Is There a Future for Deductive Temporal Verification?

Clare Dixon, Michael Fisher and Boris Konev

Department of Computer Science
The University of Liverpool,
Liverpool L69 3BX, United Kingdom

{C.Dixon,M.Fisher,B.Konev t@csc.liv.ac.uk

Keywords: fragments of PTL; deductive verification; that, since the formulae tackled in practical model checking

complexity; clausal temporal resolution. often fall within such fragments, then this provides a natural
explanation for the viability of model checking in PTL.
Abstract Our research has followed a different, but related, di-

rection. Over a number of years, we have been con-
cerned with developing a clausal resolution calculus for
both propositional and first-order linear temporal logics [4,
11, 14, 15, 16]. Since deciding unsatisfiability of PTL is
also PSPACE-complete, then deductive verification of PTL
formulae would seem to be an impractical way to pro-
ceed. However, just as Demri and Schnoebelen showed how
PTL model checking can be seen as being tractable when

than exponential). Consequently, @dhi automaton can W€ consider fragments of PTL, so we have been examin-

be represented within our logic, and its emptiness can beNd fragments of PTL that allow clausal resolution to be

tractably decided via deductive methods. This may havelractable. In previous work, we examined a fragment where
a significant impact upon approaches to verification, since €mporal formulae in the clausal form (SNF; see Section 2)
techniques such amodel checkingnherently depend on ~ We€re essentially re_Strlcte_d to Horn Clauses [8]. In this pa-
the ability to check emptiness of an appropriatécBi au- per, hovyever, we _mvestlgate a different fragment, where
tomaton. Thus, we also discuss how such a logic might form¢lauses inherently involve XOR operators.

the basis fopracticaldeductive temporal verification. ~As we will show, the use of XOR has several benefits.
Since the complexity of unsatisfiability for XOR clauses in

classical propositional logic is low [19], there is the poten-
tial to carry much of this over to the temporal case. More
importantly, if we consider a #chi automaton, then we can
easily represent the states (using ggyand labels (using
say!;) of the automaton in PTL. Indeed, the clausal form
Jwe use makes this simpler still with clauses such as

In this paper, we consider a tractable sub-class of propo-
sitional linear time temporal logic, and provide a complete
clausal resolution calculus for it. The fragment is impor-
tant as it can be used to represent simplecBi automata.
We also show that, just as the emptiness check faichB
automaton is tractable, the complexity of deciding unsatis-
fiability, via resolution, of our logic is polynomial (rather

1 Introduction

It is widely recognised thamodel checkingis the
most appropriate verification method for (finite state) sys-
tems. Yet there are some surprising aspects to this. Th
model checking (i.e. satisfiability checking) problem for
propositional, linear temporal logic (PTL) is PSPACE-
complete [20, 23] yet practical tools for model checking
formulae in this logic have been developed, most notably
Spin [13]. This has led to deeper investigations into the
structure of temporal formulae and their relationship with
model checking, most notably the paper by Demri and Sch-
noebelen [5]. There, the authors consider sub-fragments o
PTL, particularly those restricting the number of proposi-
tions, the temporal operators allowed, and the depth of tem- 1iere, each proposition;, represents the fact that the automaton is in
poral nesting in formulae. Demri and Schnoebelen show states; and each propositiofs represents the automaton reading lahel

(1 Nlz) = Og

corresponding directly to transitions (in this case, from state
s1 to states, reading labelr;). However, in such a trans-
lation, an underlying problem is representing the fact that
the automaton must be exactly onestate at any moment
#'n time (and, similarly, that the automaton can only read ex-
actly one label at any moment). This provides an obvious

motivation for allowing XOR clauses, since the fornfula e true andfalse are inwFF.
G @ @®...®qm) e If AandB are inwrrthen so are

-A AvB AANB A=1B

captures the property on states that we require. OA (1A AUB AWB OA

Thus, in this paper we provide several results. First, we
introduce the PTL fragment to be considered and show a
completed clausal resolution system for this. Then we show
that the complexity of deciding unsatisfiability via resolu-
tion is polynomial and, since iBhi automata can be de-
scribed simply by clauses in this logic, then an emptiness
check for a Bichi automaton can be tractably carried out

using clausal temporal resolution. As discussed above, a sequence of distinct “moments”
The paper is organised as follows. Section 2 reviews . ' q

the syntax and semantics of PTL, together with the nor- in time underlie PTL. Typically, the Natl_JraI Numbers, is
. : : . used to represent these moments in time. So, a model for
mal form, SNF, for this logic. In Section 3 we introduce

the restriction based on XOR clauses and provide a corre-PTL' o, can be characterised as a sequencaies
sponding modification of SNF. Section 4 introduces the res-
olution calculus for this restricted logic, and considers the
completeness of this calculus, while Section 5 addresses itsvhere each state,, is a set of proposition symbols, rep-
complexity. In Section 6 we show howiBhi Automata resenting those propositions which are satisfied inithe
can be translated into this fragment and, in Section 7 wemoment in time. As formulae in PTL are interpreted at a
provide concluding remarks, incorporating both related and particular state in the sequence (i.e., at a particular moment

A literal is defined as either a proposition symbol or the
negation of a proposition symbol. Agventualityis defined
as a well-formed formula of the forrp A.

2.2 Semantics of PTL

o =1to,t1,t2,13,. ..

future work. in time), the notatiorio, i) = A denotes the truth (or other-
wise) of formulaA in the modebr at state index € N. For
2 PTL and SNF any formula4, models, and state index € N, then either

(0,1) E A holds or(o,4) = A does not hold, denoted by
(0,i) = A. The pair(o,4) can be considered as an inter-
| pretation (or valuation) for each formulawrr. (N.B., we

will reason about such interpretations in the completeness
proof given later.) If there is some such thats,0) = A,
then A is said to besatisfiable If (o,0) = A for all mod-
els,o, thenA is said to bevalid and is written= A. Note

that formulae here are interpreted:gtthis is ananchored
definition of satisfiability and validity [9].

The semantics ofvFF are given as follows..

The particular variety of temporal logic we consider is
called PTL [12], and is based on a linear, discrete mode
of time with finite past and infinite future. Although many
variations on this simple logic have been examined, we will
just use basic PTL with future-time temporal operators.

2.1 Syntax of PTL

The future-time temporal connectives that we use in-

clude<> (sometime in the futuye[] (always in the futurg (0,1) Ep iff p et [wherep € 7]
O (in the next moment in timg/ (until), andV (unlessor (0,i) = true
weak unti). Formally, PTL formulae are constructed from (0,) j false
the following elements: Efﬂ l; E ﬁ A g lg EU, Z; E ﬁ an?(o,)i);:BB
0,1 \Y I 0,1 or(o,i
e aset,P, of propositional symbols; (0,i) A= B iff (0,i)=—-Aor(o,i) =B
" : (0,i) F A iff (0,9) £ A
e propositional connectivesiue, false, -, v, A, and (0,i) £ OA iff (0,i+1)}=A
= and (0,i) = QA iff there exists & € N such that

k>iand(o,k) = A

temporal connectives), <>, [1, U, andWW.) !
° femp .0 (0,i) = (A iff forall j € N,if j > i then

The set of well-formed formulae of PTL, denoted WyF, (0,7) F A
is inductively defined as the smallest set satisfying the fol- (0,¢) = AUB iff there exists & € N, such that
lowing. k >iand(o, k) = Band
forallj e N,ifi <j<k
e Any element ofP is in WFF. then(a, j) = A

(0,i) = AWB iff (0,i) = AUBor(o,i) = [1A

2Note we use this notation to mean exactly gnéolds.

2.3 SNF, a Normal Form for PTL

The resolution method for full PTL (see for exam-

ple [11]) is clausal, and so works on formulae transformed initial clause is allowedS must equafq, ¢z, . . .
into a normal form. The normal form, called Separated £ must equaki,ls,. ..

whereg;, ¢, € S andl; € £, and whereR,. must be one of
—q;, Or (—\qi V _\Zj>.

In SNFX4, at most onsometimeslause and at most one
,qn} and
,Im}. Thus, all elements of and

Normal Form (SNF), comprises formulae that are implica- £ occur within some XOR clause. In addition, there is a
tions with present-time formulae on the left-hand side and further restriction on the form above, namely that, for every

(present or) future-time formulae on the right-hand side.
To assist in the definition of the normal form we intro-

duce a further (nullary) connectivstart’ that holds only at

the beginning of time, i.e.,

iff

(0,i) |= start i =0.

¢i» I such thay; € S andl; € L there is at most one clause
of the form
(@i Nlj) = O \/Qk-
k

in the clause set.

This allows the general form of the (clauses of the) normal 4 Clausal Temporal Resolution for SNFX,

form to be implications.
Whilst the full details of SNF and its properties will not

be described here we note that the transformation of arbi-

trary PTL formulae into SNF not only preserves satisfiabil-

Next we consider resolution rules for sets of SNFX
clauses. The resolution rules are split into four groups: ini-
tial resolution; step resolution; hyper XOR resolution and

ity, but also ensures any model generated from the formulat€mporal resolution.

in SNF is a model for the original formula [10, 11]. In ad-
dition, the complexity of the translation process is low [11].

3 PTL-X 4 and SNFX,

We will now define additional syntax for PTL, namely
the XOR operator, &', and characterise a modification
of SNF, calledSNFX4, especially modified to capture
automata-propertiesThe key aspect here is that the set of
propositions P, is partitioned into two disjoint sets; and
L. Note that these will later represestatesandlabelsonce
we begin translating automata into SNgX

The XOR operator is defined simply as

(i) Ep1®pa@®...®pn Iff
there is exactly ond < j < m such tha{o, 1) = ¢;.

The new logic, PTL-X, will comprise exactly those
clauses that can be represented in SNFXhus, we will
concentrate first on SNEX Like SNF, SNFX, is of the

general form
O\ A

where eacd; must be one of the following.

start = Vi (initial clause)
(@A) = O\ a (stepclause)

true = R, ’ (universalclause)
true = OV (sometimelause)
true = q GS @P...0q, (XORS clause)
true = Lelhd...dl, (XORLclause)

Initial Unit Resolution involves resolving an initial clause
with a universal clause:

start = QVg
IURES true = -
start = @

The conclusion of the rulestart = @ replaces the premise
start = Q V g;.

Step Resolutionresolves step clauses with universal
clauses (Step Unit ResolutioBURES) or derives addi-
tional universal clauses from contradictions obtained in the
next moment$RES):

a Nl = O@QVaq)
SURES true = g
q; N\ l]' = OQ

The conclusion of the ruleg; A l; = OQ replaces the
premiseg; A lj = O(Q V qx).

Hyper XOR Resolution takes several universal clauses re-
lating to the negation of a proposition & together with
the XORL clause:

g N\Nl; = Ofalse
true = _‘Qi\/—‘lj

true = g V-l
R
true = gV -ln,
true = L®...®ln,
true = -q

The conclusion of the ruldrue = —q; replaces the first
m premises (of the forrtrue = —q;, v —1;).

Temporal Resolution Since there is only one sometime Theorem 1 The rules of clausal temporal resolution pre-
clause which is of a simple form (i.e. it haue on the serve satisfiability.
left hand side) we can use a simplified version of the stan-

dard [11] step resolution rule, defined in [3]: The completeness theorem requires a proof.

Theorem 2 If a set of SNFX clauses is unsatisfiable then

\/ g = [/\ "k the temporal resolution procedure will derive a contradic-

J k . ;)
tion when applied to it.

TRES true = <> \/ qr
k Proof
true = /\ g; We adapt the completeness proof of the original system [11,
J 3]. For full details see [7]C

To apply TRES we must find a (non-temporal) formula
\/qj such thal\/ qj implies [] /\ — Q-
J J k

For standard SNF clauses this problem has been ad-f_ To ang(ljysehthe con:plc_axﬂyfcr)]f SNEJXrgsqutlon,dwe b
dressed previously in [6]. Here we have a simpler set of Irst consider the complexity of the saturation procedure by

; tep resolution (by step resolution we mean ru¢RES,
clauses so the search foraop (i.e. a set of clauses that >
. HSEs S S. . P S HSes SURES, SRES, andHRES), then we consider the com-
imply [J /\ ~qx) is easier.

plexity of loop search, and finally, we consider the overall
b complexity of the proof procedure.

5 Complexity of SNFX, Resolution

Loop Search Assume we are resolving with e Complexity of step resolution
g
true = \/ qe- LetE = {qx |k =1,...g}. LetC be a set of SNFX clauses. Recall that the set of
k1 propositions inC is partitioned into two disjoint sets,
o . S andZ; let the cardinality ofS ben the cardinality of
e Construct a sefC which initially contains the set of r bem y " y

step clauses. _ . o
We show that there exists a polynomial-complexity (in

e Create two sets of propositionsg, representingood terms ofn andm) procedure that saturat€shy step
propositions, and. g, representindad propositions. resolution, that is, applies the ruld$RES, SURES,
Initially, let Lo be the members af which occur on SRES, and HRES to C exhaustively until no new
the left hand sides of clauses$tT which are not inZ clause can be derived.
andletLp = S\ Lg. Notice that any saturation procedure, which ensures

o Iteratively search througiC' for clausesgy, A I, = that no _inference rule is attempted on the same _set
O(Q V qy) whereg, € Lp or clausesg, A l, = of premises more than once, will haye a polynomial
Ofalse . Deletegy A l, = O(Q V g,) (respectively complexny. NOt.IC(-E furtr_]er tha.t the Given Clause Al-
@ A, = Ofalse) from SC, deleteg;, from L¢ and gorithm [18] satisfies this requirement.
andletLg = Lp U {qx}- The complexity of the procedure is bounded then by

the number of different sets of premises to which infer-
ence rules can be applied. It suffices to notice that the
HRES rule can be applied to at mostdifferent sets
e If SC = () there is no loop, otherwise the loop is of premisesSRES to at mostn x n sets of premises;

\/ g= [/\ — theSURES rule can be applled to at mo;s% x m sets

of different premises (notice that, since no two step

clauses have the same left-hand side, there are at most
n x m different step rules in any clause set); and, sim-
ilarly, the IURES rule can be applied to at mostsets
of different premises. Altogether, the complexity of
Since the SNFX temporal resolution rules can be seen as a the saturation procedure@(n? x m).
particular strategy for unrestricted temporal resolution [11]
(note that in both unit resolution rules, the conclusion of the
rule subsumes the premise); we, obviously, have the follow- Notice that since at every iteration of loop search, at
ing soundness theorem. least one proposition is deleted frohy,, there are

e Terminate when eithe§C = () or SC doesn’t change
as we search through the clauses.

q€Lg k

Subsumption Finally, we assume that standard subsump-
tion takes place.

e Complexity of loop search

at mostn iterations. Using efficient implementation 6.2 From Biichi Automata to SNFX 4

technigues, the search in every iteration can be imple-

mented in time bounded by x m. Therefore, the
complexity of loop search ig? x m.

e Overall complexity

We aim to construct a set of SNEXclausesI” from A
such thafl’ is satisfiable if, and only if4 has an accepting
run.

To representA in SNFX4, we use the following

The overall procedure works as follows: the set of propositions:-
clauses is saturated by step resolution, then loop search o ¢, for eachs; € S;
is attempted. If loop search succeeds, the set of clauses

is extended by the conclusion of tA&RES rule and
the entire process repeats (we call the procesmtin
loop) until either a contradiction is obtained, or noth-
ing new can be derived.

e [; for eachr; € X.

The setC 4 of SNFX4 clauses representing the automa-
ton A is as follows.

The overall complexity of the proof procedure is start = _/q’i for s; € Fy

bounded by the product of the number of iterations of !

the main loop and the joint complexity of saturation (4 Alk) = O \/Qj for s; € o(si, mk)

and loop search. Note that there may not be more than] ‘ _

n iterations of the main loop. Therefore, the overall (@ /t\rlljke) z g}glse & q ;g: g(s_“ g“) N [Z)S)

. . 3 1 N n = 15---Sn

complexity of proof search i©(n* x m). ttue = L@.. @, fors={m, . m}

_ tue = O\ g fors; € F
6 From Buchi Automata to SNFX4 j

We will now consider the representation of adhi au-

tomaton as a set of SNEXclauses and, in particular, empti-

Proposition 3 A Biichi automatond = (X, S, Fy, §, F)
has an accepting rum4 (over infinite wordw) if, and only
if, the set of SNFX clauses(4, defined above, is satisfi-

ness checking of the automaton as deriving a refutation in e

SNFX,4. We begin with a standard definition of diéhi
automaton [21, 22].

6.1 Definition of a Biichi automaton

A Bichi automaton,, is a tuple(X, S, Fy, 4, F),
where:

e ¥ = {mo,...my} is afinite non-empty alphabet;
o S={sg...s,} isafinite set of states;
e [y C S, is aset of initial states;

e 5 = 5 x ¥ — 29 is a non-deterministic transition
function; and

e F' C S,is aset of accepting states.

ArunTty =r9,11,72,...0faBlchiautomatonA, over
the wordw = wowyws ..., wherew; € 3, is an infinite
sequence of states; € S where the first state is an initial
state, i.ery € Fpy, and for every other statg; for i =
0,1,...we havel"i+1 € 5(7"1,101)

Arun, T4, iSaccepting if there is a state € F' such that
s appears irr4 infinitely often.

Proof

We first show that, given ailghi automatonA, with an
accepting run such th8l is its translation into SNFX, as
described above, there is a model which satigfigs

Let A = (X, S, Fy, 0, F), be a given non-empty
Biichi automaton and letl have an accepting rungy =
roriTe ... Tirer1 ..., (re € Sfort = 0,1,2,...) over an
infinite word w = wowyws ... wiwesr FOr some ac-
cepting state; € F, sy must appear infinitely often in,.
In the runt.4, at thet** moment of time when the automa-
ton is in the state; and readsw;, it moves tor; 4, i.e.
(S(?“t, ’LUt) = Tt4+1-

We now construct a modet and show it satisfies the
clause sef 4. We note thatas 1(AAB) = [JAA [IB
we can assume that the external” operator in Section 3
is applied to each implication ifi4.

Let P be a set of propositional symbols whefe =
{l; | 7mj € B} U{q | s; € S}. We construct an infinite
sequence of states

0 = Ug, U1, U2, ..., Ut;, Ut41, -

as follows. Set the propositions that are true in each state to
match those read hyl on the accepting run for the infinite
wordw, i.e.l; € u, if, and only if, w; = ;. For anygq; €
P theng; € wu, if, and only if, r; = s; (setq; to be true in

u, if and only if the state visited in th&” moment in time
of the accepting rung 4, is s;). Next we shows satisfies
the clause set 4.

The runt4 is an accepting run which starts from =
s;. Thuss; is one of the initial states, i.es; € Fj,, and
from how we have constructed ¢; is satisfied in the initial
momento, i.e. (¢,0) E ¢. Also as(c,0) | start and
(o,t) [~ start for ¢t > 0, from the semantics dftart, the
initial clause of the clause séiy

start= \/ ¢
S]'EF()

is satisfied at every moment in time.
Next we must show that the step clauseCqf hold.
Consider the implication,

(@A) = O Vg
J

For any moment such that(o,t) [~ q; or (o,t) £ li the
above holds trivially.
Next consider some time such that(c,t) E ¢; and

(0,1) k= Lx. We must show thalio, t) = O \/ ¢;. From the

construction ot there must be some stedé: r: which is
visited in thet;;, moment of the accepting run and a transi-
tion s; € §(s;,) such that in the + 15 moment in time
the accepting run is at state= r;, 1 having readr;, = w;.
Thus, from the construction ef, (¢,t + 1) = ¢; and from
how we have constructetl, and the semantics of,

(o,t+1)):\/qj.

Hence, from the semantics of)”,

(0.0 OV,

and
(0,t) E (¢ ANlik) = O \/Qj.

Thus, at all moments in time each step clause holds and

O (e rt) =0 Vg
J

is satisfied.

Recall that the rurr4 in the t'» moment of time visits
the states; = r;. From the construction of, (o,t) |=
g; and (o, t) W~ g; for everyg; # ¢;. Hence the XORS
clause is also satisfied inat every moment. Similarly from
the infinite wordw of the accepting run and how we have
constructedr at each state we haye, t) = I; for somel;

such thatl < ¢ < m and(o,t) % I; for all j # 4 such that
1 <7 < m. Hence the XORE clause is also satisfied in
at every moment.

Finally consider the sometime clause. From the con-
struction of the mode{c, t) |= ¢y if, and only if, 7, = sy
and since the automaton, hits the state ; infinitely often,
the sometime clause is satisfied.

Therefore, all clauses ifi4 are satisfiable imr.

Assume now that for an automatoty the correspond-
ing set of SNFX, clauses(4, is satisfiable. We show that
A has an accepting run. Consider the sequence of states
o = ug,uy,us, ... such thats,0) = C4. Because of the
XOR clauses, for every > 0 there isexactly ones; € S
andexactly oner,, € X such thaty; € u; andi; € wy.
We construct an accepting ran = rg,71,...7¢ ... 0nthe
word w = wp,wr,...w; ... as follows. Letr, = s; iff
qj € u; (the state in the’t moment of the accepting run is
s; iff ¢; istrue inu,). Letw, = 7, iff I; € u, (the label read
in the " moment of the accepting runis iff /; is true in
uz). We show by induction onthatr 4 is an accepting run.

First we showrq is an initial state. From how we have
constructed the accepting rumn = s; such thayy; € ug. As
C 4 is satisfiable then

(0,0) = (start = \/ g;)

SjGFo

so the state; must be initial (i.es; € Fj). Consider some
stater, in 74 we show thats; € d6(s;,) wherer, = s,,
ri41 = s; andw, = . Consider the step clause

(g Nlg) = O \/Qj-
J

such thaty; € v, andily € u; (i.e.r, = s; andw, = my).
There must be one such clause from how we have con-
structedC 4. Note that the right-hand side of the step
clause cannot bfalse for otherwisefalse € wu;y;. Then
¢; € us41. Note thats; € §(s;, mx).

It remains to notice that, since

(0,0) = [(true = <>\/qj)

for s; € F, the states; appears in the sequeneg =
ro,T1,...,Tt, ... iNfinitely often, that is, the rum 4 is ac-
cepting.d

Example 1 Consider a Bchi Automaton A; =
(2, S, Fy, 0, F), as follows.

S| 6(s,m1) | 0(s,m2)
Y = {my,m} s1 | 152,85} {ss}
S = {81,82,83,84,85} S9 {84} {83}
Fo = {s1} ss | {s2} {sa}
F = {51,85} S4 {83,54} {52}

ss | {sa} {s2}

Hence there is no accepting run.

0. start = ¢
L. aanli = Of(g2Vags)
2. g ANlp = Ogs
3. @Al = Oq
4. @Al = Ogs
5. s ANl = Oge
6. ¢sANly = Oq
7. Nl = O(g3Vaqs)
8. qa N\ l2 = OQQ
9. ¢sANl1 = Ouaq
10. g5 A o = OQQ
11. true = P DU
12. true = [®ls
13. true = (V)

Loop Search Initially, Lg = {¢2,93,q4} and L =
{q1,¢5}. There is no change to either set so the loop is

(@2V g3 Vas) = [LI(~q1 A—gs)

Applying temporal resolution we obtain.

14. true = -q¢o [13,TRES]
15. true = -—q3 [13, TRES]
16. true = -—q4 [13, TRES]

Thus clauses 3-8 are subsumed by one of 14-16.

17. ¢ ANli = Ofalse [9,16,SURES]
18. g5 ANl = Ofalse [10, 14, SURES]
19. true = -—gq5V -l [17, SRES]

20. true = -—g5V-ly [18,SRES]

21. true = —gs 12,19, 20, HRES]
22. ANl = Ogs [1, 14, SURES]
23. g1 ANl = Ofalse [21, 22, SURES]
24. @1 ANl = Ofalse (2,21, SURES]
25. true = -—-qV =l [23, SRES]

26. true = -q V-ly [24,SRES]

27. true = ¢ [12, 25,26, HRES)]
28. start = false [0,27, IURES)]

L anli = O(@Ve)
2. q2 A ll = OQ3

3. ¢sANli = Ogs

4. true = D g
5. true = [

6. true = g

Note that, since the only symbol in the alphabetis the
XOR-L clause is simplyrue =-[; (clause 5).

Loop Search |Initially, Lg = {q1,¢93} andLg = {g2}.
From clausd we deleteg; from Ls and add it toLz and
obtainLe = {¢3} andLp = {¢1,¢2}. There is no change
to either set so the loop formulags = [1—¢2. By apply-
ing temporal resolution we obtain the following.

7. true = -—gq3 [6, TRES]
This subsumes clause 3.
8. @Al = Ofalse 2,7,SURES]

[
9. true = -¢g V-l [8,SRES]
10. true = g0 [5,9, HRES]

Clause 11 now subsumes clause 1. Now, attempting loop
search again (note the current set of step clauses is just
clause 11) we havés = {¢1} andLp = {¢2,q3}. We
obtain the loopy; = [1—¢2. By applying temporal resolu-
tion we obtain the following.

12. true = -q
13. start = false

6, TRES]
[0, 12, IURES]

Hence we obtain a contradiction using resolution showing
the set of clauses is unsatisfiable.

7 Conclusions

In this paper we have introduced a novel fragment of
PTL, and have provided a complete resolution calculus for
this fragment. The complexity analysis carried out has
shown that the resolution approach provides a polynomial
decision procedure. While this is interesting in itself, a

Hence we obtain a contradiction using resolution showing further important aspect is that we can representiahB

the set of clauses is unsatisfiable.

Example 2 Now, consider a Bchi AutomatonA4, =
(%, S, Fy, 6, F), as follows.

¥ o= {m} S | (s, m)
S = {81,82,83} S1 {51782}
Fo = {31} S92 {83}
Fo= {s:} s3 | {ss}

Hence there is no accepting run.

0. start = ¢

Automaton (symbolically and directly) as formulae in this
fragment, with the emptiness check for such an automaton
corresponding to the search for a resolution refutation.

In establishing that some syste$ys, satisfies a prop-
erty, P, algorithmic, rather than deductive approaches have
been predominant. In particular, the model checking ap-
proach [22, 2], characterised by checking the emptiness of
the automata produ’cmgys x A-p has been very success-
fully applied.

3Here, Asys captures all the paths/executions througfizs, while
A_ p describes all the paths that satisfyP, i.e., all those paths thato
not satisfy P.

On the other hand, deductive temporal verification has [8] C. Dixon, M. Fisher, and M. Reynolds. Execution and Proof

been largely ignored (though see [17]), often due to its much

higher complexity. With our work in this paper, we be-
lieve that deductive temporal verification can be success- [9]

fully applied to such problems, for example by represent-

ing [Sys] A =P in PTL-X 4, where[Sys] is the tempo-
ral/symbolic description/semantics of the behaviour of the [10]
system. That PTL-) corresponds closely toighi Au-

tomata which, in turn, are at the heart of algorithmic veri-
fication, gives reason for optimism. Thus, our future work [11]

concerns developing such a view of deductive temporal ver-

ification further, as well as examining more complex (but
still tractable) XOR temporal logics. Concerning practical [12]

implementation, we note that the complexity given in Sec-

tion 5 is aworst caseanalysis. With ‘clever’ implemen-

tations, we expect the practical complexity to generally be

much lower than this.

Work related to that developed in this paper concerns the

[13]

excellent analysis by Demri and Schnoebelen [5], work on [14]
complexity of fragments of classical logic [19] and our own
previous work on the relationship between SNF aritts
Automata [1] and on other tractable fragments of SNF [8].
Finally, we would like to thank Radina Yorgova for her

work on varieties of RSNF which helped us to formulate the

fragment described in this paper.

References

[1] A. Bolotov, M. Fisher, and C. Dixon. On the Relationship

(2]

betweenw-Automata and Temporal Logic Normal Forms.
Journal of Logic and Computatiori2(4):561-581, August
2002.

E.M. Clarke, O. Grumberg, and D. PeleMlodel Checking
MIT Press, December 1999.

[3] A. Degtyarev, M. Fisher, and B. Konev. A Simplified Clausal

(4]

(5]

(6]

(7]

Resolution Procedure for Propositional Linear-Time Tempo-
ral Logic. In U. Egly and C. G. Feriiller, editors,Auto-

mated Reasoning with Analytic Tableaux and Related Meth-

ods (TABLEAUX-02)volume 2381 olLNCS pages 85-99.
Springer-Verlag, 2002.

A. Degtyarev, M. Fisher, and B. Konev. Monodic Tempo-
ral Resolution.ACM Transactions on Computational Logic
7(1), January 2006.

[15]

[16]

[17]

[18]

[19]

[20]

S. Demri and P. Schnoebelen. The Complexity of Proposi- [21]

tional Linear Temporal Logic in Simple Casdsformation
and Computation174(1):84—-103, 2002.

C. Dixon. Temporal Resolution using a Breadth-First Search [22]

Algorithm. Annals of Mathematics and Artificial Intelli-
gence 22:87-115, 1998.

C. Dixon, M. Fisher, and B. Konev. Is There a Fu-

ture for Deductive Temporal Verification? Tech-
nical Report ULCS-06-01, University of Liver-
pool, Department of Computer Science, 2006.

www.csc.liv.ac.uk/research/techreports/

[23]

in a Horn-clause Temporal Logic. Kadvances in Temporal
Logic. Kluwer Academic Publishers, 1999.

E. A. Emerson. Temporal and Modal Logic. In J. van
Leeuwen, editorHandbook of Theoretical Computer Sci-
ence pages 996-1072. Elsevier, 1990.

M. Fisher. A Normal Form for Temporal Logic and its Appli-
cation in Theorem-Proving and Executialournal of Logic
and Computation7(4):429-456, August 1997.

M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Reso-
lution. ACM Transactions on Computational Log{1):12—
56, January 2001.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The Temporal
Analysis of Fairness. IfProceedings of the Seventh ACM
Symposium on the Principles of Programming Languages
(POPL), pages 163-173, January 1980.

G. J. HolzmannThe Spin Model Checker: Primer and Ref-
erence Manual Addison-Wesley, November 2003.

U. Hustadt and B. Konev. TRP++ 2.0: A Temporal Reso-
lution Prover. InProceedings of Conference on Automated
Deduction (CADE-19)number 2741 in LNAI, pages 274—
278. Springer, 2003.

U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMP:
A Temporal Monodic Prover. In D. Basin and M. Rusinow-
itch, editors,Proceedings of the Second International Joint
Conference on Automated Reasoning (IJCAR 20@ime
3097 ofLNAI, pages 326-330. Springer, 2004.

B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hus-
tadt. Mechanising First-Order Temporal Resolutionfor-
mation and Computatiqri99(1-2):55-86, 2005.

Z. Manna and the STeP group. STeP: Deductive—
Algorithmic Verification of Reactive and Real-Time Sys-
tems. Ininternational Conference on Computer Aided Verifi-
cation (CAV) volume 1102 of-NCS Springer-Verlag, 1996.

W. McCune. Otter 2.0. liProceedings of Conference on Au-
tomated Deduction (CADE-10jolume 449 oLNCS pages
663664, 1990.

T. J. Schaefer. The Complexity of Satisfiability Problems. In
Proceedings of the Tenth Annual ACM Symposium on Theory
of Computingpages 216-226, 1978.

A. P. Sistla and E. M. Clarke. Complexity of Propositional
Linear Temporal Logics.Journal of the ACM 32(3):733—
749, July 1985.

A. P. Sistla, M. Vardi, and P. Wolper. The Complementation
Problem for Richi Automata with Applications to Temporal
Logic. Theoretical Computer Scienc$9:217-237, 1987.

M. Y. Vardi. An Automata-Theoretic Approach to Linear
Temporal Logic. InLogics for Concurrency - Structure
versus Automata (Proceedings of 8th Banff Higher Order
Workshop)volume 1043 o NCS pages 238—-266. Springer,
1996.

P. Wolper. Temporal Logic Can Be More Expressil&or-
mation and Contrqgl56, 1983.

