
Using Temporal Logic to Specify Emergent
Behaviours in Swarm Robotic Systems

Alan FT Winfield Jin Sa
Intelligent Autonomous Systems Laboratory1

University of the West of England
Coldharbour Lane, Bristol BS16 1QY

{Alan.Winfield,Jin.Sa }@uwe.ac.uk

Mari-Carmen Fernández-Gago Clare Dixon Michael Fisher
Liverpool Verification Laboratory2

Department of Computer Science, University of Liverpool
Liverpool L67 7ZF

{M.C.Gago,C.Dixon,M.Fisher }@csc.liv.ac.uk

Abstract

It is a characteristic of swarm robotics that
specifying overall emergent swarm behaviours
in terms of the low-level behaviours of indi-
vidual robots is very difficult. Yet if swarm
robotics is to make the transition from the lab-
oratory to real-world engineering realisation
we need such specifications. This paper ex-
plores the possibility of using temporal logic to
formally specify, and possibly also prove, the
emergent behaviours of a robotic swarm. The
paper makes use of a simplified wireless con-
nected swarm as a case study with which to il-
lustrate the approach. Such a formal approach
could be an important step toward a disci-
plined design methodology for swarm robotics.

1. Introduction
In a previous paper (Winfield et al., 2005) we intro-
duced the notion of a ‘dependable swarm’, that is a
distributed multi-robot system based upon the prin-
ciples of swarm intelligence upon which we can place
a high degree of reliance. That paper concluded that,
although some of the tools needed to assure a swarm
for dependability exist, most do not, and set out a
roadmap of the work that needs to be done before em-
bodied swarm intelligence can make the transition
from the research laboratory to real-world applica-
tions.

1http://www.ias.uwe.ac.uk
2http://www.csc.liv.ac.uk/˜liverlab

One of the defining characteristics of robotic
swarms is that overall swarm behaviours are, typ-
ically, an emergent consequence of the interaction
of robots with each other and their environment
(Bonabeau et al., 1999). If future real-world robotic
swarms are also to exploit emergence and self-
organisation to generate desired overall system be-
haviours then we will need to be able to verify, or bet-
ter still prove, that those behaviours are guaranteed
to emerge (since few real-world applications would
tolerate only some possibility of desired behaviour).

Within swarm robotics research relatively little
work has been done in the direction of math-
ematical analysis and modelling; for a recent
review see (Lerman et al., 2005). Perhaps the
most successful approach to date is the work of
(Martinoli et al., 2004), which uses a stochastic ap-
proach in which an ensemble of probabilistic finite
state machines describe the overall structure of the
swarm in terms of its microscopic parameters. Mar-
tinoli’s work is concerned with modelling rather than
specification, or formal proof. The work we present in
this paper should therefore be seen as complimentary
to existing approaches.

Recently, there has been some work in the area
of applying formal methods to specifying and veri-
fying swarm intelligent systems, notably within the
NASA project ‘Autonomous Nano-Technology Swarm’
(ANTS) (Rouff et al., 2003, Rouff et al., 2004). That
work evaluated and compared four formal specifi-
cation techniques: Communicating Sequential Pro-
cesses (CSP), the Weighted Synchrononous Calculus

Figure 1: Robot Finite State Machine

of Sequential Systems (WSCCS), Unity Logic and X-
Machines.

In this paper we shall explore the use of a tem-
poral logic to formally specify and verify emer-
gent behaviours of a robotic swarm system. Tem-
poral logics have been shown to be useful for
specifying dynamical systems that change over
time (Manna and Pnueli, 1992), and we believe that
this ability is essential for describing emergent be-
haviours. Indeed, in the world of multi-agent sys-
tems, temporal formalisms (often extended with
modal logics) have been widely used for specification,
verification, and even implementation (Fisher, 2005).

This paper proceeds as follows. In section 2 we in-
troduce the wireless connected robotic swarm that
forms the case study of this paper. Section 3 pro-
poses a formal approach to swarm specification and
verification, then introduces the linear-time temporal
logic that we propose to use, and its notation. Section
4 then applies this formal approach to the wireless
connected swarm of our case study. Finally, section 5
summarises the findings of the work to date.

2. Case study: A Wireless Connected
Swarm

We have developed a class of algorithms which make
use of local wireless connectivity information alone
to achieve swarm aggregation (Nembrini et al., 2002,
Nembrini, 2005). These algorithms use situated
communications in which connectivity information
is linked to robot motion so that robots within the
swarm are wirelessly ‘glued’ together. This approach
has several advantages: firstly the robots need nei-
ther absolute nor relative positional information; sec-
ondly the swarm is able to maintain its coherence
(i.e. stay together) even in unbounded space and,
thirdly, the connectivity needed for, and generated
by, the algorithms means that the swarm naturally
forms an ad-hoc communications network. Such a
network would be a significant advantage in many
swarm robotics applications. In this case study we
make use of the simplest (alpha) algorithm. The
basic premise of this algorithm is that each robot
has range-limited wireless communication which, for
simplicity, we model as a circle of radius rw with the

Figure 2: Swarm with α = 5 (left) and α = 10 (right)

robot at its centre. The boundary of the circle repre-
sents the threshold beyond which another robot is out
of range. Each robot also has collision avoidance sen-
sors with a range ra, where ra < rw. The basic algo-
rithm is very simple. The default behaviour of a robot
is forward motion. While moving each robot periodi-
cally sends an ‘are you there’ message. It will receive
‘yes I am here’ messages only from those robots that
are in range, namely its neighbours. If the number of
a robot’s neighbours should fall below the threshold
α then it assumes it is moving out of the swarm and
will execute a 180◦ turn. When the number of neigh-
bours rises above α (when the swarm is regained) the
robot then executes a random turn. This is to avoid
the swarm simply collapsing in on itself. In the in-
terests of simplicity we can consider each robot as
having three basic behaviours, or states: move for-
ward (default); avoidance (triggered by the collision
sensor); and coherence (triggered by the number of
neighbours falling below α). Figure 1 shows the fi-
nite state machine (FSM) for the individual robots in
the swarm.

The alpha algorithm achieves useful swarm coher-
ence in which a larger value of α results in a smaller
more highly connected swarm and a smaller value of
α in a larger more loosely connected swarm, as shown
in figure 2.

3. A Formal Method for Swarm Devel-
opment

It is the contention of this paper that formal meth-
ods can be usefully applied to swarm robotic system
specification and development, especially in relating
emergent behaviours to individual robot behaviours.
We propose the following formal approach:

1. Formally specify the individual robots, including
their safety and liveness properties.

2. Formally specify the swarm by combining the
specifications of individual robots.

3. Formally specify any anticipated or desired emer-
gent behaviours.

4. Carry out proofs to determine if the swarm satis-
fies any of the emergent behaviours.

Safety1 and liveness are defined as follows. The
safety property specifies the set of legal actions, i.e
the set of actions that are allowed. If the robot per-
forms actions from within this set, it will not make
the system unsafe. The liveness property specifies
the dynamic behaviour, i.e. the set of eventualities
that will occur. If we only have the safety property,
we cannot guarantee that anything will happen at
all. If we only have the liveness property, we cannot
guarantee that what is happening is safe. So we need
to establish both safety and liveness.

The 4 steps proposed above can be applied iter-
atively. The outcomes of each iteration - typically
‘proven’, ‘not-proven’ or ‘unable to determine either
way’ - will provide feedback to the swarm developer.
Based on these outcomes, modifications to individual
robot specifications may be carried out. Expectations
of overall emergent behaviours may also be adjusted.

3.1 A Linear Time Temporal Logic

Temporal logic is an extension of classical logic,
whereby time becomes an extra parameter
when considering the truth of logical state-
ments (Emerson, 1990). The variety of temporal
logic we are particularly concerned with is based
upon a discrete, linear model of time, having both a
finite past and infinite future, i.e.,

σ = s0, s1, s2, s3, . . .

Here, a model (σ) for the logic is an infinite sequence
of states which can be thought of as ‘moments’ or
‘points’ in time. As we use a first-order temporal logic,
associated with each of these states is a first-order
structure.

The temporal language we use is that of classical
logic extended with various modalities characteris-
ing different aspects of the temporal structure above.
Examples of the key operators include ‘©ϕ’, which
is satisfied if the formula ϕ is satisfied at the next
moment in time, ‘♦ϕ’, which is satisfied if ϕ is satis-
fied at some future moment in time, and ‘ ϕ’, which
is satisfied if ϕ is satisfied at all future moments in
time.

More formally, the semantics of the language can
be defined with respect to the model (σ) in which the

1In this paper, we adopt the convention that the safety prop-
erty defines the set of valid actions. In some literatures, the safety
property is defined as the set of invalid actions. Both approaches
can be used to achieve the same effect.

statement is to be interpreted, and the moment in
time (i) at which it is to be interpreted. Thus, the
semantics for the key temporal operators is given as
follows.

〈σ, i〉 |=©A iff 〈σ, i + 1〉 |= A
〈σ, i〉 |= A iff for all j ≥ i. 〈σ, j〉 |= A
〈σ, i〉 |= ♦A iff exists j ≥ i. 〈σ, j〉 |= A

We also allow standard first-order quantifiers, such
as ‘∃’ and ‘∀’ and arithmetical operators.

Such a logic is widely used in the specification of con-
current and distributed systems, in both Computer
Science (Manna and Pnueli, 1992) and Artificial In-
telligence (Fisher et al., 2005a).

Note: as abbreviations later, we will often use formu-
lae such as

©p = p

meaning that the value of the variable ‘p’ remains the
same between the current and next state. This is ac-
tually short-hand for the (legal) first-order temporal
formula

∃v. (p = v) ∧ ©(p = v)

i.e. ‘p’ has exactly the same value in the next state as
it has now.

4. Applying our Formal Approach
In this section we formally specify a simplified ver-
sion of the wireless connected swarm (the alpha algo-
rithm) outlined in section 2. Section 4.1 describes the
behaviours of the individual robots and the possible
emergent behaviours. Section 4.2 defines the specifi-
cation of the individual robots. Section 4.3 combines
the specifications of the individual robots. Section 4.4
specifies some possible emergent behaviours and 4.5
outlines a route to proving the emergent behaviours.

4.1 A simplified alpha algorithm

For simplicity, we discretise the robot space so that
the robots move in a grid world, and make the follow-
ing assumptions.

1. The bearing of each robot will have only one of
these four values: N , S, E, and W .

2. The maximum connected distance between two
robots is rw units.

3. At each time step a robot moves a units (a ¿ rw).

4. A robot can move forward, turn 90◦ left, 90◦ right
or 180◦ back.

5. Given a robot i in position x, y, if another robot j is
in the shaded area shown in Figure 3, then robots
i and j are ‘connected’.

Figure 3: Area of Connectivity

6. We simplify the FSM of figure 1 by omitting the
avoidance state.

7. We assume a value of α = 1 so that the loss of any
connection triggers the coherence state.

Given the above assumptions, the behaviour of each
robot can be described as follows. Each robot can be
in one of two motion states: forward or coherence.
The connectivity of each robot can also be in one of
two states: connected or not connected. The combina-
tion of the motion states and the connectivity states
give us four possible actions:

In the forward state, when connected → move for-
ward

In the forward state, but not connected → turn 180◦

and change the motion state to ‘coherent’

In the coherent state, but not connected→move for-
ward

In the coherent state, when connected → perform a
random turn (i.e. either left or right) and change
the motion state to ‘forward’.

Now, given a swarm of robots with the above be-
haviours, there may potentially be the following (de-
sirable) emergent behaviours:

• Property 1: It is repeatedly the case that for each
robot, we can find another robot so that they are
connected.

• Property 2: Eventually it will always be the case
that every robot is connected to at least k robots,
where k is a pre-defined constant.

4.2 Specification of individual robots

Before defining the specification of individual robots,
we need some auxiliary definitions to make the spec-
ification more readable.

The following local variables and global constants are
used in the subsequent specifications:

xi, yi: position of roboti.
θi: bearing of roboti. This can be N, S, E or W .
motioni: flag indicating whether roboti is in the for-

ward or coherence state.
M : total number of robots in the swarm.
rw: connectivity range.
a: distance of one move.
πi: roboti will transition from the current state to

the next state if πi is true.

4.2.1 Auxiliary definitions
Set of Robots
robotSet denotes the set of robots in the collection:

robotSet := {1, ..., M} (1)

Detection of Connectivity
Two robots i and j are within the connection range if
the Euclidian distance between their x, y coordinates
is less than the connection distance, thus:

inRange(i, j) := (
√

(xi − xj)2 + (yi − yj)2 < rw) (2)

Robot i is connected to some other robots in the collec-
tion if there exists another robot within its connection
range, thus:

connected(i) := ∃j ∈ robotSet \ {i}.inRange(i, j) (3)

Movements
First, we specify the ‘move forward’ action. If the cur-
rent direction is north, in the next time step, xi re-
mains unchanged, yi is incremented by a units. If the
current direction is south, in the next time step, xi re-
mains unchanged, yi is decremented by a units, etc.
Thus:

moveF (i) :=
(θi = N ∧ (©xi = xi) ∧ (©yi = yi + a)) ∨
(θi = S ∧ (©xi = xi) ∧ (©yi = yi − a)) ∨
(θi = W ∧ (©xi = xi − a) ∧ (©yi = yi)) ∨
(θi = E ∧ (©xi = xi + a) ∧ (©yi = yi)) (4)

We now specify the ‘move north’ action. If in the next
time step robot i moves in the direction north by a
units, the value of the x-coordinate of robot i in the
next state is the same as the value of the x-coordinate
now; and the value of the y-coordinate of robot i in the
next state is the same as the value of the y-coordinate
now plus the distance a. Thus:

moveN(i) := (©xi = xi) ∧ (©yi = yi + a) (5)

And for directions south, east and west respectively:

moveS(i) := (©xi = xi) ∧ (©yi = yi − a) (6)
moveE(i) := (©xi = xi + a) ∧ (©yi = yi) (7)
moveW (i) := (©xi = xi − a) ∧ (©yi = yi) (8)

The turn90Move() action specifies that in the next
step robot i turns 90◦ randomly and moves a units in
the new direction:

turn90Move(i) :=
(θi = S) ∧ (©θi = W) ∧moveW (i) ∨
(θi = S) ∧ (©θi = E) ∧moveE(i) ∨
(θi = W) ∧ (©θi = N) ∧moveN(i) ∨
(θi = W) ∧ (©θi = S) ∧moveS(i) ∨
(θi = E) ∧ (©θi = N) ∧moveN(i) ∨
(θi = E) ∧ (©θi = S) ∧moveS(i) ∨
(θi = N) ∧ (©θi = E) ∧moveE(i) ∨
(θi = N) ∧ (©θi = W) ∧moveW (i) (9)

The turn180Move() action specifies that in the next
step robot i turns 180◦ and moves a units in the new
direction:

turn180Move(i) :=
(θi = S) ∧ (©θi = N) ∧moveN(i) ∨
(θi = W) ∧ (©θi = E) ∧moveE(i) ∨
(θi = N) ∧ (©θi = S) ∧moveS(i) ∨
(θi = E) ∧ (©θi = W) ∧moveW (i) (10)

The four possible states and movements
We can now specify the four possible actions de-
scribed in section 4.1, as follows. forwardConnected()
specifies the next action when the robot is in the for-
ward motion state and is connected:

forwardConnected(i) :=
(motioni = forward) ∧ connected(i) ∧
(©motioni = forward) ∧moveF (i) (11)

When the robot is in the forward motion state but not
connected:

forwardNotConnected(i) :=
(motioni = forward) ∧ ¬connected(i) ∧
(©motioni = coherent) ∧ turn180Move(i)(12)

When the robot is in the coherence state and not con-
nected:

coherentNotConnected(i) :=
(motioni = coherent) ∧ ¬connected(i) ∧
(©motioni = coherent) ∧moveF (i) (13)

And when the robot is in the coherence state and con-
nected:

coherentConnected(i) :=
(motioni = coherent) ∧ connected(i) ∧
(©motioni = forward) ∧ turn90Move(i)(14)

Idle situation
Finally, we characterise the ‘idle’ situation.

idle(i) := (©xi = xi) ∧ (©yi = yi) ∧ (©θi = θi) (15)

The above formula specifies that in the next step
robot i does not make any change.

4.2.2 Specification of Robot i

Let Roboti denote the specification of robot i:

Roboti := (Safetyi ∧ Livenessi) (16)

The above formula states that the behaviour of
Roboti will always satisfy its safety properties and
liveness properties.

4.2.3 Specification of safety for Robot i
The safety properties specify the valid actions. To al-
low for concurrent composition of all the robots, the
specification of each robot consists of two parts: the
component part and the environment part. The com-
ponent part defines what actions robot i is allowed to
do. The environment part defines what other robots
are allowed to do from the point of view of robot i.
In our specification, concurrency is modelled through
interleaving. Therefore the specification needs to en-
sure that at any time, only one robot is taking an
action. We use the proposition πi to label robot i’s
actions. Therefore πi is true if robot i is taking an
action.

Safetyi :=
πi ∧ CompActioni ∧ ∀j ∈ robotSet \ {i}.idle(j)
∨
¬πi ∧ EnvActioni ∧ idle(i) (17)

The Safetyi formula above specifies what robot i is al-
lowed to do itself (i.e. a component action) and what
the environment (i.e. the other robots) are allowed to
do. If robot i is executing an action, all other robots
must be idle. If the environment is executing an ac-
tion, robot i must be idle.

The CompActioni formula specifies four allowed ac-
tions:

CompActioni := forwardConnected(i) ∨
forwardNotConnected(i) ∨
coherentNotConnected(i) ∨
coherentConnected(i) (18)

EnvActioni specifies that one of the other robots is
allowed to make a move in one of the four directions:

EnvActioni := ∃j ∈ robotSet \ {i}.
(moveN(j) ∨moveS(j) ∨
moveE(j) ∨moveW (j)) (19)

4.2.4 Specification of liveness for Robot i

We can now specify liveness for robot i. The livenessi

formula specifies that if, in the current step, robot i
has performed a detection action and it is in the for-
ward state, and it is connected to another robot, robot
i will move forward; if robot i is in the forward state
and it is not connected to another robot, it will do a
180◦ turn and change the motion state to be ‘coher-
ent’, and so on:

Livenessi :=
(πi ∧ (motioni = forward) ∧ connected(i) ⇒
moveF (i))
∧
(πi ∧ (motioni = forward) ∧ ¬connected(i) ⇒
(turn180Move(i) ∧©motioni = coherent))
∧
(πi ∧ (motioni = coherent) ∧ ¬connected(i) ⇒
moveF (i))
∧
(πi ∧ (motioni = coherent) ∧ connected(i) ⇒
(turn90Move(i) ∧©motioni = forward))(20)

4.3 Specification of the overall swarm

The swarm of robots consists of all robots execut-
ing concurrently. Therefore our specification for the
whole collection is defined as the logical ‘and’ of all
the individual robots. As we use interleaving to
model concurrency, we also need to ensure that only
one robot is taking an action at a time. This mutual
exclusion is specified by the exclusive ‘or’ (⊕) condi-
tion. Thus,

Swarm :=
Robot1 ∧Robot2 ∧ ... ∧RobotN ∧

(π1 ⊕ π2 ⊕ ...πN) (21)

4.4 Specification of emergent behaviours

In this subsection, we demonstrate how we can use
the same notation to describe possible emergent be-
haviours.

Property 1: It is infinitely often the case that, for each
robot, we can find another robot so that they are con-
nected.

property1 := ♦(∀i ∈ robotSet. connected(i)) (22)

Property 2: Eventually it will always be the case that
every robot is connected to at least k distinct robots,
where k is pre-defined.

property2 :=
♦ (∀i ∈ robotSet.

(∃j1 ∈ robotSet{i}. inRange(i, j1) ∧
∃j2 ∈ robotSet{i}. inRange(i, j2) ∧
...

∃jk ∈ robotSet{i}. inRange(i, jk) ∧
distinct(j1, j2, ..., jk))) (23)

and distinct() is defined as,

distinct(i1, i2, ..., ik) := | {i1, i2, ..., ik} | = k (24)

Thus property1 specifies that each robot has just 1
connected neighbour; property2 is stronger, and spec-
ifies that each robot in the swarm has k connected
neighbours. However, property2 does still admit the
possibility that our swarm of M robots might split
into a number of connected subswarms each with k+1
robots. Given that this paper is reporting a work-in-
progress we offer the specifications of emergence here
not as complete and sufficient, but as illustrative of
the approach we are advocating.

Since the disposition and connectivity of our swarm
experiences a time evolution we also need to assume
that property1 and property2 are true at the initial
moment, in other words that our robots are initially
tightly swarmed and fully connected. Over time the
swarm will tend to disperse but the purpose of the
alpha algorithm is to maintain swarm connectivity.
Thus we seek to prove that property1 and property2
remain true.

4.5 Potential for proving emergent swarm
properties

Our goal for this stage in our formal approach is to
prove (or disprove) that the swarm of robots satisfies
the emergent behaviours, i.e.

Swarm ⇒ property1 (25)

Swarm ⇒ property2 (26)

Currently we are experimenting with mapping spec-
ifications for the swarm and the emergent be-
haviours into a monodic first-order temporal logic
so that a monodic first order temporal prover
(Degtyarev et al., 2004, Konev et al., 2005) can be
used to prove if the swarm robotic system sat-
isfies the anticipated emergent behaviours. Our
initial study has indicated that by rewriting the
problem specification and the emergent behaviours
into a monodic first order temporal specifica-
tion, we are indeed able to use the temporal

prover (Hustadt et al., 2004) to carry out such proofs.
Although mapping to the monodic temporal logic pro-
duces a large number of clauses and the time taken
for the proof is relatively long, this is a first step
towards a solution for designing dependable swarm
robotic systems that will guarantee certain emergent
behaviours.

It should be noted that the finite domains used in
the specification, e.g. finite numbers of robots, finite
grid, finite actions, etc., all help to reduce the com-
plexity of the description required. However, they
greatly increase the size. Our aim is to revise the
specification in order to take more first-order cases
into consideration, thus allowing techniques such as
in (Fisher et al., 2005b) to be utilised.

5. Conclusions and Further Work

This paper has proposed the use of a formal method,
which would normally be used to specify and prove
properties of a software system, in swarm robotics.
We have argued that a linear time temporal logic for-
malism can be applied to the specification of swarm
robotic systems, because of its ability to model con-
current processes and - we maintain - robots in a
swarm can usefully be modelled as concurrent pro-
cesses in a highly parallel system. We have applied
this temporal logic schema to the specification of a
wireless connected swarm, starting with the speci-
fication of individual robots and building up to the
overall swarm. This work is at a very early stage and
we have made a large number of simplifying assump-
tions. Our example specification thus falls well short
of fully specifying even the simple alpha algorithm of
our case study. We are, however, confident that there
is potential merit in the approach proposed in this
paper. We believe that such an approach could be an
important step toward a disciplined design method-
ology for swarm robotics.

Further work will include:

1. development of the case study to reduce the num-
ber of simplifying assumptions and hence improve
the fidelity of the formal specification of our wire-
less connected swarm;

2. further work to understand the scope and impli-
cations of the use of the temporal prover to prove
the emergent properties of the swarm, and

3. work to extend and generalise this approach to
other types of robotic swarm and hence determine
whether the approach has merit as a generic tool
in swarm engineering.

Acknowledgements
The authors gratefully acknowledge the constructive
and insightful comments of the referees. This work
was partially supported by the EPSRC under re-
search grant GR/R45376.

References
Bonabeau, E., Dorigo, M., and Théraulaz, G. (1999).

Swarm Intelligence: from natural to artificial
systems. Oxford University Press.

Degtyarev, A., Fisher, M., and Konev, B. (Accepted
April 2004). Monodic temporal resolution. ACM
Transactions on Computational Logic, To appear.

Emerson, E. A. (1990). Temporal and Modal Logic.
In van Leeuwen, J., (Ed.), Handbook of Theoreti-
cal Computer Science, pages 996–1072. Elsevier.

Fisher, M. (2005). Temporal Development Meth-
ods for Agent-Based Systems. Journal of
Autonomous Agents and Multi-Agent Systems,
10(1):41–66.

Fisher, M., Gabbay, D., and Vila, L., (Eds.) (2005a).
Handbook of Temporal Reasoning in Artificial
Intelligence, volume 1 of Advances in Artificial
Intelligence. Elsevier Publishers, North Holland.

Fisher, M., Konev, B., and Lisitsa, A. (2005b). Practi-
cal infinite-state verification with temporal rea-
soning. In Workshop on Verification of Infinite
State Systems and Security (VISSAS).

Hustadt, U., Konev, B., Riazanov, A., and Voronkov,
A. (2004). TeMP: A temporal monodic prover.
In Basin, D. A. and Rusinowitch, M., (Eds.), Pro-
ceedings of the Second International Joint Con-
ference on Automated Reasoning (IJCAR 2004),
volume 3097 of LNAI, pages 326–330. Springer.

Konev, B., Degtyarev, A., Dixon, C., Fisher, M., and
Hustadt, U. (2005). Mechanising first-order tem-
poral resolution. Information and Computation,
199(1-2):55–86.

Lerman, K., Martinoli, A., and Galstyan, A. (2005).
A review of probabilistic macroscopic models for
swarm robotic systems. In Şahin, E. and Spears,
W., (Eds.), Swarm Robotics Workshop: State-of-
the-art Survey, number 3342, pages 143–152,
Berlin Heidelberg. Springer-Verlag.

Manna, Z. and Pnueli, A. (1992). The Temporal
Logic of Reactive and Concurrent Systems: Spec-
ification. Springer-Verlag.

Martinoli, A., Easton, K., and Agassounon, W.
(2004). Modeling swarm robotic rystems: A case
study in collaborative distributed manipulation.
In Int. Journal of Robotics, volume 23(4), pages
415–436.

Nembrini, J. (2005). Minimalist Coherent Swarm-
ing of Wireless Networked Autonomous Mobile
Robots. PhD thesis, University of the West of
England.

Nembrini, J., Winfield, A., and Melhuish, C. (2002).
Minimalist coherent swarming of wireless con-
nected autonomous mobile robots. In Proc. Sim-
ulation of Artificial Behaviour (SAB’02). Edin-
burgh.

Rouff, C., Hinchey, M., Truszkowski, T., and Rash,
J. (2004). Formal methods for autonomic and
swarm-based systems. In 1st International Sym-
posium on Leveraging Applications of Formal
Methods (ISoLA 2004). Cyprus.

Rouff, C., Truszkowski, W., Rash, J., and Hinchey,
M. (2003). Formal approaches to intelligent
swarms. In IEEE/NASA Software Engineering
Workshop, 2003, pages 51–57. IEEE press.

Winfield, A., Harper, C., and Nembrini, J. (2005).
Towards dependable swarms and a new disci-
pline of swarm engineering. In Şahin, E. and
Spears, W., (Eds.), Swarm Robotics Workshop:
State-of-the-art Survey, number 3342, pages
126–142, Berlin Heidelberg. Springer-Verlag.

