for embedded past-time formulae.

Here, renaming is used and so, by Theorem 6, both the desired properties are
preserved.

(c) Renaming for embedded future-time formulae.
Again, by Theorem 6, both the desired properties are preserved.

3. Removing Unwanted Temporal Operators

This step utilises the removal of two forms of temporal operator.

(a) Simple transformations, such as the removal of ‘g’:fP ) gAg �! �
P ) zccdeefggz , A

�
From the semantics of PTL, we can immediately see that the desired properties
are preserved.

(b) In the case of future-time temporal operators, we rewriteU into a combination of
W and} operators and use Theorem 7 to show that removing maximal fixpoints
preserves the required properties.

In the case of the past-time temporal operatorsS andZ , we observe that because
of the finite past employed in PTL, the maximal and minimal fixpoints coincide.
In particular, by unwinding the fixpoint definitions a finite numberof times, we
can provide the value of either type of fixpoint, the only difference being their
value at the beginning of time.

4. Into SNF

The rules applied in this step consist of classical rewrite rules such as those used to
transform to CNF and DNF, together with simple temporal rewrites suchaswP^ ccdeefggQ �! ccdeefgg(P^Q):
All these transformations produce a formula that is logically equivalent to the original
formula. The proof of this follows simply from the semantics of PTL.

Thus, we have shown that each of the transformation steps preserve the properties outlined in
Theorems 3 and 4.

Relaxing Constraints

We briefly mention the effect of using transformations that introduce implications, rather
than equivalences. We note that both the renaming procedure and the removal of maximal
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fixpoints can be refined to introduce ‘)’, rather than ‘,’. Although the set of SNF rules
produced in this case is smaller than it would have been if ‘,’ we used, the Renaming
Theorem (Theorem 6) must be weakened. In particular, the second condition, namely that
any model for the transformed formula is a model for the original formula, is lost. Thus the
revised Renaming Theorem is as follows.

Theorem 8 (Renaming (Revised))Given a formula,A (B), whereA is a context,B is in
WFFp, andB occurs within an even number of negations withinA , then letC be the formula

A (b) ^ (b ) B)
where ‘b’ is a new propositional symbol (i.e.b does not occur anywhere withinA or B).
Given these constraints, ifA (B) is satisfiable, thenC is satisfiable, i.e.

if 9σ: hσ;0i j= A (B) then 9σ0: hσ0;0i j= C.

3.4 Complexity of PTL to SNF Translation

To give an indication of the complexity of the transformation from PTL to SNF, we will
consider the main components of the transformation process separately, as follows.

Complexity of Renaming Transformations

In classical propositional logic, the renaming of formulae to derive CNF is linear in the length
of the formula [29]. In our transformation to SNF, a similar complexity is found for renaming
transformations using ‘)’, while exponential complexity occurs when ‘,’ is used.

Renaming using ‘,’ Assuming that no temporal transformations are required, the worst
case is when each subformula of the initial formula must be renamed by a new proposition.
In this situation, both the following transformations must be applied to rename all the subfor-
mulae of each component of a rule.f P (A) ) F g �! �

P (x) ) F
A , x

�f P ) F (B) g �! �
P ) F (y)
y , B

�
In each case, the renamed subformula will be duplicated, giving a potential exponential in-
crease in the size of the formula. Note, however, that in practice the renamedformulae tend
to be relatively simple.

Renaming using ‘)’ The worst case, as above, is when each subformula of the initial
formula must be renamed by a new proposition. Again, both the following transformations
must be applied to rename all the subformulae of each component of a rule.f P (A) ) F g �! �

P (x) ) F
A ) x

�
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f P ) F (B) g �! �
P ) F (y)
y ) B

�
Here, however, the subformulae (A andB) are not duplicated and there is simply a linear
increase in both the number of rules and the number of propositions.

Complexity of Transformations for Removing Temporal Operators

In a similar way to the renaming case above, several transformations that remove temporal
operators not only add new rules, but also duplicate subformulae in these new rules. Again,
if ‘,’ is used, an exponential increase in the size of the formula is possible, while if ‘)’ is
used, we can show that only a linear increase occurs.

For example, the transformation that involves the largest duplicationof subformulae is
that for removing the ‘Z ’ operator:f AZ B ) F g �! � w(B_ (A^w)) ) Fw(B_ (A^w)) ) w

�
Once the past-time component is rewritten, this new set of rules expands to six rules con-
taining three occurrences the subformulaF , together with two occurrences of bothA andB.
However, if we carry out three renaming transformationsbeforethis temporal transformation,
we can ensure that the formulaeA, B andF are replaced by new proposition symbols. Thus,
renamingA, B andF by a, b and f respectively, the transformation ofAZ B ) F becomes:

fAZ B ) Fg �! 8>>>>>>>>>>>><>>>>>>>>>>>>:
A ) a
B ) b
f ) Fccdeefggb ) fccdeefgg(a^w) ) fccdeefggb ) wccdeefgg(a^w) ) wwfalse ) fwfalse ) w

9>>>>>>>>>>>>=>>>>>>>>>>>>;
Thus, in the worst case, temporal transformations of this form give alinear increase in the
number of rules (though 9-fold in this case!) and a linear increase in the number of proposi-
tion symbols.

Complexity of Remaining Transformations

Of the remaining transformations, the one that has the largest potential complexity is that
occurring in the final phase where the left-hand side of each rule is rewritten into DNF. Thus,
in the worse case, this will be an exponential operation, though in most practical cases the
formulae involved will be very small.

We have shown that the overall complexity of the transformation is exponential at worst,
though in most practical situations the complexity will be governed by whether we use ‘)’
or ‘,’. In particular, unless the DNF translation in the final part of the process dominates,
the transformation using ‘)’ will involve a linear increase in the number of rules and a linear
increase in the number of proposition symbols.
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3.5 Examples

In this section we present brief examples of the transformation from PTL to SNF.

Example 1

As an example of rewriting an arbitrary temporal formula into SNF, consider the following
(contradictory) formula. (a) g(l ^a)) ^ a ^ l ^ g}:l

Converting this formula to SNF, the following set of rules is generated.

1: wfalse ) a
2: wfalse ) l
3: wfalse ) b
4: ccdeefgga ) l
5: ccdeefgga ) a
6: ccdeefggb ) }:l

The first three rules represent the fact thata, l , andb must be satisfied at the first state. The
fourth rule says that whenevera is satisfied, thenl will be satisfied in the next state, and the
fifth rule says that ifa is satisfied, thena will also be satisfied in the next state. The final rule
states that onceb is satisfied,}:l will be satisfied in the next state.

Note that, as these rules are applied globally, oncea has been satisfied, rule 5 ensures that
a will always be satisfied. In this case, rule 4 ensures thatl will always be satisfied.

Example 2

Consider the temporal formula
pU (aS b) ^} c:

The translation process can be applied to produce the following set of SNF rules.

1: wfalse ) d _ f
2: ccdeefggf ) }d
3: d ) c
4: ccdeefggd ) d
5: wfalse ) e_ p
6: wfalse ) e_ w
7: wfalse ) e_ g
8: ccdeefggg ) }e
9: ccdeefggw ) e_ p
10: ccdeefggw ) e_ w
11: ccdeefggb ) e
12: ccdeefgg(a^e) ) e

Here, rules 1–4 capture the formula ‘} c’, rules 4–10 capture ‘pU e’, and rules 11 and 12
definee to be ‘aS b’.
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4 Applications of SNF

The two main applications of SNF immediately follow from Theorems 3 and 4. The first
is a temporal resolution method that can be applied to formulae in SNF, which relies on
Theorem 3. The second is the direct execution of temporal formulae in SNF,which relies on
both theorems.

4.1 Temporal Resolution

The classical resolution rule (for propositional logic) matches complementary literals in dif-
ferent subformulae [30], i.e.

A_ p
B_:p
A_B

The development of resolution has not only led to the development of fast theorem-provers
for classical logics, but is also the basis for a variety of programming languages [25]. Indeed,
proof procedures based on this rule are the most widely used method of mechanising classical
logics [30, 35]. In spite of this, few resolution methods have beendeveloped for temporal
logics. The majority of theorem-proving tools for temporal logics have been based on either
tableaux or automata [34, 31]. One resolution method that has been developed is based on
non-clausalresolution [2], whileclausalresolution methods have been investigated by [8,
32].

So, what are the problems in transferring the form of resolution rule outlined above to
temporal logics directly? In some cases there are no problems. For example,if the clauses
appear within the context of the “always in the future” operator, ‘’, then the following
version of the resolution rule can be applied.(A_ p)(B_:p)(A_B)
In fact, in certain cases, such a rule can even be applied to complementary literals appearing
in different temporal contexts. For example, when the “sometime in the future” operator,
‘}’, is used, the following resolution rule can be applied.(A_ p)}(B_:p)}(A_B)
Thus, several combinations of temporal formulae can be resolved (thoughformulae such as}(A_ p) and}(B_:p) can not be resolved in this way as there is no guarantee that the
‘A_ p’ and ‘B_:p’ sub-formulae refer to the same moment in time). As the two operators,
‘ ’ and ‘}’, are the basic connectives of modal logic, clausal resolution rules of theabove
form have been applied to modal logics [12].

Consequently, the main approaches have either involved the definition ofresolution rules
for a range of possible combinations of temporal operators, e.g. non-clausal temporal res-
olution [2], or the use of a normal form such as SNF. The advantage of the latter approach
is particularly that, as most of the temporal operators are removed in the translation, fewer
resolution rules are required.
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Thus, in using SNF, we are not only able to cope with a wide variety offuture-time
temporal operators, such asg, , and}, but are also able to represent temporal formulae
containingpast-timetemporal formulae. Further, SNF can also be extended to some standard
modal logics, providing a simple normal form for modal formulae6.

Given a set of formulae in SNF, we would like to apply resolution rules of the type de-
scribed above. In particular, it would also be useful to apply the following rule.(A_ p)}(B_:p)}(A_B)
Unfortunately, in discrete temporal logics, both the ‘g’ and ‘ ’ operators can appear, and
can interact in an inductive way. In particular, a formula containing both of these operators
may contain another hidden -formula. For example, consider the formula(a) g(l ^a)) ^ a ^ l :
It is not immediately obvious that this formula impliesl , yet temporal resolution applied
to the above formula together with}:l should generate a contradiction.

Thus, as well as defining a normal form, a temporal resolution rule that will recognise
such -formulae must also be provided. Because of the interaction between the ‘g’ and
‘ ’ operators, recognising -formulae requires some form of induction. For example, an
inductive argument is required in order to establish that the above formula implies l . Such
a temporal resolution method, based upon SNF, has been developed [18].

As the formula is now written as a set of SNF rules, the non-temporal part of the resolution
process corresponds closely to classical resolution upon these rules. Themajortemporalpart
of the procedure now consists of recognising hidden-formulae within sets of SNF rules.
The above formula, conjoined with the contradictory}:l formula is rewritten into the SNF
rules shown in Example 1 inx3.5. Since these rules appear in a concise form, it is possible
to define a procedure to find such ‘hidden’-formulae [18]. Indeed, a variety of algorithms
have been developed in order to achieve this [10].

4.2 Execution of Temporal Formulae

In recent years a number of programming languages based upon the direct execution of tem-
poral logic formulae have been developed, being utilised particularly in the representation
and implementation of a range of dynamic behaviours [21]. A particular family of executable
temporal logics uses the normal form developed here as its basis.

The basic idea behind the METATEM framework [4, 17] is to directly use a temporal
formula in order to build a model (in our case, a sequence) for that formula. This corresponds
to execution in traditional programming languages and provides a language that can be used
either for prototyping of temporal specifications, or as a high-level programming language in
its own right.

Rather than presenting a detailed description of the METATEM execution mechanism,
we will outline how SNF rules can be executed using the basic ideas from METATEM. The
intuition behind execution is provided by the simple observation that, in SNF, the initial rules
provide constraints upon the initial state, while thealwaysand} rules provide constraints

6Once translated to modal logics, the normal form is similar to that provided by Mints [28].
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upon thenextstate. Thus, given a program, represented as a set of SNF rules, we can construct
the first state in the sequence. We can then construct the next state, given the current state
and, by applying this iteratively, can construct the whole state sequence.

Thus, the model structure produced is a sequence of states, with an identified start point,
state 0. Execution starts at this initial state, and steps through each statein the structure in
turn. When this process is complete (at some trans-finite moment), thestructure will be a
model for the temporal formula represented by the SNF rules.

To give some idea of the execution process, we will consider the execution of an SNF
rule of the formL ) Rexecuted at an arbitrary state,t, in the structure that we wish to label.
As mentioned inx3.1, we modify SNF slightly by moving all non-temporal literals tothe
right-hand side of each rule by negating each conjunction. Thus, the left-hand sides of each
rule simply represent conditions on the previous state.

We can split the discussion about the execution of our rule into two cases, namely where
t = 0 and wheret > 0, as follows.

t = 0: As we wish to construct the initial state, we only consider rules of the formwfalse ) R

As R is a disjunction of literals, this provides us with a choice of labellings for the
initial state. The execution mechanism simply chooses one of these and continues to
construct the next state (t = 1).

If the execution mechanism turns out to have made abadchoice of disjunctions then
execution will eventually backtrack to this choice point.

t > 0: As we wish to construct statet, given that 0; : : : ; t�1 have already been constructed,
we consider only non-initial rules. The antecedent of the rule,L, is evaluated in the
model at the current state,t. However, sinceL is guaranteed to be of the form ‘ccdeefggM’
(see above), we instead evaluateM in the previous state (t�1).

If M evaluates to false, then there is nothing more to be done with this rule, by virtue
of the meaning of ‘)’, because ccdeefggfalse) R is true regardless ofR.

If M is evaluated to true, i.e.hσ; t�1i j=M, then we must ensure thathσ; ti j= ( ccdeefggM )
R) is preserved by forcinghσ; ti j= R.

Again,R can either be an eventuality, or a disjunction of literals. IfR is an eventuality
that can be satisfied, it will be, otherwise it will be recorded. In either case,a choice of
labelling is made fort and construction continues on tot +1.

When the program consists of several rules, and the interpreter is in a state where the an-
tecedents of more than one rule evaluate to true, the consequents of the successful rules are
conjoined to form a single formula which must be made true. Thus if the program consists
of rulesLi ) Ri , andL1; : : : ;Ln evaluate to true in the current model, then the formula to be
made true isR1^ �� �^Rn.

In this way, a model for the program can be iteratively constructed. Note that, due to the
finite model property of PTL, we can constrain the execution so that a model will eventually
be produced (possibly after a period of backtracking), this is not the case in the first-order
extension. In this case, execution is seen just as anattemptto build a model [5].

For a longer description of METATEM, including elements such as I/O, strategies for satis-
fying eventualities, backtracking, loop-checking mechanisms and correctnessissues, see [4,
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17]. Although much of the development of METATEM has been suspended in favour of
Concurrent METATEM [20, 15], the language has applications in system modelling [13],
databases [14] and meta-level representation and planning [6].

5 First-Order SNF

In this section, we outline how SNF can be extended to cope with first-order temporal logic.
In order to present this, we first extend PTL to a first-order temporal logic, called FTL, which
incorporates both theconstant domainassumption with regard to quantification, and the use
of rigid designators.

5.1 Syntax of First-Order Temporal Logic

Well-formed formulaeof FTL (WFFf ) are generated from the symbols of PTL together with
the following.� A set,L p, of predicate symbolsrepresented by strings of lower-case alphabetic charac-

ters.

Associated with each predicate symbol,p, is a non-negative integer,arity(p).
(Note that theL p associated with PTL represents the subset of the aboveL p consisting
of predicates with arity 0.)� A set,Lv, of variable symbols, x, y, z, etc.� A set,Lc, of constant symbols, a, b, c, etc.� A set,L f , of function symbols, f , g, h, etc.

Associated with each function symbol,f , is an arity, given byarity(f).� Quantifiers,8 and9.

The set ofterms, L t , is defined as follows.

1. BothLv andLc are subsets ofL t .

2. If t1; : : : ; tn are inL t , and f is a function symbol of arityn, then f (t1; : : : ; tn) is in L t .

The set of well-formed formulae of FTL (WFFf ) is defined as follows.

1. If t1; : : : ; tn are inL t , andp is a predicate symbol of arityn, thenp(t1; : : : ; tn) is in WFFf .

2. if A andB are inWFFf , then the following are inWFFf:A A_B A^B A) B (A)}A A AU B AW B gA}� A A AS B AZ B ccdeefggA wA

3. If A is in WFFf andv is in Lv, then9v: A and8v: A are both inWFFf .

Sub-classifications ofWFFf are the obvious extensions of those defined forWFFp.
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5.2 Semantics of First-Order Temporal Logic

To provide a model structure for FTL, the model structure for PTL is extended to be

σ = hN;πp;πc;π f ;D i
where� N is the Natural Numbers,� πp is now a map fromN�L p to D n !fT;Fg, wheren is the arity ofp,� πc is a map fromLc to D ,� π f is a map fromL f to D n ! D , wheren is the arity of f , and,� D is the domain over which quantifiers range.

Thus, for a particular state-index,i, and a particular predicatep of arity n, πp(i; p) represents
a map from n-tuples of elements ofD to T or F. Note that theconstant domainassumption
is used, i.e., thatD is constant throughout the model.

Next, variable assignmentsandterm assignmentsare defined. A variable assignment is
a mapping fromLv to elements ofD . Given a variable assignment,V, and the valuation
functions,πc andπ f , associated with a particular model structure, a term assignmentτvπ is a
mapping fromL t to D , defined inductively as follows.� if c2 Lc then τvπ(c) = πc(c)� if f 2 L f then τvπ( f (t1; : : : ; tn)) = π f ( f )(τvπ(t1); : : : ;τvπ(tn)) [where arity( f ) = n]� if v2 Lv then τvπ(v) =V(v)
The semantics of a well-formed formula is given with respect to a model structure, a state at
which the temporal formula is to be interpreted, and a variable assignment. The satisfaction
relation, ‘j=’, again relates such tuples to well-formed formulae.

The semantics of a predicate is given by the truth value of the predicate application as
defined in the model:hσ; i;Vi j= p(x1; : : : ;xn) iff πp(i; p)(τvπ(x1); : : : ;τvπ(xn)) = T :
Finally, the semantics of quantifiers is defined as follows.hσ; i;Vi j= 8x: ϕ iff for all d 2 D ; hσ; i;V † [x 7! d]i j= ϕhσ; i;Vi j= 9x: ϕ iff there existsd 2 D ; such thathσ; i;V † [x 7! d]i j= ϕ

As an interpretation now consists of a triple, comprising model, state-index, and assignment
components, a well-formed formula,A, is now said to be satisfied in a particular model,σ, at
an index,i, and under a particular variable assignment,V, if, and only if, hσ; i;Vi j= A. The
definition of satisfiability, given earlier, is similarly extended.

In this paper, closed formulae, i.e. formulae containing no free variables,will mainly be
used. In this case, the empty mapping,[ ], is used as the initial variable assignment.
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5.3 First-Order SNF

We can now extend the definition of SNF to cover FTL, giving us First-Order SNF [19]. A
formula in First-Order SNF (SNFf ) is of the form

n̂

i=1

8x̄i: (Pi ) Fi)
where ‘x̄i ’ represents a vector of variables,xi1, xi2, : : :, xim. Consequently,8x̄i represents8xi1: 8xi2: : : : 8xim

andPi(x̄i ; ȳi) represents
Pi(xi1;xi2; : : : ;xim;yi1;yi2; : : : ;yik) :

Now, in SNFf , each rule is further restricted to be one of the following.wfalse ) 9z̄: n_
c=1

rc(x̄i ; z̄)"8ȳ: l̂

a=1

pa(x̄i ; ȳ) ^ ccdeefgg m̂

b=1

qb(x̄i ; ȳ)# ) 9z̄: n_
c=1

rc(x̄i ; z̄)"8ȳ: l̂

a=1

pa(x̄i ; ȳ) ^ ccdeefgg m̂

b=1

qb(x̄i ; ȳ)# ) 9z̄:}s(x̄i ; z̄)
where eachpa, qb, rc or s is a literal. (Note the similarity between the original SNF and
SNFf .)

Before describing the extra transformation rules for transformingFTL to SNFf (over
those given inx3.1), we will outline some of the problems traditionally encountered in pro-
ducing a normal-form for first-order temporal (and, indeed, modal) logics.

Some problems with quantifiers

The major problem encountered in first-order temporal (and modal) logics is the interaction
between quantifiers and temporal operators. In particular, equivalences such as}8x: p(x) , 8x:}p(x)
do not, in general, hold. However,renamingcan again be used to replace certain subformulae.
For example, the formula}8x: p(x) can be rewritten as}y ^ (y,8x: p(x))
Note that the new subformula defining the value of the proposition ‘y’ is itself in an ‘SNF-
like’ form. We use this property to define renaming transformations for FTL in the next
section.
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5.4 First-Order Renaming Transformations

We can state a first-order version of theRenaming Theorem(Theorem 6), as follows.

Theorem 9 (First-Order Renaming) Given a formula,A (B(x̄)), whereA is a context and
B is a formula inWFFf with free variables, ¯x, then letC be the formula

A (b(x̄)) ^ 8ȳ: (b(ȳ) , B(ȳ))
where ‘b’ is a new predicate symbol andjx̄j � jȳj. Given these constraints,

1. if A (B(x̄)) is satisfiable, thenC is satisfiable, i.e.

if 9σ: 9V: hσ;0;Vi j= A (B(x̄)) then 9σ0: 9V 0: hσ0;0;V 0i j= C,

and,

2. any model forC is a model forA (B(x̄)), i.e.8σ: 8V: if hσ;0;Vi j= C then hσ;0;Vi j= A (B(x̄))
The transformation process, together with its correctness arguments, follow those presented
for SNF inx3.2 andx3.3. Rather than detail the whole process, we just mention a few of the
transformation rules based upon renaming.

The following two transformations can be used to remove quantifiers from embedded
temporal contexts. (Note that, in the transformation rules that follow, the variables ¯x and ȳ
are assumed to be universally quantified across the formulae.)f P(x̄) ) F (8w: B(x̄;w)) g �! �

P(x̄) ) F (b(x̄))
b(ȳ) , 8w: B(ȳ;w) �f Q(x̄) ) F (9z: C(x̄;z)) g �! �
Q(x̄) ) F (c(x̄))
c(ȳ) , 9z: C(ȳ;z) �

Similarly, we can provide transformations which can be used to ensure that there are no
embedded quantifiers on the left-hand side of a rule. These rules are the duals of those given
above. For example, embedded existential quantifiers can be removed using thefollowing
rule (whereP is a general past-time context).f P (9w: B(x̄;w)) ) F(x̄) g �! �

P (b(x̄)) ) F(x̄)9w: B(ȳ;w) , b(ȳ) �
The other transformation rules, for example those relating to the removal of temporal opera-
tors, carry over from their propositional versions.

5.5 Examples

In order to give a flavour of the FTL to SNFf translation, we provide the following two
examples.
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Example 1

Given the formula 8x: p(x) ) }(8z: q(x;z)), the above transformations can be applied
to give 8x: p(x) ) }b(x)^8x: b(x) , 8z: q(x;z)
Then the temporal formula, q(x;z), can be removed from the context of the quantifier, and
the resulting formulae can be put in rule form, giving

p(x) ) }b(x)
b(x) ) c(x;z):b(x) ) 9z: :c(x;z)
c(y;w) ) q(y;w)
c(y;w) ) a(y;w)ccdeefgga(t;v) ) q(t;v)ccdeefgga(t;v) ) a(t;v):c(y;w) ) }:q(y;w)

Example 2

In this example, we will show how, as in the propositional case, ‘)’ can be used in renaming,
rather than ‘,’. We will start with a formula that is already in the ‘past implies future’ form:8x: [ ccdeefgg9z: c(z;x)] ) [a(x)W (8y: b(x;y))]
First, the embedded quantifier is removed from the future-time component, generating the
following rules (again, we assume that all variables not explicitly bound are universally bound
at the outer level).

1: [ ccdeefgg9z: c(z;x)] ) a(x)W q(x)
2: q(x) ) 8y: b(x;y)

Similarly, the embedded quantifier is removed from the past-time component, giving the
following.

1: ccdeefgge(x) ) a(x)W q(x)
3: :e(x) ) 8z: :c(z;x)

All the quantifiers now occur at the outer level of each component, so the ‘W ’ operator can
be replaced by its fixpoint definition, giving the following.

1: ccdeefgge(x) ) q(x) _ (a(x) ^ u(x))
4: ccdeefggu(x) ) q(x) _ (a(x) ^ u(x))

Next, the universal quantifiers that appear in the future-time components of rules 2 and 3 are
moved to the outer level, giving the following replacements for these rules. (Note that the
variablesy andzare now implicitly universally quantified at the outer level.)

2: q(x) ) b(x;y)
3: c(z;x) ) e(x)
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Finally, rules 1 and 4 are split to ensure that the future-time component of each rule is a
disjunction of literals. This splits rule 1 into new rules 1a and 1b, and splits rule 4 into the
new rules 4a and 4b. Thus, the final set of SNFf rules produced from the original formula is

1a: ccdeefgge(x) ) q(x) _ a(x)
1b: ccdeefgge(w) ) q(w) _ u(w)
2: q(x) ) b(x;y)
3: c(z;x) ) e(x)
4a: ccdeefggu(y) ) q(y) _ a(y)
4b: ccdeefggu(z) ) q(z) _ u(z)

Recall that the scope of each variable is restricted to a single rule. Thus, the variable ‘x’ in
rule 2 is not the same as the variablex in rule 3.

5.6 Properties ofSNFf

Any arbitrary FTL formulae can be transformed into SNFf . This preserves analogous prop-
erties to those of the transformation to SNF, namely that the procedure

1. preserves satisfiability, and,

2. any model for the transformed formula is a model for the original formula.

6 Conclusions

In this paper a normal form for discrete, linear temporal logic has been presented. The proce-
dure by which arbitrary formulae are transformed into this normal form has been investigated.
This procedure has been implemented as part of a number of systems, involving both tempo-
ral proof and temporal execution.

The key observation about this normal form is that a range of temporal attributes can be
represented using only a simple set of operators. Thesecoreoperators allow us to describe
properties of the current state, of the transitions that can occur between thecurrent and the
nextstate, and of situations that will occur at some, unspecified, state in the future. We argue
that these aspects represent the essential features of dynamic systems. Further, we have shown
how, by representing temporal formulae in this way, both proof and execution mechanisms
become both simpler to state (and implement) and more readily understood.

6.1 Related Work

Manna and Pnueli have shown that every PTL formula can be written as a conjunction of a
safety and a liveness formula [27]. SNF extends this further so show that the safety formula
can be given as a set of transition rules (i.e.-formulae), while the liveness formula can be
characterised by non-nested ‘}’ operators.

Cavali and del Cerro [8] provided an alternative normal form for temporal formulae and
applied it to temporal resolution. However, their normal form is not only more complex
than the one described here, but also not as easy to extend to full temporal logic. Similarly,
Venkatesh [32] provides a normal form for use with a clausal proof method. Again, our
normal form is both simpler and extends to past-time temporal formulae.
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Related normal forms have been developed for modal logics, in particular byEnjalbert
and del Cerro [12], and by Mints [28].

6.2 Future Work

There are several obvious areas leading from this work. For example, morework is required
on refining the complexity bounds for the transformation process. Related to this is the ques-
tion of how much these bounds can be reduced by using more specific renamingtechniques
(such as using ‘)’ rather than ‘,’ in certain cases [29]). Although a translator from FTL to
SNFf has already been produced, theefficientimplementation of the transformation process
would then also be undertaken.

The transformations described in this paper have been applied to a specific temporal logic.
A particularly important area of future work involves the developmentof varieties of SNF for
extensions of PTL. For example, we are considering alternative temporalmodels, such as
densetemporal logics [7], which require a version of SNF with both ‘S ’ and ‘U ’ as the basic
operators, and temporal logics withinfinite past, where SNF is extended to incorporate ‘}� ’.
We are also investigating the translation of more expressive propositional temporal languages,
such asµtl [3], to SNF.

An important direction to explore is what, if any, are the useful restrictions of SNF (e.g.,
temporal horn clauses [1]). We are looking at the definition of these restrictions, their ex-
pressive power and the complexity of the transformation from arbitrary formulae to these
restricted classes.

Finally, the applications developed using SNF continue to be investigated. Work both on
more refined temporal resolution techniques, and on improved execution algorithms contin-
ues.
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