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Abstract

In this paper, we consider a tractable sub-class of propo-
sitional linear time temporal logic, and provide a complete
clausal resolution calculus for it. The fragment is impor-
tant as it can be used to represent simple Büchi automata.
We also show that, just as the emptiness check for a Büchi
automaton is tractable, the complexity of deciding unsatis-
fiability, via resolution, of our logic is polynomial (rather
than exponential). Consequently, a Büchi automaton can
be represented within our logic, and its emptiness can be
tractably decided via deductive methods. This may have
a significant impact upon approaches to verification, since
techniques such asmodel checkinginherently depend on
the ability to check emptiness of an appropriate Büchi au-
tomaton. Thus, we also discuss how such a logic might form
the basis forpracticaldeductive temporal verification.

1 Introduction

It is widely recognised thatmodel checkingis the
most appropriate verification method for (finite state) sys-
tems. Yet there are some surprising aspects to this. The
model checking (i.e. satisfiability checking) problem for
propositional, linear temporal logic (PTL) is PSPACE-
complete [20, 23] yet practical tools for model checking
formulae in this logic have been developed, most notably
Spin [13]. This has led to deeper investigations into the
structure of temporal formulae and their relationship with
model checking, most notably the paper by Demri and Sch-
noebelen [5]. There, the authors consider sub-fragments of
PTL, particularly those restricting the number of proposi-
tions, the temporal operators allowed, and the depth of tem-
poral nesting in formulae. Demri and Schnoebelen show

that, since the formulae tackled in practical model checking
often fall within such fragments, then this provides a natural
explanation for the viability of model checking in PTL.

Our research has followed a different, but related, di-
rection. Over a number of years, we have been con-
cerned with developing a clausal resolution calculus for
both propositional and first-order linear temporal logics [4,
11, 14, 15, 16]. Since deciding unsatisfiability of PTL is
also PSPACE-complete, then deductive verification of PTL
formulae would seem to be an impractical way to pro-
ceed. However, just as Demri and Schnoebelen showed how
PTL model checking can be seen as being tractable when
we consider fragments of PTL, so we have been examin-
ing fragments of PTL that allow clausal resolution to be
tractable. In previous work, we examined a fragment where
temporal formulae in the clausal form (SNF; see Section 2)
were essentially restricted to Horn Clauses [8]. In this pa-
per, however, we investigate a different fragment, where
clauses inherently involve XOR operators.

As we will show, the use of XOR has several benefits.
Since the complexity of unsatisfiability for XOR clauses in
classical propositional logic is low [19], there is the poten-
tial to carry much of this over to the temporal case. More
importantly, if we consider a B̈uchi automaton, then we can
easily represent the states (using sayqi) and labels (using
say lj) of the automaton in PTL. Indeed, the clausal form
we use makes this simpler still with clauses such as1

(q1 ∧ l2) ⇒ gq2

corresponding directly to transitions (in this case, from state
s1 to states2 reading labelπ2). However, in such a trans-
lation, an underlying problem is representing the fact that
the automaton must be inexactly onestate at any moment
in time (and, similarly, that the automaton can only read ex-
actly one label at any moment). This provides an obvious

1Here, each proposition,qi, represents the fact that the automaton is in
statesi and each propositionl2 represents the automaton reading labelπ2.



motivation for allowing XOR clauses, since the formula2

(q1 ⊕ q2 ⊕ . . .⊕ qn)

captures the property on states that we require.
Thus, in this paper we provide several results. First, we

introduce the PTL fragment to be considered and show a
completed clausal resolution system for this. Then we show
that the complexity of deciding unsatisfiability via resolu-
tion is polynomial and, since B̈uchi automata can be de-
scribed simply by clauses in this logic, then an emptiness
check for a B̈uchi automaton can be tractably carried out
using clausal temporal resolution.

The paper is organised as follows. Section 2 reviews
the syntax and semantics of PTL, together with the nor-
mal form, SNF, for this logic. In Section 3 we introduce
the restriction based on XOR clauses and provide a corre-
sponding modification of SNF. Section 4 introduces the res-
olution calculus for this restricted logic, and considers the
completeness of this calculus, while Section 5 addresses its
complexity. In Section 6 we show how Büchi Automata
can be translated into this fragment and, in Section 7 we
provide concluding remarks, incorporating both related and
future work.

2 PTL and SNF

The particular variety of temporal logic we consider is
called PTL [12], and is based on a linear, discrete model
of time with finite past and infinite future. Although many
variations on this simple logic have been examined, we will
just use basic PTL with future-time temporal operators.

2.1 Syntax of PTL

The future-time temporal connectives that we use in-
clude♦ (sometime in the future), (always in the future),g(in the next moment in time),U (until), andW (unless, or
weak until). Formally, PTL formulae are constructed from
the following elements:

• a set,P, of propositional symbols;

• propositional connectives,true , false , ¬, ∨, ∧, and
⇒; and

• temporal connectives,g,♦, , U , andW.

The set of well-formed formulae of PTL, denoted byWFF,
is inductively defined as the smallest set satisfying the fol-
lowing.

• Any element ofP is in WFF.

2Note we use this notation to mean exactly oneqi holds.

• true andfalse are inWFF.

• If A andB are inWFF then so are

¬A A ∨B A ∧B A ⇒ B
♦A A AUB AWB gA .

A literal is defined as either a proposition symbol or the
negation of a proposition symbol. Aneventualityis defined
as a well-formed formula of the form♦A.

2.2 Semantics of PTL

As discussed above, a sequence of distinct “moments”
in time underlie PTL. Typically, the Natural Numbers,N, is
used to represent these moments in time. So, a model for
PTL, σ, can be characterised as a sequence ofstates

σ = t0, t1, t2, t3, . . .

where each state,ti, is a set of proposition symbols, rep-
resenting those propositions which are satisfied in theith

moment in time. As formulae in PTL are interpreted at a
particular state in the sequence (i.e., at a particular moment
in time), the notation(σ, i) |= A denotes the truth (or other-
wise) of formulaA in the modelσ at state indexi ∈ N. For
any formulaA, modelσ, and state indexi ∈ N, then either
(σ, i) |= A holds or(σ, i) |= A does not hold, denoted by
(σ, i) 6|= A. The pair(σ, i) can be considered as an inter-
pretation (or valuation) for each formula inWFF. (N.B., we
will reason about such interpretations in the completeness
proof given later.) If there is someσ such that(σ, 0) |= A,
thenA is said to besatisfiable. If (σ, 0) |= A for all mod-
els,σ, thenA is said to bevalid and is written|= A. Note
that formulae here are interpreted att0; this is ananchored
definition of satisfiability and validity [9].

The semantics ofWFF are given as follows..

(σ, i) |= p iff p ∈ ti [wherep ∈ P]
(σ, i) |= true
(σ, i) 6|= false
(σ, i) |= A ∧B iff (σ, i) |= A and(σ, i) |= B
(σ, i) |= A ∨B iff (σ, i) |= A or (σ, i) |= B
(σ, i) |= A ⇒ B iff (σ, i) |= ¬A or (σ, i) |= B
(σ, i) |= ¬A iff (σ, i) 6|= A
(σ, i) |= gA iff (σ, i + 1) |= A
(σ, i) |=♦A iff there exists ak ∈ N such that

k > i and(σ, k) |= A
(σ, i) |= A iff for all j ∈ N, if j > i then

(σ, j) |= A
(σ, i) |= AUB iff there exists ak ∈ N, such that

k > i and(σ, k) |= B and
for all j ∈ N, if i 6 j < k
then(σ, j) |= A

(σ, i) |= AWB iff (σ, i) |= AUB or (σ, i) |= A



2.3 SNF, a Normal Form for PTL

The resolution method for full PTL (see for exam-
ple [11]) is clausal, and so works on formulae transformed
into a normal form. The normal form, called Separated
Normal Form (SNF), comprises formulae that are implica-
tions with present-time formulae on the left-hand side and
(present or) future-time formulae on the right-hand side.

To assist in the definition of the normal form we intro-
duce a further (nullary) connective ‘start’ that holds only at
the beginning of time, i.e.,

(σ, i) |= start iff i = 0.

This allows the general form of the (clauses of the) normal
form to be implications.

Whilst the full details of SNF and its properties will not
be described here we note that the transformation of arbi-
trary PTL formulae into SNF not only preserves satisfiabil-
ity, but also ensures any model generated from the formula
in SNF is a model for the original formula [10, 11]. In ad-
dition, the complexity of the translation process is low [11].

3 PTL-XA and SNFXA

We will now define additional syntax for PTL, namely
the XOR operator, ‘⊕’, and characterise a modification
of SNF, calledSNFXA, especially modified to capture
automata-properties. The key aspect here is that the set of
propositions,P, is partitioned into two disjoint sets,S and
L. Note that these will later representstatesandlabelsonce
we begin translating automata into SNFXA.

The XOR operator is defined simply as

(σ, i) |= ϕ1 ⊕ ϕ2 ⊕ . . .⊕ ϕm iff
there is exactly one1 ≤ j ≤ m such that(σ, i) |= ϕj .

The new logic, PTL-XA, will comprise exactly those
clauses that can be represented in SNFXA. Thus, we will
concentrate first on SNFXA. Like SNF, SNFXA is of the
general form ∧

i

Ai

where eachAi must be one of the following.

start ⇒
∨

k qk (initial clause)

(qi ∧ lj) ⇒ g∨
k

qk (stepclause)

true ⇒ Rc (universalclause)

true ⇒ ♦
∨
k

qk (sometimeclause)

true ⇒ q1 ⊕ q2 ⊕ . . .⊕ qn (XOR-S clause)

true ⇒ l1 ⊕ l2 ⊕ . . .⊕ lm (XOR-L clause)

whereqi, qk ∈ S andlj ∈ L, and whereRc must be one of
¬qi, or (¬qi ∨ ¬lj).

In SNFXA, at most onesometimeclause and at most one
initial clause is allowed.S must equal{q1, q2, . . . , qn} and
L must equal{l1, l2, . . . , lm}. Thus, all elements ofS and
L occur within some XOR clause. In addition, there is a
further restriction on the form above, namely that, for every
qi, lj such thatqi ∈ S andlj ∈ L there is at most one clause
of the form

(qi ∧ lj) ⇒ g∨
k

qk

in the clause set.

4 Clausal Temporal Resolution for SNFXA

Next we consider resolution rules for sets of SNFXA
clauses. The resolution rules are split into four groups: ini-
tial resolution; step resolution; hyper XOR resolution and
temporal resolution.

Initial Unit Resolution involves resolving an initial clause
with a universal clause:

IURES
start ⇒ Q ∨ qi

true ⇒ ¬qi

start ⇒ Q

The conclusion of the rule,start ⇒ Q replaces the premise
start ⇒ Q ∨ qi.

Step Resolutionresolves step clauses with universal
clauses (Step Unit Resolution,SURES) or derives addi-
tional universal clauses from contradictions obtained in the
next moment (SRES):

SURES
qi ∧ lj ⇒ g(Q ∨ qk)

true ⇒ ¬qk

qi ∧ lj ⇒ gQ

The conclusion of the rule,qi ∧ lj ⇒ gQ replaces the
premiseqi ∧ lj ⇒ g(Q ∨ qk).

SRES
qi ∧ lj ⇒ gfalse

true ⇒ ¬qi ∨ ¬lj

Hyper XOR Resolution takes several universal clauses re-
lating to the negation of a proposition inS, together with
the XOR-L clause:

HRES

true ⇒ ¬qk ∨ ¬l1
. . . ⇒ . . .

true ⇒ ¬qk ∨ ¬lm
true ⇒ l1 ⊕ . . .⊕ lm
true ⇒ ¬qk

The conclusion of the rule,true ⇒ ¬qk replaces the first
m premises (of the formtrue ⇒ ¬qk ∨ ¬lj).



Temporal Resolution Since there is only one sometime
clause which is of a simple form (i.e. it hastrue on the
left hand side) we can use a simplified version of the stan-
dard [11] step resolution rule, defined in [3]:

TRES

∨
j

qj ⇒
∧
k

¬qk

true ⇒ ♦
∨
k

qk

true ⇒
∧
j

¬qj

To apply TRES we must find a (non-temporal) formula∨
j

qj such that
∨
j

qj implies
∧
k

¬qk.

For standard SNF clauses this problem has been ad-
dressed previously in [6]. Here we have a simpler set of
clauses so the search for aloop (i.e. a set of clauses that
imply

∧
k

¬qk) is easier.

Loop Search Assume we are resolving with

true ⇒♦
g∨

k=1

qk. Let E = {qk | k = 1, . . . g}.

• Construct a setSC which initially contains the set of
step clauses.

• Create two sets of propositions:LG, representinggood
propositions, andLB , representingbad propositions.
Initially, let LG be the members ofS which occur on
the left hand sides of clauses inSC which are not inE
and letLB = S \ LG.

• Iteratively search throughSC for clausesqk ∧ la ⇒g(Q ∨ qb) whereqb ∈ LB or clausesqk ∧ la ⇒gfalse . Deleteqk ∧ la ⇒ g(Q ∨ qb) (respectively
qk ∧ la ⇒ gfalse ) from SC, deleteqk from LG and
and letLB = LB ∪ {qk}.

• Terminate when eitherSC = ∅ or SC doesn’t change
as we search through the clauses.

• If SC = ∅ there is no loop, otherwise the loop is∨
q∈LG

q ⇒
∧
k

¬qk.

Subsumption Finally, we assume that standard subsump-
tion takes place.

Since the SNFXA temporal resolution rules can be seen as a
particular strategy for unrestricted temporal resolution [11]
(note that in both unit resolution rules, the conclusion of the
rule subsumes the premise); we, obviously, have the follow-
ing soundness theorem.

Theorem 1 The rules of clausal temporal resolution pre-
serve satisfiability.

The completeness theorem requires a proof.

Theorem 2 If a set of SNFXA clauses is unsatisfiable then
the temporal resolution procedure will derive a contradic-
tion when applied to it.

Proof
We adapt the completeness proof of the original system [11,
3]. For full details see [7].�

5 Complexity of SNFXA Resolution

To analyse the complexity of SNFXA resolution, we
first consider the complexity of the saturation procedure by
step resolution (by step resolution we mean rulesIURES,
SURES, SRES, andHRES), then we consider the com-
plexity of loop search, and finally, we consider the overall
complexity of the proof procedure.

• Complexity of step resolution

Let C be a set of SNFXA clauses. Recall that the set of
propositions inC is partitioned into two disjoint sets,
S andL; let the cardinality ofS ben the cardinality of
L bem.

We show that there exists a polynomial-complexity (in
terms ofn andm) procedure that saturatesC by step
resolution, that is, applies the rulesIURES, SURES,
SRES, and HRES to C exhaustively until no new
clause can be derived.

Notice that any saturation procedure, which ensures
that no inference rule is attempted on the same set
of premises more than once, will have a polynomial
complexity. Notice further that the Given Clause Al-
gorithm [18] satisfies this requirement.

The complexity of the procedure is bounded then by
the number of different sets of premises to which infer-
ence rules can be applied. It suffices to notice that the
HRES rule can be applied to at mostn different sets
of premises;SRES to at mostm×n sets of premises;
theSURES rule can be applied to at mostn2×m sets
of different premises (notice that, since no two step
clauses have the same left-hand side, there are at most
n×m different step rules in any clause set); and, sim-
ilarly, the IURES rule can be applied to at mostn sets
of different premises. Altogether, the complexity of
the saturation procedure isO(n2 ×m).

• Complexity of loop search

Notice that since at every iteration of loop search, at
least one proposition is deleted fromLG, there are



at mostn iterations. Using efficient implementation
techniques, the search in every iteration can be imple-
mented in time bounded byn × m. Therefore, the
complexity of loop search isn2 ×m.

• Overall complexity

The overall procedure works as follows: the set of
clauses is saturated by step resolution, then loop search
is attempted. If loop search succeeds, the set of clauses
is extended by the conclusion of theTRES rule and
the entire process repeats (we call the process themain
loop) until either a contradiction is obtained, or noth-
ing new can be derived.

The overall complexity of the proof procedure is
bounded by the product of the number of iterations of
the main loop and the joint complexity of saturation
and loop search. Note that there may not be more than
n iterations of the main loop. Therefore, the overall
complexity of proof search isO(n3 ×m).

6 From Büchi Automata to SNFXA

We will now consider the representation of a Büchi au-
tomaton as a set of SNFXA clauses and, in particular, empti-
ness checking of the automaton as deriving a refutation in
SNFXA. We begin with a standard definition of a Büchi
automaton [21, 22].

6.1 Definition of a Büchi automaton

A Büchi automaton,A, is a tuple〈Σ, S, F0, δ, F 〉,
where:

• Σ = {π0, . . . πm} is a finite non-empty alphabet;

• S = {s0 . . . sn} is a finite set of states;

• F0 ⊆ S, is a set of initial states;

• δ = S × Σ −→ 2S is a non-deterministic transition
function; and

• F ⊆ S, is a set of accepting states.

A run τA = r0, r1, r2, . . . of a Büchi automaton,A, over
the wordw = w0w1w2 . . ., wherewj ∈ Σ, is an infinite
sequence of states,ri ∈ S where the first state is an initial
state, i.e.r0 ∈ F0, and for every other stateri+1 for i =
0, 1, . . . we haveri+1 ∈ δ(ri, wi).

A run, τA, isaccepting if there is a states ∈ F such that
s appears inτA infinitely often.

6.2 From Büchi Automata to SNFXA

We aim to construct a set of SNFXA clausesT from A
such thatT is satisfiable if, and only if,A has an accepting
run.

To representA in SNFXA we use the following
propositions:-

• qi for eachsi ∈ S;

• lj for eachπj ∈ Σ.

The setCA of SNFXA clauses representing the automa-
tonA is as follows.

start ⇒
∨
i

qi for si ∈ F0

(qi ∧ lk) ⇒ g∨
j

qj for sj ∈ δ(si, πk)

(qi ∧ lk) ⇒ gfalse for δ(si, πk) = ∅
true ⇒ q1 ⊕ . . .⊕ qn for S = {s1, . . . sn}
true ⇒ l1 ⊕ . . .⊕ lm for Σ = {π1, . . . πm}
true ⇒ ♦

∨
j

qj for sj ∈ F

Proposition 3 A Büchi automatonA = 〈Σ, S, F0, δ, F 〉
has an accepting runτA (over infinite wordw) if, and only
if, the set of SNFXA clauses,CA, defined above, is satisfi-
able.

Proof
We first show that, given a B̈uchi automaton,A, with an

accepting run such thatCA is its translation into SNFXA, as
described above, there is a model which satisfiesCA.

Let A = 〈Σ, S, F0, δ, F 〉, be a given non-empty
Büchi automaton and letA have an accepting runτA =
r0r1r2 . . . rtrt+1 . . ., (rt ∈ S for t = 0, 1, 2, . . .) over an
infinite word w = w0w1w2 . . . wtwt+1 . . .. For some ac-
cepting statesf ∈ F , sf must appear infinitely often inτA.
In the runτA, at thetth moment of time when the automa-
ton is in the statert and readswt, it moves tort+1, i.e.
δ(rt, wt) = rt+1.

We now construct a modelσ and show it satisfies the
clause setCA. We note that as (A ∧ B) ≡ A ∧ B
we can assume that the external “” operator in Section 3
is applied to each implication inCA.

Let P be a set of propositional symbols whereP =
{lj | πj ∈ Σ} ∪ {qi | si ∈ S}. We construct an infinite
sequence of states

σ = u0, u1, u2, . . . , ut, ut+1, . . .

as follows. Set the propositions that are true in each state to
match those read byA on the accepting run for the infinite
word w, i.e. lj ∈ ut if, and only if,wt = πj . For anyqj ∈
P thenqj ∈ ut if, and only if, rt = sj (setqj to be true in



ut if and only if the state visited in thetth moment in time
of the accepting run,τA, is sj). Next we showσ satisfies
the clause setCA.

The runτA is an accepting run which starts fromr0 =
sl. Thussl is one of the initial states, i.e.sl ∈ F0, and
from how we have constructedσ, ql is satisfied in the initial
moment0, i.e. (σ, 0) |= ql. Also as(σ, 0) |= start and
(σ, t) 6|= start for t > 0, from the semantics ofstart, the
initial clause of the clause setCA

start ⇒
∨

sj∈F0

qj

is satisfied at every moment in time.
Next we must show that the step clauses ofCA hold.

Consider the implication,

(qi ∧ lk) ⇒ g∨
j

qj .

For any momentt such that(σ, t) 6|= qi or (σ, t) 6|= lk the
above holds trivially.

Next consider some timet such that(σ, t) |= qi and

(σ, t) |= lk. We must show that(σ, t) |= g∨
j

qj . From the

construction ofσ there must be some statesi = rt which is
visited in thetth moment of the accepting run and a transi-
tion sl ∈ δ(si, πk) such that in thet + 1st moment in time
the accepting run is at statesl = rt+1 having readπk = wt.
Thus, from the construction ofσ, (σ, t + 1) |= ql and from
how we have constructedCA and the semantics of∨,

(σ, t + 1) |=
∨
j

qj .

Hence, from the semantics of “g”,

(σ, t) |= g∨
j

qj

and
(σ, t) |= (qi ∧ lk) ⇒ g∨

j

qj .

Thus, at all moments in time each step clause holds and(qi ∧ lk) ⇒ g∨
j

qj


is satisfied.

Recall that the runτA in the tth moment of time visits
the statesi = rt. From the construction ofσ, (σ, t) |=
qi and(σ, t) 6|= qj for everyqj 6= qi. Hence the XOR-S
clause is also satisfied inσ at every moment. Similarly from
the infinite wordw of the accepting run and how we have
constructedσ at each state we have(σ, t) |= li for someli

such that1 ≤ i ≤ m and(σ, t) 6|= lj for all j 6= i such that
1 ≤ j ≤ m. Hence the XOR-L clause is also satisfied inσ
at every moment.

Finally consider the sometime clause. From the con-
struction of the model(σ, t) |= qf if, and only if, rt = sf

and since the automatonτA hits the statesf infinitely often,
the sometime clause is satisfied.

Therefore, all clauses inCA are satisfiable inσ.
Assume now that for an automatonA, the correspond-

ing set of SNFXA clauses,CA, is satisfiable. We show that
A has an accepting run. Consider the sequence of states
σ = u0, u1, u2, . . . such that(σ, 0) |= CA. Because of the
XOR clauses, for everyt ≥ 0 there isexactly onesi ∈ S
andexactly oneπk ∈ Σ such thatqi ∈ ut and lk ∈ ut.
We construct an accepting runτA = r0, r1, . . . rt . . . on the
word w = w0, w1, . . . wt . . . as follows. Letrt = sj iff
qj ∈ ut (the state in the tth moment of the accepting run is
sj iff qj is true inut). Letwt = πj iff lj ∈ ut (the label read
in the tth moment of the accepting run isπj iff lj is true in
ut). We show by induction ont thatτA is an accepting run.

First we showr0 is an initial state. From how we have
constructed the accepting runr0 = sl such thatql ∈ u0. As
CA is satisfiable then

(σ, 0) |= (start ⇒
∨

sj∈F0

qj)

so the statesl must be initial (i.e.sl ∈ F0). Consider some
statert in τA we show thatsj ∈ δ(si, πk) wherert = si,
rt+1 = sj andwt = πk. Consider the step clause

(qi ∧ lk) ⇒ g∨
j

qj .

such thatqi ∈ ut andlk ∈ ut (i.e. rt = si andwt = πk).
There must be one such clause from how we have con-
structedCA. Note that the right-hand side of the step
clause cannot befalse for otherwisefalse ∈ ut+1. Then
qj ∈ ut+1. Note thatsj ∈ δ(si, πk).

It remains to notice that, since

(σ, 0) |= (true ⇒♦
∨
i

qj)

for sj ∈ F , the statesj appears in the sequenceτA =
r0, r1, . . . , rt, . . . infinitely often, that is, the runτA is ac-
cepting.�

Example 1 Consider a B̈uchi Automaton A1 =
〈Σ, S, F0, δ, F 〉, as follows.

Σ = {π0, π1}
S = {s1, s2, s3, s4, s5}

F0 = {s1}
F = {s1, s5}

S δ(s, π1) δ(s, π2)
s1 {s2, s5} {s5}
s2 {s4} {s3}
s3 {s2} {s4}
s4 {s3, s4} {s2}
s5 {s4} {s2}



Hence there is no accepting run.

0. start ⇒ q1

1. q1 ∧ l1 ⇒ g(q2 ∨ q5)
2. q1 ∧ l2 ⇒ gq5

3. q2 ∧ l1 ⇒ gq4

4. q2 ∧ l2 ⇒ gq3

5. q3 ∧ l1 ⇒ gq2

6. q3 ∧ l2 ⇒ gq4

7. q4 ∧ l1 ⇒ g(q3 ∨ q4)
8. q4 ∧ l2 ⇒ gq2

9. q5 ∧ l1 ⇒ gq4

10. q5 ∧ l2 ⇒ gq2

11. true ⇒ q1 ⊕ q2 ⊕ q3 ⊕ q4 ⊕ q5

12. true ⇒ l1 ⊕ l2
13. true ⇒ ♦(q1 ∨ q5)

Loop Search Initially, LG = {q2, q3, q4} and LB =
{q1, q5}. There is no change to either set so the loop is

(q2 ∨ q3 ∨ q4) ⇒ (¬q1 ∧ ¬q5)

Applying temporal resolution we obtain.

14. true ⇒ ¬q2 [13,TRES]
15. true ⇒ ¬q3 [13,TRES]
16. true ⇒ ¬q4 [13,TRES]

Thus clauses 3–8 are subsumed by one of 14–16.

17. q5 ∧ l1 ⇒ gfalse [9, 16,SURES]
18. q5 ∧ l2 ⇒ gfalse [10, 14,SURES]
19. true ⇒ ¬q5 ∨ ¬l1 [17,SRES]
20. true ⇒ ¬q5 ∨ ¬l2 [18,SRES]
21. true ⇒ ¬q5 [12, 19, 20,HRES]
22. q1 ∧ l1 ⇒ gq5 [1, 14,SURES]
23. q1 ∧ l1 ⇒ gfalse [21, 22,SURES]
24. q1 ∧ l2 ⇒ gfalse [2, 21,SURES]
25. true ⇒ ¬q1 ∨ ¬l1 [23,SRES]
26. true ⇒ ¬q1 ∨ ¬l2 [24,SRES]
27. true ⇒ ¬q1 [12, 25, 26,HRES]
28. start ⇒ false [0, 27, IURES]

Hence we obtain a contradiction using resolution showing
the set of clauses is unsatisfiable.

Example 2 Now, consider a B̈uchi AutomatonA2 =
〈Σ, S, F0, δ, F 〉, as follows.

Σ = {π1}
S = {s1, s2, s3}

F0 = {s1}
F = {s2}

S δ(s, π1)
s1 {s1, s2}
s2 {s3}
s3 {s3}

Hence there is no accepting run.

0. start ⇒ q1

1. q1 ∧ l1 ⇒ g(q1 ∨ q2)
2. q2 ∧ l1 ⇒ gq3

3. q3 ∧ l1 ⇒ gq3

4. true ⇒ q1 ⊕ q2 ⊕ q3

5. true ⇒ l1
6. true ⇒ ♦q2

Note that, since the only symbol in the alphabet isπ1, the
XOR-L clause is simplytrue ⇒ l1 (clause 5).

Loop Search Initially, LG = {q1, q3} andLB = {q2}.
From clause1 we deleteq1 from LG and add it toLB and
obtainLG = {q3} andLB = {q1, q2}. There is no change
to either set so the loop formula isq3 ⇒ ¬q2. By apply-
ing temporal resolution we obtain the following.

7. true ⇒ ¬q3 [6,TRES]

This subsumes clause 3.

8. q2 ∧ l1 ⇒ gfalse [2, 7,SURES]
9. true ⇒ ¬q2 ∨ ¬l1 [8,SRES]

10. true ⇒ ¬q2 [5, 9,HRES]
11. q1 ∧ l1 ⇒ gq1 [1, 10,SURES]

Clause 11 now subsumes clause 1. Now, attempting loop
search again (note the current set of step clauses is just
clause 11) we haveLG = {q1} andLB = {q2, q3}. We
obtain the loopq1 ⇒ ¬q2. By applying temporal resolu-
tion we obtain the following.

12. true ⇒ ¬q1 [6,TRES]
13. start ⇒ false [0, 12, IURES]

Hence we obtain a contradiction using resolution showing
the set of clauses is unsatisfiable.

7 Conclusions

In this paper we have introduced a novel fragment of
PTL, and have provided a complete resolution calculus for
this fragment. The complexity analysis carried out has
shown that the resolution approach provides a polynomial
decision procedure. While this is interesting in itself, a
further important aspect is that we can represent a Büchi
Automaton (symbolically and directly) as formulae in this
fragment, with the emptiness check for such an automaton
corresponding to the search for a resolution refutation.

In establishing that some system,Sys, satisfies a prop-
erty,P , algorithmic, rather than deductive approaches have
been predominant. In particular, the model checking ap-
proach [22, 2], characterised by checking the emptiness of
the automata product3 ASys ×A¬P has been very success-
fully applied.

3Here, ASys captures all the paths/executions throughSys, while
A¬P describes all the paths that satisfy¬P , i.e., all those paths thatdo
not satisfyP .



On the other hand, deductive temporal verification has
been largely ignored (though see [17]), often due to its much
higher complexity. With our work in this paper, we be-
lieve that deductive temporal verification can be success-
fully applied to such problems, for example by represent-
ing [[Sys]] ∧ ¬P in PTL-XA, where [[Sys]] is the tempo-
ral/symbolic description/semantics of the behaviour of the
system. That PTL-XA corresponds closely to B̈uchi Au-
tomata which, in turn, are at the heart of algorithmic veri-
fication, gives reason for optimism. Thus, our future work
concerns developing such a view of deductive temporal ver-
ification further, as well as examining more complex (but
still tractable) XOR temporal logics. Concerning practical
implementation, we note that the complexity given in Sec-
tion 5 is aworst caseanalysis. With ‘clever’ implemen-
tations, we expect the practical complexity to generally be
much lower than this.

Work related to that developed in this paper concerns the
excellent analysis by Demri and Schnoebelen [5], work on
complexity of fragments of classical logic [19] and our own
previous work on the relationship between SNF and Büchi
Automata [1] and on other tractable fragments of SNF [8].

Finally, we would like to thank Radina Yorgova for her
work on varieties of RSNF which helped us to formulate the
fragment described in this paper.
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