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1 Introduction

1.1 Motivation-State of the art

Distributed computing systems are more and more becoming dynamic. The static and relatively
stable models of computation can no longer represent the plethora of recently established and
rapidly emerging information and communication technologies. In recent years, we have seen a
tremendous increase in the number of new mobile computing devices. Most of these devices are
equipped with some sort of communication, sensing, and mobility capabilities. Even the Internet
has become mobile. The design is now focused on complex collections of heterogeneous devices that
should be robust, adaptive, and self-organizing, possibly moving around and serving requests that
vary with time. Delay-tolerant networks are highly-dynamic, infrastructure-less networks whose
essential characteristic is a possible absence of end-to-end communication routes at any instant.
Mobility may be active, when the devices control and plan their mobility pattern (e.g. mobile
robots), or passive, in opportunistic-mobility networks, where mobility stems from the mobility of
the carries of the devices (e.g. humans carrying cell phones) or a combination of both (e.g. the
devices have partial control over the mobility pattern, like for example when GPS devices provide
route instructions to their carriers). Thus, it can vary from being completely predictable to being
completely unpredictable. Gossip-based communication mechanisms, e-mail exchanges, peer-to-peer
networks, and many other contemporary communication networks all assume or induce some sort
of highly-dynamic communication network.

The formal study of dynamic communication networks is hardly a new area of research. There
is a huge amount of work in distributed computing that deals with causes of dynamicity such as
failures and changes in the topology that are rather slow and usually eventually stabilize (like,
for example, in self-stabilizing systems [Dol00]). However the low rate of topological changes that
is usually assumed there is unsuitable for reasoning about truly dynamic networks. Even graph-
theoretic techniques need to be revisited: the suitable graph model is now that of a dynamic graph
(a.k.a. temporal graph or time-varying graph) (see e.g. [MMCS13, KKK00, CFQS12, HS12]), in
which each edge has an associated set of time-labels indicating availability times. Though static
graphs have been extensively studied, for their temporal generalization we are still far from having
a concrete set of structural and algorithmic principles. Additionally, it is not yet clear how is the
complexity of combinatorial optimization problems affected by introducing to them a notion of
time. In an early but serious attempt to answer this question, Orlin [Orl81] observed that many
dynamic languages derived from NP-complete languages can be shown to be PSPACE-complete.
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Among the other few things that we do know, is that the max-flow min-cut theorem holds with unit
capacities for time-respecting paths [Ber96]. However, there are fundamental properties of classical
graphs that do not easily carry over to their temporal counterparts. For example, Kempe, Kleinberg,
and Kumar [KKK00] found out that there is no analogue of Menger’s theorem 3 for arbitrary
temporal networks with one label on every edge, which additionally renders the computation of
the number of node-disjoint s-t paths NP-complete. In a very recent work [MMCS13], the authors
achieved a reformulation of Menger’s theorem which is valid for all temporal graphs and introduced
several interesting cost minimization parameters for optimal temporal network design. One is the
temporality of a graph G, in which the goal is to create a temporal version of G minimizing the
maximum number of labels of an edge, and the other is the temporal cost of G, in which the goal is
to minimize the total number of labels used. Optimization of these parameters is performed subject
to some connectivity constraint. They proved several upper and lower bounds for the temporality
of some very basic graph families such as rings, directed acyclic graphs, and trees, as well as
a trade-off between the temporality and the maximum label of rings. Furthermore, they gave a
generic method for computing a lower bound of the temporality of an arbitrary graph w.r.t. the
constraint of preserving a time-respecting analogue of every simple path of G. Finally, they proved
that computing the temporal cost w.r.t. the constraint of preserving at least one time-respecting
path from u to v whenever v is reachable from u in G, is APX-hard. Even the standard network
diameter metric is no more suitable and has to be replaced by a dynamic/temporal version. In a
dynamic star graph in which all leaf-nodes but one go to the center one after the other in a modular
way, any message from the node that enters last the center to the node that never enters the center
needs n− 1 steps to be delivered, where n is the size (number of nodes) of the network; that is the
dynamic diameter is n− 1 while, one the other hand, the classical diameter is just 2 [AKL08] (see
also [KO11]).

Distributed systems with worst-case dynamicity were first studied in [OW05]. Their outstanding
novelty was to assume a communication network that may change arbitrarily from time to time
subject to the condition that each instance of the network is connected. They studied asynchronous
communication and considered nodes that can detect local neighborhood changes; these changes
cannot happen faster than it takes for a message to transmit. They studied flooding (in which
one node wants to disseminate one piece of information to all nodes) and routing (in which the
information need only reach a particular destination node t) in this setting. They described a
uniform protocol for flooding that terminates in O(Tn2) rounds using O(log n) bit storage and
message overhead, where T is the maximum time it takes to transmit a message. They conjectured
that without identifiers (IDs) flooding is impossible to solve within the above resources. Finally,
a uniform routing algorithm was provided that delivers to the destination in O(Tn) rounds using
O(log n) bit storage and message overhead.

Computation under worst-case dynamicity was further studied in a series of works by Kuhn et al.
in the synchronous case. In [KLO10], the network was assumed to be T -interval connected meaning
that any time-window of length T has a static connected spanning subgraph (persisting throughout
the window). Among others, counting (in which nodes must determine the size of the network)
and all-to-all token dissemination (in which n different pieces of information, called tokens, are
handed out to the n nodes of the network, each node being assigned one token, and all nodes must

3 Menger’s theorem, which is the analogue of the max-flow min-cut theorem for udirected graphs, states that the
maximum number of node-disjoint s-t paths is equal to the minimum number of nodes needed to separate s from
t (see e.g. [Bol98]).
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collect all n tokens) were solved in O(n2/T ) rounds using O(log n) bits per message, almost-linear-
time randomized approximate counting was established for T = 1, and two lower bounds on token
dissemination were given. Dutta et al. [DPR+13] improved one of these lower bounds and presented
offline centralized algorithms for the token dissemination problem. Several variants of coordinated
consensus in 1-interval connected networks were studied in [KMO11]. Two interesting findings were
that in the absence of a good initial upper bound on n, eventual consensus is as hard as computing
deterministic functions of the input and that simultaneous consensus can never be achieved in less
than n − 1 rounds in any execution. [Hae11] is a recent work that presents information spreading
algorithms in worst-case dynamic networks based on network coding. An open setting (modeled as
high churn) in which nodes constantly join and leave has very recently been considered in [APRU12].
For an excellent introduction to distributed computation under worst-case dynamicity see [KO11].
Some very thorough surveys on dynamic networks are [Sch02, CFQS12, HS12].

Here we are mostly concerned with: (i) (Section 4) [MCS12, MCS13] that studied the fundamen-
tal naming and counting problems (and some variations) in dynamic networks that are anonymous,
unknown, and possibly dynamic. In counting, nodes must determine the size of the network n and
in naming they must end up with unique identities. Networks are anonymous because all nodes
begin from identical states apart possibly from a unique leader node and unknown because nodes
have no a priori knowledge of the network (apart from some minimal knowledge when necessary)
including ignorance of n. The network dynamicity model in these papers was the one of [KLO10].
(ii) (Section 5) The worst-case distributed model of [MCS14], in which the requirement for contin-
uous connectivity was first dropped. That work proposed a set of metrics for capturing the speed of
information spreading in a dynamic network that may be disconnected at every instant and efficient
algorithms were developed.

Another notable model for dynamic distributed computing systems is the population protocol
(PP) model [AAD+06]. In that model, the computational agents are passively mobile, interact
in ordered pairs, and the connectivity assumption is a strong global fairness condition according
to which all events that may always occur, occur infinitely often. These assumptions give rise to
some sort of structureless interacting automata model. The usually assumed anonymity and uni-
formity (i.e. n is not known) of protocols only allow for commutative computations that eventually
stabilize to a desired configuration. Several computability issues in this area have already been
established. Constant-state nodes on a complete interaction network (and several variations) com-
pute the semilinear predicates [AAER07]. Semilinearity persists up to o(log log n) local space but
not more than this [CMN+11]. If constant-state nodes can additionally leave and update fixed-
length pairwise marks then the computational power dramatically increases to the commutative
subclass of NSPACE(n2) [MCS11a]. Interestingly, when operating under a uniform random sched-
uler, population protocols are formally equivalent to chemical reaction networks (CRNs), which
model chemistry in a well-mixed solution and are widely used to describe information processing
occurring in natural cellular regulatory networks [Dot14]. However, CRNs and population protocols
can only capture the dynamics of molecular counts and not of structure formation. Then [MS14]
studied the fundamental problem of network construction by a distributed computing system. It
initiated this study by proposing and studying a very simple, yet sufficiently generic, model for
distributed network construction. To this end, the authors assumed (as in [AAD+06, MCS11a]) the
computationally weakest type of processes, i.e. finite automata, and also a very minimal adversarial
communication model. The model of [MS14] may be viewed as an extension of population protocols
and CRNs aiming to capture the stable structures that may occur in a well-mixed solution. They
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gave protocols (optimal in some cases) and lower bounds for several basic network construction
problems such as spanning line, spanning ring, spanning star, and regular network and they proved
several universality results by presenting generic protocols that are capable of simulating a Turing
Machine (TM) and exploiting it in order to construct a large class of networks. For introductory
texts to this area see [AR07, MCS11b].

1.2 Structure of the Chapter

In this chapter, our focus is on computational network analysis from a theoretical point of view. In
particular, we study the propagation of influence and computation in dynamic distributed computing
systems. We focus on a synchronous message passing communication model with bidirectional
links. Our network dynamicity assumption is a worst-case dynamicity controlled by an adversary
scheduler, which has received much attention recently. Section 2 formally defines the dynamic
network models under consideration and the problems studied throughout. Section 3 discusses the
central notion of causal influence and the 1-interval connectivity model. In Section 4, we study the
fundamental naming and counting problems (and some variations) in networks that are anonymous,
unknown, and possibly dynamic. Network dynamicity is modeled here by the 1-interval connectivity
model [KLO10], in which communication is synchronous and a (worst-case) adversary chooses the
edges of every round subject to the condition that each instance is connected. Then, in Section
5 we replace the assumption that the network is connected at every instant by minimal temporal
connectivity conditions. These conditions only require that another causal influence occurs within
every time-window of some given length. Based on this basic idea we define several novel metrics for
capturing the speed of information spreading in a dynamic network. We present several results that
correlate these metrics. Moreover, we investigate termination criteria in networks in which an upper
bound on any of these metrics is known. We exploit these termination criteria to provide efficient
(and optimal in some cases) protocols that solve the fundamental counting and all-to-all token
dissemination (or gossip) problems. In Section 6, we propose another model of worst-case temporal
connectivity, called local communication windows, that assumes a fixed underlying communication
network and restricts the adversary to allow communication between local neighborhoods in every
time-window of some fixed length. We prove some basic properties and provide a protocol for
counting in this model. Finally, in Section 7 we conclude and discuss some interesting future research
directions.

2 Preliminaries

2.1 The Dynamic Network Model

A dynamic network is modeled by a dynamic graph G = (V,E), where V is a set of n nodes (or
processors) and E : IN→ P(E′) (wherever we use IN we mean IN≥1) is a function mapping a round
number r ∈ IN to a set E(r) of bidirectional links drawn from E′ = {{u, v} : u, v ∈ V }. 4 Intuitively,
a dynamic graph G is an infinite sequence G(1), G(2), . . . of instantaneous graphs, whose edge sets
are subsets of E′ chosen by a worst-case adversary. A static network is just a special case of a
dynamic network in which E(i + 1) = E(i) for all i ∈ IN. The set V is assumed throughout this
section to be static, that is it remains the same throughout the execution.

4 By P(S) we denote the powerset of the set S, that is the set of all subsets of S.
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A dynamic graph/network G = (V,E) is said to be 1-interval connected, if, for all r ∈ IN, the
static graph G(r) is connected [KLO10]. Note that this allows the network to change arbitrarily
from round to round always subject to the condition that it remains connected. In Section 4, we
focus on 1-interval connected dynamic networks which also implies that we deal with connected
networks in the static-network case.

In Section 4, we assume that nodes in V are anonymous, by which we mean they do not initially
have any ids and also we assuem that they do not know the topology or the size of the network,
apart from some minimal knowledge when necessary (i.e. we say that the network is unknown). In
several cases, and in order to break symmetry, we may assume a unique leader node (or source)
l. If this is the case, then we assume that l starts from a unique initial state l0 (e.g. 0) while all
other nodes start from the same initial state q0 (e.g. ⊥). All nodes but the leader execute identical
programs. In Section 5, we assume that nodes in V have unique identities (ids) drawn from some
namespace U (we assume that ids are represented using O(log n) bits) and again that they do not
know the topology or the size of the network, apart from some minimal necessary knowledge to
allow for terminating computations (usually an upper bound on the time it takes for information
to make some sort of progress). Any such assumed knowledge will be clearly stated. In all cases,
nodes have unlimited local storage (though they usually use a reasonable portion of it).

Communication is synchronous message passing [Lyn96, AW04], meaning that it is executed in
discrete steps controlled by a global clock that is available to the nodes and that nodes communicate
by sending and receiving messages (usually of length that is some reasonable function of n, like
e.g. log n). Thus all nodes have access to the current round number via a local variable that we
usually denote by r. We use the terms round, time, and step interchangeably to refer to the discrete
steps of the system. Naturally, real rounds begin to count from 1 (e.g. “first round”) and we reserve
time 0 to refer to the initial state of the system. We consider two different models of message
transmission. One is anonymous broadcast, in which, in every round r, each node u generates a
single message mu(r) to be delivered to all its current neighbors in Nu(r) = {v : {u, v} ∈ E(r)}. The
other is one-to-each in which a different message m(u,i)(r), 1 ≤ i ≤ du(r), where du(r) := |Nu(r)|
is the degree of u in round r, may be generated for each neighbor vi.

In every round, the adversary first chooses the edges for the round; for this choice it can see the
internal states of the nodes at the beginning of the round. In the one-to-each message transmission
model we additionally assume that the adversary also reveals to each node u a set of locally unique
edge-labels 1, 2, . . . , du(r), one for each of the edges currently incident to it. Note that these labels
can be reselected arbitrarily in each round so that a node cannot infer what the internal state of
a neighbor is based solely on the corresponding local edge-name. Then each node transitions to a
new state based on its internal state (containing the messages received in the previous round) and
generates its messages for the current round: in anonymous broadcast a single message is generated
and in one-to-each a different message is generated for each neighbor of a node. Note that, in
both models, a node does not have any information about the internal state of its neighbors when
generating its messages. Deterministic algorithms are only based on the current internal state to
generate messages. This implies that the adversary can infer the messages that will be generated
in the current round before choosing the edges. Messages are then delivered to the corresponding
neighbors. In one-to-each, we assume that each message mi received by some node u is accompanied
with u’s local label i of the corresponding edge, so that a node can associate a message sent through
edge i with a message received from edge i. These messages will be processed by the nodes in the
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subsequent round so we typically begin rounds with a “receive” command referring to the messages
received in the previous round. Then the next round begins.

2.2 Problem Definitions

We investigate the computability of the following fundamental problems for distributed computing
in the context of dynamic networks.

k-labeling. An algorithm is said to solve the k-labeling problem if whenever it is executed on a
network comprising n nodes each node u eventually terminates and outputs a label (or name or
id) idu so that |{idu : u ∈ V }| ≥ k.

Naming. The naming problem is a special case of the k-labeling problem in which it must addi-
tionally hold that k = n. This, in turn, implies that idu 6= idv for all distinct u, v ∈ V (so, unique
labels are required for the nodes).

Minimal (Consecutive) Naming. It is a special case of naming in which it must additionally
hold that the n nodes output the labels {0, 1, . . . , n− 1}.

Counting Upper Bound. Nodes must determine an upper bound k on the network size n.

Counting. A special case of counting upper bound in which it must hold that k = n.

All-to-all Token Dissemination (or Gossip). There is a token assignment function I : V → T
that assigns to each node u ∈ V a single token I(u) from some domain T s.t. I(u) 6= I(v) for
all u 6= v. An algorithm solves all-to-all token dissemination if for all instances (V, I), when the
algorithm is executed in any dynamic graph G = (V,E), all nodes eventually terminate and output⋃
u∈V I(u). We assume that each token in the nodes’ input is represented using O(log n) bits. The

nodes know that each node starts with a unique token but they do not know n.

3 Spread of Influence in Dynamic Graphs (Causal Influence)

Probably the most important notion associated with a dynamic network/graph is the causal influ-
ence, which formalizes the notion of one node “influencing” another through a chain of messages
originating at the former node and ending at the latter (possibly going through other nodes in
between). Recall that we denote by (u, t) the state of node u at time t and usually call it the t-state
of u. The pair (u, t) is also called a time-node. We again use (u, r) (v, r′) to denote the fact that
node u’s state in round r influences node v’s state in round r′. Formally:

Definition 1 ([Lam78]). Given a dynamic graph G = (V,E) we define an order→⊆ (V ×IN≥0)
2,

where (u, r)→ (v, r+1) iff u = v or {u, v} ∈ E(r+1). The causal order  ⊆ (V × IN≥0)
2 is defined

to be the reflexive and transitive closure of →.

Obviously, for a dynamic distributed system to operate as a whole there must exist some upper
bound on the time needed for information to spread through the network. This is a very weak
guarantee as without it global computation is in principle impossible. An abstract way to talk
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about information spreading is via the notion of the dynamic diameter. The dynamic diameter
(also called flooding time, e.g., in [CMM+08, BCF09]) of a dynamic graph, is an upper bound on
the time required for each node to causally influence (or, equivalently, to be causally influenced
by) every other node; formally, the dynamic diameter is the minimum D ∈ IN s.t. for all times
t ≥ 0 and all u, v ∈ V it holds that (u, t)  (v, t + D). A small dynamic diameter allows for fast
dissemination of information. Throughout, we do not allow nodes to know the dynamic diameter
of the network. We only allow some minimal knowledge (that will be explained every time) based
on which nodes may infer bounds on the dynamic diameter.

A class of dynamic graphs with small dynamic diameter is that of T -interval connected graphs.
As already stated, T -interval connectivity was proposed in [KLO10] as an elegant way to capture
a special class of dynamic networks, namely those that are connected at every instant. Intuitively,
the parameter T represents the rate of connectivity changes. Formally, a dynamic graph G =
(V,E) is said to be T -interval connected, for T ≥ 1, if, for all r ∈ IN, the static graph Gr,T :=

(V,
⋂r+T−1
i=r E(r)) is connected [KLO10]; that is, in every time-window of length T , a connected

spanning subgraph is preserved. In one extreme, if T = 1 then the underlying connected spanning
subgraph may change arbitrarily from round to round and in the other extreme if T is ∞ then a
connected spanning subgraph must be preserved forever. Recall that T -interval connected networks
have the very nice feature to allow for constant propagation of information. For example, 1-interval
connectivity guarantees that the state of a node causally influences the state of another uninfluenced
node in every round (if one exists). To get an intuitive feeling of this fact, consider a partitioning
of the set of nodes V to a subset V1 of nodes that know the r-state of some node u and to a subset
V2 = V \V1 of nodes that do not know it. Connectivity asserts that there is always an edge in the
cut between V1 and V2, consequently, if nodes that know the r-state of u broadcast it in every
round, then in every round at least one node moves from V2 to V1. This is formally captured by
the following lemma from [KLO10]:

Lemma 1 ([KLO10]). For any node u ∈ V and time r ≥ 0, in a 1-interval connected network,
we have

1. |{v ∈ V : (u, 0) (v, r)}| ≥ min{r + 1, n},
2. |{v ∈ V : (v, 0) (u, r)}| ≥ min{r + 1, n}.

Before proving the lemma, let us define two very useful sets. For all times 0 ≤ t ≤ t′, we define
by past(u,t′)(t) := {v ∈ V : (v, t) (u, t′)} [KMO11] the past set of a time-node (u, t′) from time t
and by future(u,t)(t

′) := {v ∈ V : (u, t)  (v, t′)} the future set of a time-node (u, t) at time t′. In
words, past(u,t′)(t) is the set of nodes whose t-state (i.e. their state at time t) has causally influenced
the t′-state of u and future(u,t)(t

′) is the set of nodes whose t′-state has been causally influenced by
the t-state of u. If v ∈ future(u,t)(t

′) we say that at time t′ node v has heard of/from the t-state of
node u. If it happens that t = 0 we say simply that v has heard of u. Note that v ∈ past(u,t′)(t) iff
u ∈ future(v,t)(t

′).

Proof. If t = 0, we have future(u,0)(0) = past(u,0)(0) = {u} ⇒ |future(u,0)(0)| = |past(u,0)(0)| = 1 ≥
min{0 + 1, n} = 1 and both statements hold in the base case.

1. Assume that |future(u,0)(i)| ≥ min{i+ 1, n} for some i > 0. If min{i+ 1, n} = n then clearly
min{i + 2, n} = n and the statement also holds for time i + 1. If min{i + 1, n} < n then the set
T = V \future(u,0)(i) is non-empty. Connectivity in round i + 1 implies that there is some edge
{v, w} in the cut between future(u,0)(i) and T (such an edge joins the set of nodes whose state at
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time i has been influenced by the initial state of u and those that has not). This in turn implies
that w is influenced during round i+ 1 so that |future(u,0)(i+ 1)| ≥ |future(u,0)(i)|+ 1 (increases by
at least 1). So the statement remains true for time i+1. Informally, the set of nodes that have been
influenced by the initial state of u increases by at least 1 in each round (while this set is smaller
than V ) due to connectivity and clearly in n − 1 rounds all nodes must have been influenced by
the initial state of any other node.

2. This one is a little more subtle. The reason is that here |past(u,r)(0)| does not necessarily
increase as r increases (may remain the same in some rounds). For an example consider a 1st round
in which a node u is connected to n− 2 nodes {v1, v2, ..., vn−2} and a node w is connected only to
vn−2. At time 1 we have |past(u,1)(0)| = n − 1. From now on, the graph maintains the following
static structure: the graph is the hamiltonian path u, v1, v2, ..., vn−2, w. Clearly, the initial state of
w must travel across the path to influence u, so no new influence occurs at u for n− 3 rounds.

Let us now prove this statement. Assume that |past(u,i)(0)| ≥ min{i + 1, n} for some i > 0.
The only interesting case is when |past(u,i)(0)| = i + 1 < n (if it is > i + 1 then the statement
trivially holds for the next round). Again T = V \past(u,i)(0) is non-empty. Due to case 1, the
initial configuration of the set T needs V \T = i + 1 rounds to influence all nodes in past(u,i)(0).
Thus, again the initial state of some node in T influences u during round i+ 1 and the statement
follows. ut

For a distributed system to be able to perform global computation, nodes need to be able to
determine for all times 0 ≤ t ≤ t′ whether past(u,t′)(t) = V . If nodes know n, then a node can
easily determine at time t′ whether past(u,t′)(t) = V by counting all different t-states that it has
heard of so far (provided that every node broadcasts at every round all information it knows). If
it has heard the t-states of all nodes then the equality is satisfied. If n is not known then various
techniques may be applied (which is the subject of this section). By termination criterion we mean
any locally verifiable property that can be used to determine whether past(u,t′)(t) = V .

Remark 1. Note that any protocol that allows nodes to determine whether past(u,t′)(t) = V can be
used to solve the counting and all-to-all token dissemination problems. The reason is that if a node
knows at round r that it has been causally influenced by the initial states of all other nodes, then
it can solve counting by writing |past(u,r)(0)| on its output and all-to-all dissemination by writing
past(u,r)(0) (provided that all nodes send their initial states and all nodes constantly broadcast all
initial states that they have heard of so far).

4 Naming and Counting in Anonymous Unknown Dynamic Networks

In this section, we study the fundamental naming and counting problems (and some variations) in
networks that are anonymous, unknown, and possibly dynamic. In counting, nodes must determine
the size of the network n and in naming they must end up with unique identities. By anonymous
we mean that all nodes begin from identical states apart possibly from a unique leader node and
by unknown that nodes have no a priori knowledge of the network (apart from some minimal
knowledge when necessary) including ignorance of n. Network dynamicity is modeled by the 1-
interval connectivity model [KLO10], in which communication is synchronous and a worst-case
adversary chooses the edges of every round subject to the condition that each instance is connected.
We first focus on static networks with broadcast where we show that a unique leader suffices in
order to solve counting in linear time. Then we focus on dynamic networks with broadcast. We
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conjecture that dynamicity renders nontrivial computation impossible. In view of this, we let the
nodes know an upper bound on the maximum degree that will ever appear and show that in this
case the nodes can obtain an upper bound on n. Finally, we replace broadcast with one-to-each,
in which a node may send a different message to each of its neighbors. Interestingly, this natural
variation gives us the ability to state a correct naming protocol for this kind of dynamic distributed
systems.

4.1 Further Related Work

The question concerning which problems can be solved by a distributed system when all processors
use the same algorithm and start from the same state has a long story with its roots dating
back to the seminal work of Angluin [Ang80], who investigated the problem of establishing a
“center”. Further investigation led to the classification of computable functions [YK96, ASW88].
[BV99] removed the, until then, standard assumption of knowing the network size n and provided
characterizations of the relations that can be computed with arbitrary knowledge. Other well-known
studies on unknown networks have dealt with the problems of robot-exploration and map-drawing
of an unknown graph [DP90, AH00] and on information dissemination [AGVP90]. Fraigniaud et al.
[FPPP00] assumed a unique leader in order to break symmetry and assign short labels as fast as
possible. To circumvent the further symmetry introduced by broadcast message transmission they
also studied other natural message transmission models as sending only one message to a single
neighbor. Recently, and independently of our work, Chalopin et al. [CMM12] have studied the
problem of naming anonymous networks in the context of snapshot computation. Finally, Aspnes
et al. [AFR06] studied the relative powers of reliable anonymous distributed systems with different
communication mechanisms: anonymous broadcast, read-write registers, or read-write registers plus
additional shared-memory objects.

4.2 Static Networks with Broadcast

We here assume that the network is described by a static graph G = (V,E), where E ⊆ {{u, v} :
u, v ∈ V }. Moreover, the message transmission model is broadcast, that is, in every round, each
node u generates a single message to be delivered to all its neighbors. Note that any impossibility
result established for static networks is also valid for dynamic networks as a static network is a
special case of a dynamic network.

First of all, note that if all nodes start from the same initial state then, if we restrict ourselves
to deterministic algorithms, naming is impossible to solve in general static networks, even if nodes
know n. The reason is that in the worst-case they may be arranged in a ring (in which each node
has precisely 2 neighbors) and it is a well-known fact [Ang80, Lyn96, AW04] that, in this case, in
every round r, all nodes are in identical states.

We show now that impossibility persists even if we allow a unique leader and even if nodes have
complete knowledge of the network.

Theorem 1 ([MCS13]). Naming is impossible to solve by deterministic algorithms in general
anonymous (static) networks with broadcast even in the presence of a leader and even if nodes have
complete knowledge of the network.

Proof. Imagine a star graph in which the leader has n − 1 neighbors (it is the center) and every
other node has only the leader as its unique neighbor (they are the leaves). All leaf-nodes are in
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the same initial state and receive the same first message m1 from the center. So they all transition
to the same new state and generate the same outgoing message. It is straightforward to verify, by
induction on the number of rounds, that in every round r all leaf-nodes are in identical states. In
fact, in any network in which some node is connected to at least two terminal nodes, that is nodes
with no further neighbors, those terminal nodes will forever be in identical states. ut

An obvious generalization is that, under the same assumptions as in the statement of the
theorem, it is impossible to solve k-labeling for any k ≥ 3.

We now turn our attention to the simpler counting problem. First we establish the necessity of
assuming a unique leader.

Theorem 2 ([MCS13]). Without a leader, counting is impossible to solve by deterministic algo-
rithms in general anonymous networks with broadcast.

Proof. For the sake of contradiction, assume that an algorithm A solves it. Then it solves it on a
static ring R1 of size n with the first node terminating in k ≥ n rounds. Now consider a ring R2

of size k + 1. All nodes in both rings are initially in the same identical initial state ⊥. Thus, any
node in R2 has the same k-neighborhood (states of nodes in distance at most k) as any node in R1

which implies that after k rounds these two nodes will be in the same state (see e.g. Lemma 3.1 in
[ASW88]). Thus a node in R2 terminates after k rounds and outputs n which is a contradiction. ut

In view of Theorem 2, we assume again a unique leader in order to solve counting. Recall that
the eccentricity of a node u is defined as the greatest geodesic distance between u and v, over
all v ∈ V \{u}, where “distance” is equivalent to “shortest path”. We first describe a protocol
Leader Eccentricity (inspired by the Wake&Label set of algorithms of [FPPP00]) that assigns to
every node a label equal to its distance from the leader and then we exploit this to solve counting.
We assume that all nodes have access to the current round number via a variable r.
Protocol Leader Eccentricity. The leader begins with label ← 0 and max asgned ← 0 and all
other nodes with label←⊥. In the first round, the leader broadcasts an assign (1) message. Upon
reception of an assign (i) message, a node that has label =⊥ sets label ← i and broadcasts to its
neighbors an assign (i+ 1) message and an ack (i) message. Upon reception of an ack (i) message,
a node with label 6=⊥ and label < i broadcasts it. Upon reception of an ack (i) message, the leader
sets max asgned ← i and if r > 2 · (max asgned + 1) then it broadcasts a halt message, outputs
its label, and halts. Upon reception of a halt message, a node broadcasts halt, outputs its label,
and halts.

Theorem 3 ([MCS13]). In Leader Eccentricity nodes output ε+ 1 distinct labels where ε is the
eccentricity of the leader. In particular, every node outputs its distance from the leader.

Proof. At time 2, nodes at distance 1 from the leader receive assign (1) and set their label to 1.
By induction on distance, nodes at distance i get label i at round i + 1. In the same round, they
send an ack that must arrive at the leader at round 2i+ 1. If not then there is no node at distance
i. ut

We now use Leader Eccentricity to solve counting in anonymous unknown static networks with
a leader. We additionally assume that at the end of the Leader Eccentricity process each node u
knows the number of neighbors up(u) = |{{v, u} ∈ E : label(v) = label(u)− 1}| it has to its upper
level (it can store this during the Leader Eccentricity process by counting the number of assign
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messages that arrived at it from its upper level neighbors). Moreover, we assume that all nodes
know the leader’s eccentricity ε (just have the leader include max asgned in its halt message).
Finally, let, for simplicity, the first round just after the completion of the above process be round
r = 1. For this, we just need all nodes to end concurrently the Leader Eccentricity process. This is
done by having node with label i that receives or creates (this is true for the leader) a halt message
in round r halt in round (r +max asgned− i). Then the nodes just reset their round counters.
Protocol Anonymous Counting. Nodes first execute the modified Leader Eccentricity. When
ε− r+ 1 = label(u), a non-leader node u receives a possibly empty (in case of no lower-level neigh-
bors) set of partial counti (rvali) messages and broadcasts a partial count ((1 +

∑
i rvali)/up(u))

message. When r = ε + 1, the leader receives a set of partial counti (rvali) messages, sets
count ← 1 +

∑
i rvali, broadcasts a halt (count) message, outputs count, and halts. When a

non-leader u receives a halt (count) message, it outputs count and halts.
For a given round r denote by rvali(u) the ith message received by node u.

Theorem 4 ([MCS13]). Anonymous Counting solves the counting problem in anonymous static
networks with broadcast under the assumption of a unique leader. All nodes terminate in O(n)
rounds and use messages of size O(log n).

Proof. By induction on the round number r, in the beginning of round r ≥ 2, it holds that∑
u:label(u)=ε−r+1 (1 +

∑
i rvali(u)) = |{u : label(u) ≥ ε − r + 1}|. Clearly, in round ε + 1 it holds

that count = 1 +
∑

i rvali(leader) = |{u : label(u) ≥ 0}| = n. ut

4.3 Dynamic Networks with Broadcast

We now turn our attention to the more general case of 1-interval connected dynamic networks with
broadcast. We begin with a conjecture stating that dynamicity renders nontrivial computation
impossible (see also [OW05] for a similar conjecture in a quite different setting). Then we naturally
strengthen the model to allow some computation.

Conjecture 1 ([MCS13]). It is impossible to compute (even with a leader) the predicate Na ≥ 1,
that is “exists an a in the input”, in general anonymous unknown dynamic networks with broadcast.

The conjecture is essentially based on the following fact. Even in a dynamic network, it can be
the case that two nodes that are initially in the same state a can for any number of rounds T have
the same T -neighborhood, which means that the whole history of received messages is the same
in both nodes and thus they always transition to identical states. This is, for example, true in a
symmetric tree rooted at the leader (e.g. a tree with k identical lines leaving the root) in which the
two nodes are in each round in equal distance from the root (even if this distance changes from
round to round by moving the 2 nodes back and forth). In dynamic networks, it is also the case
that for a node u to causally influence the leader with its t-state, all nodes that receive the t-state
of u should continuously broadcast it at least until the leader receives it (then they could probably
stop by receiving an ack or by using some known upper bound on the delivery time). Potentially,
O(n) nodes can receive the t-state of u before it is delivered to the leader. It seems that if the
leader could at some point decide that the received messages originate from two distinct nodes that
are forever in identical states then it would also decide the same on a dynamic network containing
only one of these nodes, as in both cases the whole network could be full of messages of the same
kind. So, it seems impossible for the leader to determine whether the network contains at least two
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as and such a process is necessary for the leader to count the size of the network. To determine
whether there are no as at all, in the absence of as, the leader should somehow determine that it
has been causally influenced by the whole network, which in turn requires counting.

In view of Theorem 1, which establishes that we cannot name the nodes of a static, and thus
also of a dynamic, network if broadcast communication is assumed, and of the above conjecture,
implying that in dynamic networks we cannot count even with a leader 5, we start strengthening
our initial model.

Let us now assume that there is a unique leader l that knows an upper bound d on maximum
degree ever to appear in the dynamic network, that is d ≥ maxu∈V,r∈IN{du(r)}. We keep the
broadcast message transmission.

Note first that impossibility of naming persists. However, we show that obtaining an upper
bound on the size of the network now becomes possible, though exponential in the worst case.

Protocol Degree Counting. The leader stores in d the maximum degree that will ever appear
and begins with label ← 0, count ← 1, latest event ← 0, max label ← 0, and r ← 0 while all
other nodes begin with label←⊥, count← 0, and r ← 0. In the beginning of each round each node
increments by one its round counter r. The leader in each round r broadcasts assign (r). Upon
reception of an assign (r label) message, a node with label =⊥ sets label← r label and from now
in each round r broadcasts assign (r) and my label (label). A node with label =⊥ that did not
receive an assign message sends an unassigned (r) message. All nodes continuously broadcast the
maximum my label and unassigned messages that they have received so far. Upon reception of
an unassigned (i) message, the leader, if i > latest event, it sets count ← 1 and, for k = 1, . . . , i,
count← count+ d · count, max label← i, and latest event← r and upon reception of a my label
(j) message, if j > max label, it sets count ← 1 and, for k = 1, . . . , j, count ← count + d · count,
latest event← r, and max label ← j (if receives both i, j it does it for max{i, j}). When it holds
that r > count+ latest event− 1 (which must eventually occur) then the leader broadcasts a halt
(count) message for count rounds and then outputs count and halts. Each node that receives a halt
(r count) message, sets count← r count, broadcasts a halt (count) message for count rounds and
then outputs count and halts.

Theorem 5 ([MCS13]). Degree Counting solves the counting upper bound problem in anony-
mous dynamic networks with broadcast under the assumption of a unique leader. The obtained upper
bound is O(dn) (in the worst case).

Proof. In the first round, the leader assigns the label 1 to its neighbors and obtains an unassigned
(1) message from each one of them. So, it sets count← (d+ 1) (in fact, note that in the first step
it can simply set count ← du(1) + 1, but this is minor), latest event ← 1, and max label ← 1.
Now, if there are further nodes, at most by round count+ latest event−1 it must have received an
unassigned (i) message with i > latest event or a my label (j) with j > max label. Note that the
reception of an unassigned (i) message implies that at least i+1 distinct labels have been assigned
because as long as there are unlabeled nodes one new label is assigned in each round to at least
one node (this is implied by Lemma 1 and the fact that all nodes with labels constantly assign new
labels). Initially, one node (the leader) assigned to at most d nodes label 1. Then the d+ 1 labeled
nodes assigned to at most (d+ 1)d unlabeled nodes the label 2, totalling (d+ 1) + (d+ 1)d, and so
on.

5 This is implied because if we could count we could have a node wait at most n − 1 rounds until it hears of an a
(provided that all nodes that have heard of an a forward it) and if no reject.
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In the worst-case, each label in {0, 1, . . . , n− 1} is assigned to precisely one node (e.g., consider
a static line with the leader in the one endpoint). In this case the nodes count O(dn). ut

We point out that if nodes have access to more drastic initial knowledge such as an upper bound
e on the maximum expansion, defined as maxu,r,r′{|futureu,r(r

′ + 1)| − |futureu,r(r
′)|} (maximum

number of concurrent new influences ever occuring), where future(u,r)(r
′) := {v ∈ V : (u, r)  

(v, r′)}, for r ≤ r′, then essentially the same protocol as above provides an O(n · e) upper bound.

4.4 Dynamic Networks with One-to-Each

The result of Theorem 1, in the light of (a) Conjecture 1, and (b) the assumption of a broadcast
message transmission model, indicates that nontrivial computations in anonymous unknown dy-
namic networks are impossible even under the assumption of a unique leader. We now relax our
assumptions so that we can state a correct naming protocol. We start by relaxing the assumption
of a broadcast message transmission medium by offering to nodes access to a one-to-each message
transmission mechanism. We also assume a unique leader, as without it, even under a one-to-each
model, naming is impossible to solve.

1st Version - Protocol Fair We first present a protocol, that we call Fair, in which the unique
leader assigns distinct labels to each node of the network. The labels assigned are tuples (r, h, i),
where r is the round during which the label was assigned, h is the label of the leader node and i is
a unique number assigned by the leader. The labels can be uniquely ordered first by r, then by h
and finally by i (in ascending order).

Each node maintains the following local variables: clock, for counting the rounds of execu-
tion of the protocol (implemented due to synchronous communication, see Section 2.1), label,
for storing the label assigned by the leader, state, for storing the local state that can be set to
{anonymous, named, leader}, and counter, for storing the number of labels generated. All nodes
are initialized to clock ← 0, id← (0,⊥,⊥), state← anonymous, and counter ← 0 except from the
leader that is initialized to clock ← 0, id← (0, 1, 1), state← leader, and counter ← 1.

Each turn the leader u consults the one-to-each transmission mechanism and identifies a set of
locally unique edge-labels 1, 2, . . . , d(u), one for each of the edges incident to it. 6 The leader iterates
the edge-label set and transmits to each neighboring node a different message mi, 1 ≤ i ≤ d(u) that
contains the unique label (clock, label, counter+ i). When the transmission is complete, it increases
the variable counter by d(u). All the other nodes of the network do not transmit any messages (or
transmit a null message if message transmission is compulsory).

All nodes under state = anonymous, upon receiving a (non-null) message set the local label to
the contents of the message and change state to named. All the other nodes of the network simply
ignore all the messages received.

At the end of the turn all nodes do clock++ (where ‘++’ is interpreted as “increment by one”).
Recall that a naming assignment is correct if all nodes are assigned unique labels. It is clear that

Fair is a non-terminating correct protocol, given the following fairness assumption: the leader node
at some point has become directly connected with each other node of the network (i.e., eventually
meets all nodes).

6 Recall from Section 4.1 that these edge-labels can be reselected arbitrarily in each round (even if the neighbors
remain the same) by the adversary so that a node cannot infer what the internal state of a neighbor is, based
solely on the corresponding local edge-name.
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Lemma 2. With one-to-each transmission, under the fairness assumption, and in the presence of
a unique leader, protocol Fair eventually computes a unique assignment for all the nodes in any
anonymous unknown dynamic network.

2nd Version - Protocol Delegate We now proceed by presenting a stronger protocol Delegate
(based on Fair) that is correct even without the fairness assumption. To achieve correctness the
leader node delegates the role of assignment of labels to all the nodes that it encounters. Thus,
without loss of generality, even if the leader does not encounter all other nodes of the network, due
to the connectivity property, all nodes will eventually hear from the leader. Therefore, all nodes will
either receive a unique label from the leader or from another labeled node. The uniqueness among
the labels generated is guaranteed since each label can be traced back to the node that issued it
using the h parameter.

In Delegate the nodes maintain the same variables as in Fair. Each turn the leader performs
the same actions as in Fair. Also similarly to Fair, each node that is in state = anonymous does
not transmit any message (or transmits a null message if message transmission is compulsory).
Each node u that is in state = named performs similar actions as the leader node and transmits
to each edge-label i a message containing the unique label (clocku, labelu, counteru + i) and then
increases the variable counteru by d(u). All nodes under state = anonymous, upon receiving one
or more (non-null) messages that contain a label, select the message that contains the lowest label
(i.e., the one with the lowest h parameter) and set the local label to the contents of the message
and change state to named. At the end of the turn all nodes do clock + +.

Lemma 3 ([MCS13]). With one-to-each transmission, and in the presence of a unique leader,
protocol Delegate correctly computes a unique assignment for all the nodes in any anonymous
unknown dynamic network.

3rd Version - Protocol Dynamic Naming (terminating) Protocol Fair computes a correct
naming assignment (based on different assumptions) but does not terminate. Essentially the nodes
continue to transmit labels for ever. We now describe a protocol that we call Dynamic Naming
that manages to terminate. Dynamic Naming is an O(n)-time protocol that assigns unique ids
to the nodes and informs them of n. As usual, there is a unique leader l with id 0 while all other
nodes have id ⊥.

The idea here is as follows. All nodes that have obtained an id assign ids and these ids are
guaranteed to be unique. Additionally, we have nodes that have obtained an id to acknowledge
their id to the leader. Thus, all nodes send their ids and all nodes continuously forward the received
ids so that they eventually arrive at the leader (simple flooding mechanism). So, at some round r, the
leader knows a set of assigned ids K(r). We describe now the termination criterion. If |K(r)| 6= |V |
then in at most |K(r)| additional rounds the leader must hear (be causally influenced) from a node
outside K(r) (to see why, see Lemma 1). Such a node, either has an id that the leader first hears of,
or has no id yet. In the first case, the leader updates K(r) and in the second waits until it hears of
a new id (which is guaranteed to appear in the future). On the other hand, if |K(r)| = |V | no new
info will ever arrive at the leader in the future and the leader may terminate after the |K(r)|-round
waiting period ellapses. This protocol solves the naming problem in anonymous unknown dynamic
networks under the assumptions of one-to-each message transmission and of a unique leader. All
nodes terminate in O(n) rounds and use messages of size Θ(n2).
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Protocol Dynamic Naming. Initially, every node has three variables count ← 0, acks ← ∅,
and latest unassigned ← 0 and the leader additionally has latest new ← 0, time bound ← 1,
and known ids ← {0}. A node with id 6=⊥ for 1 ≤ i ≤ k sends assign (id, count + i) message
to its ith neighbor and sets count ← count + k. In the first round, the leader additionally sets
known ids ← {0, (0, 1), (0, 2), . . . , (0, k)}, latest new ← 1, and time bound ← 1 + |known ids|.
Upon receipt of l assign messages (ridj), a node with id =⊥ sets id ← minj{ridj} (in number of
bits), acks ← acks ∪ id, sends an ack (acks) message to all its k current neighbors, for 1 ≤ i ≤ k
sends assign (id, count+ i) message to its ith neighbor, and sets count← count+ k. Upon receipt
of l ack messages (acksj), a nonleader sets acks ← acks ∪ (

⋃
j acksj) and sends ack (acks). A

node with id =⊥ sends unassigned (current round). Upon receipt of l ≥ 0 unassigned messages
(valj), a node with id /∈ {0,⊥} sets latest unassigned ← max{latest unassigned,maxj{valj}}
and sends unassigned (latest unassigned). Upon receipt of l ack messages (acksj), the leader
if (

⋃
j acksj)\known ids 6= ∅ sets known ids ← known ids ∪ (

⋃
j acksj), latest new ←

current round and time bound← current round+ |known ids| and upon receipt of l unassigned
messages (valj), it sets latest unassigned ← max{latest unassigned,maxj{valj}}. If, at some
round r, it holds at the leader that r > time bound and latest unassigned < latest new, the
leader sends a halt (|known ids|) message for |known ids| − 1 rounds and then outputs id and
halts. Any node that receives a halt (n) message, sends halt (n) for n− 2 rounds and then outputs
id and halts.

Denote by S(r) = {v ∈ V : (l, 0)  (v, r)} the set of nodes that have obtained an id at
round r and by K(r) those nodes in S(r) whose id is known by the leader at round r, that is
K(r) = {u ∈ V : ∃r′ s.t. u ∈ S(r′) and (u, r′) (l, r)}.
Theorem 6 ([MCS13]). Dynamic Naming solves the naming problem in anonymous unknown
dynamic networks under the assumptions of one-to-each message transmission and of a unique
leader. All nodes terminate in O(n) rounds and use messages of size Θ(n2).

Proof. Unique names are guaranteed as in Delegate. Termination is as follows. Clearly, if V \K(r) 6=
∅, either |K(r + |K(r)|)| ≥ |K(r)| + 1 or (u, r)  (l, r + |K(r)|) for some u ∈ V \S(r). The
former is recognized by the leader by the arrival of a new id and the latter by the arrival of an
unassigned (timestamp) message, where timestamp ≥ r. On the other hand, if K(r) = V then
|K(r+ |K(r)|)| = |K(r)| and @u ∈ V \S(r) s.t. (u, r) (l, r+ |K(r)|) as V \S(r) = ∅. Finally, note
that connectivity implies that |S(r + 1)| ≥ min{|S(r)| + 1, n} which in turn implies O(n) rounds
until unique ids are assigned. Then another O(n) rounds are required until nodes terminate. ut

Clearly, by executing a simple O(n)-time process after Dynamic Naming we can easily reassign
minimal (consecutive) names to the nodes. The leader just floods a list of (old id, new id) pairs,
one for each node in the network.

4th Version - Protocol Individual Conversations (logarithmic messages) Though
Dynamic Naming is a correct and time-efficient terminating protocol for the naming problem
it still has an important drawback. The messages sent may be of size Ω(n2). We now refine
Dynamic Naming to arrive at a more involved construction that reduces the message size to
Θ(log n) by paying a small increase in termination time. We call this 4th version of our naming
protocols Individual Conversations. We only give that main idea here.
Protocol Individual Conversations [Main Idea]. To reduce the size of the messages (i) the
assigned names are now of the form k · d + id, where id is the id of the node, d is the number of
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unique consecutive ids that the leader knows so far, and k ≥ 1 is a name counter (ii) Any time that
the leader wants to communicate to a remote node that has a unique id it sends a message with
the id of that node and a timestamp equal to the current round. The timestamp allows all nodes
to prefer this message from previous ones so that the gain is twofold: the message is delivered and
no node ever issues a message containing more than one id. The remote node then can reply in the
same way. For the assignment formula to work, nodes that obtain ids are not allowed to further
assign ids until the leader freezes all named nodes and reassigns to them unique consecutive ids.
During freezing, the leader is informed of any new assignments by the named nodes and terminates
if all report that no further assignments were performed.

Theorem 7 ([MCS13]). Individual Conversations solves the (minimal) naming problem in
O(n3) rounds using messages of size Θ(log n).

Proof. Though Dynamic Naming is a correct and time-efficient terminating protocol for the nam-
ing problem it still has an important drawback. The messages sent may be of size Ω(n2). There are
two reasons for this increased message size. One is the method of assigning ids, in which the id of
a node is essentially set to a pair containing the id of its fisrt parent and a counter. By induction
on assignments, in which the leader assigns to a single node, that node assigns to another node,
the third node to a fourth one, and so on, it is easy to see that ids may become n-tuples and thus
have size O(n). The other reason is that, for a node to acknowledge to the leader its assigned id,
that node and all nodes that receive it must continuously broadcast it until the leader receives it
(otherwise, delivery is not guaranteed by our dynamic network model). As O(n) nodes may want to
acknowledge at the same time, it follows that some node may need to continuously broadcast O(n)
ids each of size O(n), thus O(n2). We now refine Dynamic Naming to arrive at a more involved
construction that reduces the message size to Θ(log n) by paying a small increase in termination
time. We call this protocol Individual Conversations. Due to the many low-level details of the
protocol we adopt a high-level but at the same time precise and clear verbal presentation.

One refinement concerns the method of assigning ids. We notice that if some d nodes have the
unique consecutive idsD = {0, 1, 2, . . . , k−1}, then we can have node with id j ∈ D assign ids k·d+j,
for all k ≥ 1. For example, if we have nodes {0, 1, 2, 3}, then node 0 assigns ids {4, 8, 12, . . .}, node
1 assigns {5, 9, 13, . . .}, node 2 assigns {6, 10, 14, . . .}, and node 3 assigns {7, 11, 15, . . .}. Clearly,
the assignments are unique and in the worst case k, d, j = O(n), which implies that the maximum
assigned id is O(n2) thus its binary representation is Θ(log n). So, if we could keep the assigning
nodes to have unique consecutive ids while knowing the maximum existing id (so as to evaluate the
id-generation formula), we could get logarithmic ids.

Even if we could implement the above assignment method, if nodes continued to constantly
forward all ids that they ever hear of then we would not do better than message sizes O(n log n)
(a node forwards O(n) ids each of size O(log n)). Clearly, another necessary improvement is to
guarantee communication between the leader and some node with unique id j that the leader knows
of, i.e. a pairwise conversation. It is important that a conversation is initiated by the leader so that
we do not get multiple nodes trying to initiate a conversation with the leader, as this would increase
the communication complexity. The leader sends a request(rem id, current round) message, where
rem id is the id of the remote node and current round is a timestamp indicating the time in which
the request for conversation was initiated. Upon receipt of a request(r id, timestamp) message all
nodes such that id 6= r id forward the message if it is the one with the largest timestamp that they
have ever heard of. All nodes keep forwarding the message with the largest timestamp. When the
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remote node receives the message it replies with report(id, current round), where id is its own id.
Now all nodes will forward the report as it is the one with the largest timestamp and the report
will eventually reach the leader who can reply with another request, and so on. Note that a node
that participates in a conversation need not know how much time it will take for the other node to
reply. It only needs to have a guarantee that the reply will eventually arrive. Then it can recognize
that this is the correct reply by the type, the id-component, and the timestamp of the received
message. A nice property of 1-interval connected graphs is that it guarantees any such reply to
arrive in O(n) rounds if all nodes that receive it keep broadcasting it (which is the case here, due
to the timestamps). So, in order to keep the message sizes low, we must implement the above
communication method in such a way that the leader always participates in a single conversation,
so that a single message ever floods the whole network (in particular, the most recently created
one).

Now, let us further develop our id-assignment method. Clearly, in the 1st round the leader can
keep id 0 for itself and assign the unique consecutive ids {1, 2, . . . , dl(1)} to its |dl(1)| neighbors in
round 1. Clearly, each node with id j in K(1) = {0, 1, . . . , |dl(1)|} can further assign the unique ids
k · |K(1)|+ j, for k ≥ 1. As before we can have a node stick to the smallest id that it hears from its
neighbors but we additionally need that node to remember those ids that it rejected in a rejected
list. However, note that, if nodes outside K(1) that obtain a unique id are not allowed to further
assign ids, then we do not guarantee that all nodes will eventually obtain an id. The reason is that
the adversary can forever hide the set K(1) from the rest of the graph via nodes that have obtained
an id and do not further assign ids (that is, all nodes in K(1) may communicate only to nodes in
K(1) and to nodes that have obtained an id but do not assign and all nodes that do not have an
id may communicate only to nodes that do not have an id and to nodes that have obtained an id
but do not assign, which is some sort of deadlock). So we must somehow also allow to nodes that
obtain ids to further assign ids. The only way to do this while keeping our assignment formula is
to restructure the new assignments so that they are still unique and additionally consecutive. So,
for example, if nodes in K(1) have at some point assigned a set of ids T , then the leader should
somehow reassign to nodes in T the ids {|K(1)|, |K(1)|+ 1, . . . , |K(1)|+ |T | − 1}.

So, at this point, it must be clear that the leader must first allow to the nodes that have unique
consecutive ids (including itself) to perform some assignments. Then at some point it should freeze
the assigning nodes and ask them one after the other to report the assignments that they have
performed so far. Then, assuming that it has learned all the newly assigned unique ids, it should
communicate with that nodes to reassign to them the next available unique consecutive ids and
also it should inform all nodes with id of the maximum consecutive id that has been assigned so
far. Now that all nodes with id have unique consecutive ids and know the maximum assigned, they
can all safely use the id-assignment formula. In this manner, we have managed to also allow to the
new nodes to safely assign unique ids. Finally, the leader unfreezes the nodes with ids one after
the other, alows them to assign some new ids and at some point freezes them again to repeat the
above process which we may call a cycle.

A very important point that we should make clear at this point is that, in 1-interval connected
graphs, a new assignment is only guaranteed if at least for one round all nodes that have ids
send assignment messages to all their incident edges. As if some node with id selected to issue no
assignment message to some of its edges then the adversary could make that edge be the only edge
that connects nodes with ids to nodes without ids and it could do the same any time an edge is
not used. Forunately, this is trivially guaranteed in the solution we have develped so far. When the
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leader unfreezes the last node with id, even if it chooses to start freezing the nodes in the subsequent
round, provided that at least for that round it does not freezes itself, then in that round all nodes
including itself are not frozen, thus all take an assignment step in that round (sending assignment
messages to all their incident edges). This guarantees that for at least one round all assign at the
same time which in turn guarantees at least one new delivery, provided that there are still nodes
without ids.

Another point that is still blur is the following. When the leader gets all reports from all nodes
that were assigning ids during this cycle it cannot know which ids have been assigned but only
which ids have been possibly assigned. The reason is that when a node u assigns some ids then it
is not guaranteed that in the next round it will have the same neighbors. So it can be the case that
some of its neighbors chooses to stick to a smaller id sent by some other node and u never notices
it. So we have each node that assigns ids to remember the ids that have possibly been assigned and
each node that is assigned an id to remember those ids that it rejected. Note that when a node u
tries to assigns an id by sending it via a local edge, then, in the next round when it receives from
that local edge, it can tell whether that id was possibly assigned by simply having all nodes send
their id in every round. If the received id from that edge was ⊥ then the corresponding neighbor
did not have an id thus it must have been assigned some id even if that was not the one sent by
u. In any case, the id sent by u will either be assigned or stored in the rejected list of that node.
On the other hand, if the received id was not equal to ⊥ then the neighbor already had an id, u
knows that its assignment was for sure unsuccessful and may reuse this id in future assignments.
The problem now is that, if the leader tries to initiate a conversation with an arbitrary id from
those that have been possibly assigned, it can very well be the case that this id was not assigned
and the leader may have to wait for a reply forever. Fortunately, this can be solved easily by having
the unique node that has stored this id in its rejected list to reply not only when it gets a request
message containing its own id but also when it gets a message containing an id that is also in its
rejected list. Another way is the following. As the leader has first collected all possibly delivered
ids, it can order them increasingly and start seeking that smallest id. As nodes stick to the smallest
they hear, the smallest of all possibly assigned was for sure selected by some node. Then that node
may inform the leader of some rejected ids which the leader will remove from its ordering and then
the leader may proceed to seek for the next id that has remained in its ordered list. It is not hard
to see that this method guarantees that the leader always seeks for existing ids.

Finally, the termination criterion is more or less the same as in Dynamic Naming. The leader
knows that, if it allows all nodes with ids a common assignment step, then, provided that there
are nodes without ids, at least one new assignment must take place. Clearly, if all nodes report
that they performed no assignments, then the leader can terminate (and tell others to terminate)
knowing that all nodes must have obtained an id. In the termination phase, it can reassign for a
last time unique consecutive ids and inform all nodes of n. ut

4.5 Higher Dynamicity

Given some high-dynamicity assumption (some sort of fairness), naming can be solved un-
der broadcast communication. Intuitively, to break the symmetry that is responsible for
the impossibility of Conjecture 1, we require that, given sufficient time, a node has influ-
enced every other node in different rounds. Formally, there must exist k (not necessarily
known to the nodes) s.t (arrival(u,r)(v), arrival(u,r+1)(v), . . . , arrival(u,r+k−1)(v)) 6= (arrival(u,r)(w),
arrival(u,r+1)(w), . . . , arrival(u,r+k−1)(w)), ∀u ∈ V, r ≥ 0, v, w ∈ V \{u}, where arrival(u,r)(v)
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:= min{r′ > r : (u, r)  (v, r′)} (first time that v is causally influenced by the r-state of u).
We also allow nodes to have time to acknowledge to their neighbors (formally, we may duplicate
each instance of the dynamic graph, i.e. make it persist for two rounds).

The idea is to have the leader name its first dl(1) neighbors say with id 1. What the leader can
exploit is that it knows the number of 1s in the network as it knows its degree in round 1. Now every
node v named 1 counts arrival(l,i)(v) for all i ≥ 2. This is achieved by having the leader continuously
send an (l, current round) pair, unnamed nodes constantly forward it, and having every node
named 1 set arrival(l,i)(v) to the round in which an (l, i) pair was first delivered. It is clear that, due
to the above high-dynamicity assumption, the vector s(v) = (1, arrival(l,2)(v), arrival(u,3)(v), . . . ,
arrival(u,k+2)(v)) (in k rounds) will be a unique id. As the named nodes do not know k, we have
them continuously send (s, current round) pairs, where s is the above vector, and all other nodes
continuously forward these pairs. At some point, the leader must hear from dl(1) different s vectors
with equal timestamps and then it knows that the 1s have obtained unique ids. Now the leader can
stop them from further changing their ids. Then it allows them (including itself) to concurrently
assign id 2 for at least one step. Assigning nodes count the number of assignments that they perform
(in a variable count initially 0). This is done by having a node u that was assigned id 2 in round
r to respond to its neighbors the number l of nodes that tried to assigned 2 to it. Then each
of the assigning 1s sets count ← count + 1/l. When the leader freezes the 1s, they report their
count variable and by summing them the leader learns the number, j, of 2s assigned. Then the
leader sends again (l, current round) pairs and waits to receive j different s vectors with equal
timestamps. The process continues in such cycles until at some point all existing unique ids report
that they didn’t manage to assign the current id being assigned.

5 Causality, Influence, and Computation in Possibly Disconnected
Synchronous Dynamic Networks

In this section, we study the propagation of influence and computation in dynamic distributed
computing systems that are possibly disconnected at every instant. We focus on a synchronous mes-
sage passing communication model with broadcast and bidirectional links. Our network dynamicity
assumption is again a worst-case dynamicity controlled by an adversary scheduler. However, we
replace the usual (in worst-case dynamic networks) assumption that the network is connected at
every instant by minimal temporal connectivity conditions. Our conditions only require that another
causal influence occurs within every time-window of some given length. Based on this basic idea we
define several novel metrics for capturing the speed of information spreading in a dynamic network.
Moreover, we investigate termination criteria in networks in which an upper bound on any of these
metrics is known. We exploit our termination criteria to give protocols that solve the fundamental
counting and all-to-all token dissemination (or gossip) problems.

5.1 Our Metrics

As already stated, in this section we aim to deal with dynamic networks that are allowed to have
disconnected instances. To this end, we define some novel generic metrics that are particularly
suitable for capturing the speed of information propagation in such networks.

5.1.1 The Influence Time Recall that the guarantee on propagation of information resulting
from instantaneous connectivity ensures that any time-node (u, t) influences another node in each
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step (if an uninfluenced one exists). From this fact, we extract two novel generic influence metrics
that capture the maximal time until another influence (outgoing or incoming) of a time-node occurs.

We now formalize our first influence metric.

Definition 2 (Outgoing Influence Time). We define the outgoing influence time (oit) as the
minimum k ∈ IN s.t. for all u ∈ V and all times t, t′ ≥ 0 s.t. t′ ≥ t it holds that

|future(u,t)(t
′ + k)| ≥ min{|future(u,t)(t

′)|+ 1, n}.
Intuitively, the oit is the maximal time until the t-state of a node influences the state of another
node (if an uninfluenced one exists) and captures the speed of information spreading.

Our second metric is similarly defined as follows.

Definition 3 (Incoming Influence Time). We define the incoming influence time (iit) as the
minimum k ∈ IN s.t. for all u ∈ V and all times t, t′ ≥ 0 s.t. t′ ≥ t it holds that

|past(u,t′+k)(t)| ≥ min{|past(u,t′)(t)|+ 1, n}.
We can now say that the oit of a T -interval connected graph is 1 and that the iit can be up to

n− 2. However, is it necessary for a dynamic graph to be T -interval connected in order to achieve
unit oit? First, let us make a simple but useful observation:

Proposition 1 ([MCS14]). If a dynamic graph G = (V,E) has oit (or iit) 1 then every instance
has at least dn/2e edges.

Proof. ∀u ∈ V and ∀t ≥ 1 it must hold that {u, v} ∈ E(t) for some v. In words, at any time t
each node must have at least one neighbor since otherwise it influences (or is influenced by) no
node during round t. A minimal way to achieve this is by a perfect matching in the even-order case
and by a matching between n− 3 nodes and a linear graph between the remaining 3 nodes in the
odd-order case.

Proposition 1 is easily generalized as: if a dynamic graph G = (V,E) has oit (or iit) k then
for all times t it holds that |⋃t+k−1

i=t E(i)| ≥ dn/2e. The reason is that now any node must have a
neighbor in any k-window of the dynamic graph (and not necessarily in every round).

Now, inspired by Proposition 1, we define a minimal dynamic graph that at the same time
satisfies oit 1 and always disconnected instances:

The Alternating Matchings Dynamic Graph. Take a ring of an even number of nodes n = 2l,
partition the edges into 2 disjoint perfect matchings A and B (each consisting of l edges) and
alternate round after round between the edge sets A and B (see Figure 1).

Proposition 2 ([MCS14]). The Alternating Matchings dynamic graph has oit 1 and any node
needs precisely n/2 rounds to influence all other nodes.

Proof. Take any node u. In the first round, u influences its left or its right neighbor on the ring
depending on which of its two adjacent edges becomes available first. Thus, including itself, it has
influenced 2 nodes forming a line of length 1. In the next round, the two edges that join the endpoints
of the line with the rest of the ring become available and two more nodes become influenced; the
one is the neighbor on the left of the line and the other is the neighbor on the right. By induction on
the number of rounds, it is not hard to see that the existing line always expands from its endpoints
to the two neighboring nodes of the ring (one on the left and the other on the right). Thus, we get
exactly 2 new influences per round, which gives oit 1 and n/2 rounds to influence all nodes.
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Fig. 1. The Alternating Matchings dynamic graph for n = 8. The solid lines appear every odd round (1, 3, 5, . . .)
while the dashed lines every even round (2, 4, 6, . . .).

In the alternating matchings construction any edge reappears every second step but not faster
than this. We now formalize the notion of the fastest edge reappearance (fer) of a dynamic graph.

Definition 4. The fastest edge reappearance (fer) of a dynamic graph G = (V,E) is defined as
the minimum p ∈ IN s.t., ∃e ∈ {{u, v} : u, v ∈ V } and ∃t ∈ IN, e ∈ E(t) ∩ E(t+ p).

Clearly, the fer of the alternating matchings dynamic graph described above is 2, because no
edge ever reappears in 1 step and some, at some point, (in fact, all and always) reappears in 2 steps.
In Section 5.2, by invoking a geometric edge-coloring method, we generalize this basic construction
to a more involved dynamic graph with oit 1, always disconnected instances, and fer equal to n−1.
7

We next give a proposition associating dynamic graphs with oit (or iit) upper bounded by K to
dynamic graphs with connected instances.

Proposition 3 ([MCS14]). Assume that the oit or the iit of a dynamic graph, G = (V,E), is

upper bounded by K. Then for all times t ∈ IN the graph (V,
⋃t+Kbn/2c−1
i=t E(i)) is connected.

Proof. It suffices to show that for any partitioning (V1, V2) of V there is an edge in the cut labeled
from {t, . . . , t + Kbn/2c − 1}. W.l.o.g. let V1 be the smaller one, thus |V1| ≤ bn/2c. Take any
u ∈ V1. By definition of oit, |future(u,t)(t + Kbn/2c − 1)| ≥ |future(u,t)(t + K|V1| − 1)| ≥ |V1| + 1
implying that some edge in the cut has transferred u’s t-state out of V1 at some time in the interval
[t, t+Kbn/2c − 1]. The proof for the iit is similar.

5.1.2 The Moi (Concurrent Progress) Consider now the following influence metric:

Definition 5. Define the maximum outgoing influence (moi) of a dynamic graph G = (V,E) as
the maximum k for which ∃u ∈ V and ∃t, t′ ∈ IN, t′ ≥ t, s.t. |future(u,t)(t

′+1)|−|future(u,t)(t
′)| = k.

7 It is interesting to note that in dynamic graphs with a static set of nodes (that is V does not change), if at least

one change happens each time, then every instance G(t) will eventually reappear after at most
∑(n2)

k=0

((n2)
k

)
steps.

This counts all possible different graphs of n vertices with k edges and sums for all k ≥ 0. Thus the fer is bounded
from above by a function of n.

21



In words, the moi of a dynamic graph is the maximum number of nodes that are ever concurrently
influenced by a time-node.

Here we show that one cannot guarantee at the same time unit oit and at most one outgoing
influence per node per step. In fact, we conjecture that unit oit implies that some node disseminates
in bn/2c steps.

We now prove an interesting theorem stating that if one tries to guarantee unit oit then she
must necessarily accept that at some steps more than one outgoing influences of the same time-node
will occur leading to faster dissemination than n− 1 for this particular node.

Theorem 8 ([MCS14]). The moi of any dynamic graph with n ≥ 3 and unit oit is at least 2.

Proof. For n = 3, just notice that unit oit implies that, at any time t, some node has necessarily 2
neighbors. We therefore focus on n ≥ 4. For the sake of contradiction, assume that the statement
is not true. Then at any time t any node u is connected to exactly one other node v (at least one
neighbor is required for oit 1 - see Proposition 1 - and at most one is implied by our assumption).
Unit oit implies that, at time t + 1, at least one of u, v must be connected to some w ∈ V \{u, v},
let it be v. Proposition 1 requires that also u must have an edge labeled t+ 1 incident to it. If that
edge arrives at v, then v has 2 edges labeled t + 1. If it arrives at w, then w has 2 edges labeled
t + 1. So it must arrive at some z ∈ V \{u, v, w}. Note now that, in this case, the (t − 1)-state of
u first influences both w, z at time t + 1 which is contradictory, consequently the moi must be at
least 2.

In fact, notice that the above theorem proves something stronger: Every second step at least
half of the nodes influence at least 2 new nodes each. This, together with the fact that it seems to
hold for some basic cases, makes us suspect that the following conjecture might be true:

Conjecture 2 ([MCS14]). If the oit of a dynamic graph is 1 then ∀t ∈ IN, ∃u ∈ V s.t. |future(u,t)(t+
bn/2c)| = n.

That is, if the oit is 1 then, in every bn/2c-window, some node influences all other nodes
(e.g. influencing 2 new nodes per step).

5.1.3 The Connectivity Time We now propose another natural and practical metric for cap-
turing the temporal connectivity of a possibly disconnected dynamic network that we call the
connectivity time (ct).

Definition 6 (Connectivity Time). We define the connectivity time (ct) of a dynamic network
G = (V,E) as the minimum k ∈ IN s.t. for all times t ∈ IN the static graph (V,

⋃t+k−1
i=t E(i)) is

connected.

In words, the ct of a dynamic network is the maximal time of keeping the two parts of any cut
of the network disconnected. That is to say, in every ct-window of the network an edge appears in
every (V1, V2)-cut. Note that, in the extreme case in which the ct is 1, every instance of the dynamic
graph is connected and we thus obtain a 1-interval connected graph. On the other hand, greater ct
allows for different cuts to be connected at different times in the ct-round interval and the resulting
dynamic graph can very well have disconnected instances. For an illustrating example, consider
again the alternating matchings graph from Section 5.1.1. Draw a line that crosses two edges
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belonging to matching A partitioning the ring into two parts. Clearly, these two parts communicate
every second round (as they only communicate when matching A becomes available), thus the ct
is 2 and every instance is disconnected. We now provide a result associating the ct of a dynamic
graph with its oit.

Proposition 4 ([MCS14]). (i) oit ≤ ct but (ii) there is a dynamic graph with oit 1 and ct = Ω(n).

Proof. (i) We show that for all u ∈ V and all times t, t′ ∈ IN s.t. t′ ≥ t it holds that |future(u,t)(t
′+

ct)| ≥ min{|future(u,t)(t
′)|+ 1, n}. Assume V \future(u,t)(t

′) 6= ∅ (as the other case is trivial). In at
most ct rounds at least one edge joins future(u,t)(t

′) to V \future(u,t)(t
′). Thus, in at most ct rounds

future(u,t)(t
′) increases by at least one.

(ii) Recall the alternating matchings on a ring dynamic graph from Section 5.1.1. Now take any
set V of a number of nodes that is a multiple of 4 (this is just for simplicity and is not necessary)
and partition it into two sets V1, V2 s.t. |V1| = |V2| = n/2. If each part is an alternating matchings
graph for |V1|/2 rounds then every u say in V1 influences 2 new nodes in each round and similarly
for V2. Clearly we can keep V1 disconnected from V2 for n/4 rounds without violating oit = 1.

The following is a comparison of the ct of a dynamic graph with its dynamic diameter D.

Proposition 5 ([MCS14]). ct ≤ D ≤ (n− 1)ct.

Proof. ct ≤ D follows from the fact that in time equal to the dynamic diameter every node causally
influences every other node and thus, in that time, there must have been an edge in every cut
(if not, then the two partitions forming the cut could not have communicated with one another).
D ≤ (n − 1)ct holds as follows. Take any node u and add it to a set S. In ct rounds u influences
some node from V \S which is then added to S. In (n− 1)ct rounds S must have become equal to
V , thus this amount of time is sufficient for every node to influence every other node. Finally, we
point out that these bounds cannot be improved in general as for each of ct = D and D = (n−1)ct
there is a dynamic graph realizing it. ct = D is given by the dynamic graph that has no edge for
ct− 1 rounds and then becomes the complete graph while D = (n− 1)ct is given by a line in which
every edge appears at times ct, 2ct, 3ct, . . ..

Note that the ct metric has been defined as an underapproximation of the dynamic diameter. Its
main advantage is that it is much easier to compute than the dynamic diameter since it is defined
on the union of the footprints and not on the dynamic adjacency itself.

5.2 Fast Propagation of Information Under Continuous Disconnectivity

In Section 5.1.1, we presented a simple example of an always-disconnected dynamic graph, namely,
the alternating matchings dynamic graph, with optimal oit (i.e. unit oit). Note that the alternating
matchings dynamic graph may be conceived as simple as it has small fer (equal to 2). We pose
now an interesting question: Is there an always-disconnected dynamic graph with unit oit and fer
as big as n − 1? Note that this is harder to achieve as it allows of no edge to ever reappear in
less than n− 1 steps. Here, by invoking a geometric edge-coloring method, we arrive at an always-
disconnected graph with unit oit and maximal fer; in particular, no edge reappears in less than
n− 1 steps.

To answer the above question, we define a very useful dynamic graph coming from the area of
edge-coloring.
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Definition 7. We define the following dynamic graph S based on an edge-coloring method due to
Soifer [Soi09]: V (S) = {u1, u2, . . . , un} where n = 2l, l ≥ 2. Place un on the center and u1, . . . , un−1
on the vertices of a (n − 1)-sided polygon. For each time t ≥ 1 make available only the edges
{un, umt(0)} for mt(j) := (t− 1 + j mod n− 1) + 1 and {umt(−i), umt(i)} for i = 1, . . . , n/2− 1; that
is make available one edge joining the center to a polygon-vertex and all edges perpendicular to it.
(e.g. see Figure 2 for n = 8 and t = 1, . . . , 7).

Fig. 2. Soifer’s dynamic graph for n = 8 and t = 1, . . . , 7. In particular, in round 1 the graph consists of the black
solid edges, then in round 2 the center becomes connected via a dotted edge to the next peripheral node clockwise
and all edges perpendicular to it (the remaining dotted ones) become available, and so on, always moving clockwise.

In Soifer’s dynamic graph, denote by Nu(t) := i : {u, ui} ∈ E(t), that is the index of the unique
neighbor of u at time t. The following lemma states that the next neighbor of a node is in almost
all cases (apart from some trivial ones) the one that lies two positions clockwise from its current
neighbor.

Lemma 4 ([MCS14]). For all times t ∈ {1, 2, . . . , n− 2} and all uk, k ∈ {1, 2, . . . , n− 1} it holds
that Nuk(t + 1) = n if Nuk(t) = (k − 3 mod n− 1) + 1 else Nuk(t + 1) = (k + 1 mod n− 1) + 1 if
Nuk(t) = n and Nuk(t+ 1) = (Nuk(t) + 1 mod n− 1) + 1 otherwise.

Proof. Since k /∈ {n, t, t + 1} it easily follows that k,Nk(t), Nk(t + 1) 6= n thus both Nk(t) and
Nk(t + 1) are determined by {umt(−i), umt(i)} where mt(j) := (t − 1 + j mod n− 1) + 1 and k =
mt(−i). The latter implies (t−1−i mod n−1)+1 = k ⇒ (t−1+i mod n−1)+1+(−2i mod n−1) =
k ⇒ mt(i) = k − (−2i mod n − 1); thus, Nk(t) = k − (−2i mod n − 1). Now let us see how the
i that corresponds to some node changes as t increases. When t increases by 1, we have that
(t − 1 + i mod n − 1) + 1 = (t + i′ mod n − 1) + 1 ⇒ i′ = i − 1, i.e. as t increases i decreases.
Consequently, for t+1 we have Nk(t+1) = k− [−2(i−1) mod n−1] = (Nuk(t)+1 mod n− 1)+1.

Theorem 9 ([MCS14]). For all n = 2l, l ≥ 2, there is a dynamic graph of order n, with oit equal
to 1, fer equal to n− 1, and in which every instance is a perfect matching.

Proof. The dynamic graph is the one of Definition 7. It is straightforward to observe that every
instance is a perfect matching. We prove now that the oit of this dynamic graph is 1. We focus on
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the set future(un,0)(t), that is the outgoing influence of the initial state of the node at the center.
Note that symmetry guarantees that the same holds for all time-nodes (it can be verified that
any node can be moved to the center without altering the graph). un at time 1 meets u1 and thus
future(un,0)(1) = {u1}. Then, at time 2, un meets u2 and, by Lemma 4, u1 meets u3 via the edge than
is perpendicular to {un, u2}, thus future(un,0)(2) = {u1, u2, u3}. We show that for all times t it holds
that future(un,0)(t) = {u1, . . . , u2t−1}. The base case is true since future(un,0)(1) = {u1}. It is not
hard to see that, for t ≥ 2, Nu2(t) = 2t−2, Nu1(t) = 2t−1, and for all ui ∈ future(un,0)(t)\{u1, u2},
1 ≤ Nui(t) ≤ 2t−2. Now consider time t+1. Lemma 4 guarantees now that for all ui ∈ future(un,0)(t)
we have that Nui(t+ 1) = Nui(t) + 2. Thus, the only new influences at step t+ 1 are by u1 and u2
implying that future(un,0)(t+ 1) = {u1, . . . , u2(t+1)−1}. Consequently, the oit is 1.

The fer is n− 1 because the edges leaving the center appear one after the other in a clockwise
fashion, thus taking n− 1 steps to any such edge to reappear, and, by construction, any other edge
appears only when its unique perpendicular that is incident to the center appears (thus, again every
n− 1 steps).

Note that Theorem 9 is optimal w.r.t. fer as it is impossible to achieve at the same time unit
oit and fer strictly greater than n− 1. To see this, notice that if no edge is allowed to reappear in
less than n steps then any node must have no neighbors once every n steps.

5.3 Termination and Computation

We now turn our attention to termination criteria that we exploit to solve the fundamental counting
and all-to-all token dissemination problems. First observe that if nodes know an upper bound H
on the iit then there is a straightforward optimal termination criterion taking time D + H, where
D is the dynamic diameter. In every round, all nodes forward all ids that they have heard of so far.
If a node does not hear of a new id for H rounds then it must have already heard from all nodes.
Keep in mind that nodes have no a priori knowledge of the size of the network.

5.3.1 Nodes Know an Upper Bound on the ct: An Optimal Termination Criterion We
here assume that all nodes know some upper bound T on the ct. We will give an optimal condition
that allows a node to determine whether it has heard from all nodes in the graph. This condition
results in an algorithm for counting and all-to-all token dissemination which is optimal, requiring
D + T rounds in any dynamic network with dynamic diameter D. The core idea is to have each
node keep track of its past sets from time 0 and from time T and terminate as soon as these two sets
become equal. This technique is inspired by [KMO11], where a comparison between the past sets
from time 0 and time 1 was used to obtain an optimal termination criterion in 1-interval connected
networks.

Theorem 10 ([MCS14]). [Repeated Past] Node u knows at time t that past(u,t)(0) = V iff
past(u,t)(0) = past(u,t)(T ).

Proof. If past(u,t)(0) = past(u,t)(T ) then we have that past(u,t)(T ) = V . The reason is that
|past(u,t)(0)| ≥ min{|past(u,t)(T )| + 1, n}. To see this, assume that V \past(u,t)(T ) 6= ∅. At most
by round T there is some edge joining some w ∈ V \past(u,t)(T ) to some v ∈ past(u,t)(T ). Thus,
(w, 0) (v, T ) (u, t)⇒ w ∈ past(u,t)(0). In words, all nodes in past(u,t)(T ) belong to past(u,t)(0)
and at least one node not in past(u,t)(T ) (if one exists) must belong to past(u,t)(0) (see also Figure
3).
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For the other direction, assume that there exists v ∈ past(u,t)(0)\past(u,t)(T ). This does not
imply that past(u,t)(0) 6= V but it does imply that even if past(u,t)(0) = V node u cannot know it
has heard from everyone. Note that u heard from v at some time T ′ < T but has not heard from
v since then. It can be the case that arbitrarily many nodes were connected to no node until time
T − 1 and from time T onwards were connected only to node v (v in some sense conceals these
nodes from u). As u has not heard from the T -state of v it can be the case that it has not heard at
all from arbitrarily many nodes, thus it cannot decide on the count.

u

v
w

r : 1 ≤ r ≤ T

past(u,t)(T )
(w, 0) (v, T ) (u, t)

Fig. 3. A partitioning of V into two sets. The left set is past(u,t)(T ), i.e. the set of nodes whose T -state has influenced
u by time t. All nodes in past(u,t)(T ) also belong to past(u,t)(0). Looking back in time at the interval [1, T ], there
should be an edge from some v in the left set to some w in the right set. This implies that v has heard from w by time
T and as u has heard from the T -state of v it has also heard from the initial state of w. This implies that past(u,t)(0)
is a strict superset of past(u,t)(T ) as long as the right set is not empty.

We now give a time-optimal algorithm for counting and all-to-all token dissemination that is
based on Theorem 10.

Protocol A. All nodes constantly forward all 0-states and T -states of nodes that they have heard
of so far (in this protocol, these are just the ids of the nodes accompanied with 0 and T timestamps,
respectively) and a node halts as soon as past(u,t)(0) = past(u,t)(T ) and outputs |past(u,t)(0)| for
counting or past(u,t)(0) for all-to-all dissemination.

For the time-complexity notice that any state of a node needs D rounds to causally influence all
nodes, where D is the dynamic diameter. Clearly, by time D+T , u must have heard of the 0-state
and T -state of all nodes, and at that time past(u,t)(0) = past(u,t)(T ) is satisfied. It follows that
all nodes terminate in at most D + T rounds. Optimality follows from the fact that this protocol
terminates as long as past(u,t)(0) = past(u,t)(T ) which by the “only if” part of the statement of
Theorem 10 is a necessary condition for correctness (any protocol terminating before this may
terminate without having heard from all nodes).

5.3.2 Known Upper Bound on the oit Now we assume that all nodes know some upper
bound K on the oit. Then one can show that if a node u has at some point heard of l nodes, then
u hears of another node in O(Kl2) rounds (if an unknown one exists).
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Theorem 11 ([MCS14]). In any given dynamic graph with oit upper bounded by K, take a node
u and a time t and denote |past(u,t)(0)| by l. It holds that |{v : (v, 0)  (u, t + Kl(l + 1)/2)}| ≥
min{l + 1, n}.

Proof. Consider a node u and a time t and define Au(t) := past(u,t)(0) (we only prove it for the initial
states of nodes but easily generalizes to any time), Iu(t′) := {v ∈ Au(t) : Av(t

′)\Au(t) 6= ∅}, t′ ≥ t,
that is Iu(t′) contains all nodes in Au(t) whose t′-states have been influence by nodes not in Au(t)
(these nodes know new info for u), Bu(t′) := Au(t)\Iu(t′), that is all nodes in Au(t) that do not know
new info, and l := |Au(t)|. The only interesting case is for V \Au(t) 6= ∅. Since the oit is at most K we
have that at most by round t+Kl, (u, t) influences some node in V \Bu(t) say via some u2 ∈ Bu(t).
By that time, u2 leaves Bu. Next consider (u, t+Kl+ 1). In K(l− 1) steps it must influence some
node in V \Bu since now u2 is not in Bu. Thus, at most by round t+Kl+K(l− 1) another node,
say e.g. u3, leaves Bu. In general, it holds that Bu(t′ +K|Bu(t′)|) ≤ max{|Bu(t′)| − 1, 0}. It is not
hard to see that at most by round j = t + K(

∑
1≤i≤l i), Bu becomes empty, which by definition

implies that u has been influenced by the initial state of a new node. In summary, u is influenced
by another initial state in at most K(

∑
1≤i≤l i) = kl(l + 1)/2 steps.

The good thing about the upper bound of Theorem 11 is that it associates the time for a new
incoming influence to arrive at a node only with an upper bound on the oit, which is known, and
the number of existing incoming influences which is also known, and thus the bound is locally
computable at any time. So, there is a straightforward translation of this bound to a termination
criterion and, consequently, to an algorithm for counting and all-to-all dissemination based on it.

Protocol B. All nodes constantly broadcast all ids that they have heard of so far. Each node u keeps
a set Au(r) containing the ids it knows at round r and a termination bound Hu(r) initially equal to
K. If, at round r, u hears of new nodes, it inserts them in Au(r) and sets Hu(r)← r+Kl(l+ 1)/2,
where l = |Au(r)|. If it ever holds that r > Hu(r), u halts and outputs |Au(r)| for counting or Au(r)
for all-to-all dissemination.

In the worst case, u needs O(Kn) rounds to hear from all nodes and then another Kn(n+1)/2 =
O(Kn2) rounds to realize that it has heard from all. So, the time complexity is O(Kn2).

Note that the upper bound of Theorem 11 is loose. The reason is that if a dynamic graph has
oit upper bounded by K then in O(Kn) rounds all nodes have causally influenced all other nodes
and clearly the iit can be at most O(Kn). We now show that there is indeed a dynamic graph that
achieves this worst possible gap between the iit and the oit.

Theorem 12 ([MCS14]). There is a dynamic graph with oit k but iit k(n− 3).

Proof. Consider the dynamic graph G = (V,E) s.t. V = {u1, u2, . . . , un} and ui, for i ∈ {1, n− 1},
is connected to ui+1 via edges labeled jk for j ∈ IN≥1, ui, for i ∈ {2, 3, . . . , n− 2}, is connected to
ui+1 via edges labeled jk for j ∈ IN≥2. and u2 is connected to ui, for i ∈ {3, . . . , n − 1} via edges
labeled k. In words, at step k, u1 is only connected to u2, u2 is connected to all nodes except from
un and un is connected to un−1. Then every multiple of k there is a single linear graph starting
from u1 and ending at un. At step k, u2 is influenced by the initial states of nodes {u3, . . . , un−1}.
Then at step 2k it forwards these influences to u1. Since there are no further shortcuts, un’s state
needs k(n − 1) steps to arrive at u1, thus there is an incoming-influence-gap of k(n − 2) steps at
u1. To see that oit is indeed k we argue as follows. Node u1 cannot use the shortcuts, thus by using
just the linear graph it influences a new node every k steps. u2 influences all nodes apart from un
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at time k and then at time 2k it also influences un. All other nodes do a shortcut to u2 at time
k and then for all multiples of k their influences propagate to both directions from two sources,
themselves and u2, influencing 1 to 4 new nodes every k steps.

Next we show that the Kl(l+1)/2 (l := |past(u,t)(0)|) upper bound (of Theorem 11), on the time
for another incoming influence to arrive, is optimal in the following sense: a node cannot obtain
a better upper bound based solely on K and l. We establish this by showing that it is possible
that a new incoming influence needs Θ(Kl2) rounds to arrive, which excludes the possibility of a
o(Kl2)-bound to be correct as a protocol based on it may have nodes terminate without having
heard of arbitrarily many other nodes. This, additionally, constitutes a tight example for the bound
of Theorem 11.

Theorem 13 ([MCS14]). For all n, l,K s.t. n = Ω(Kl2), there is a dynamic graph with oit upper
bounded by K and a round r such that, a node that has heard of l nodes by round r does not hear
of another node for Θ(Kl2) rounds.

Proof. Consider the set past(u,t)(0) and denote its cardinality by l. Take any dynamic graph on
past(u,t)(0), disconnected from the rest of the nodes, that satisfies oit ≤ K and that all nodes
in past(u,t)(0) need Θ(Kl) rounds to causally influence all other nodes in past(u,t)(0); this could,
for example, be the alternating matchings graph from Section 5.1.1 with one matching appearing
in rounds that are odd multiples of K and the other in even. In Θ(Kl) rounds, say in round j,
some intermediary node v ∈ past(u,t)(0) must get the outgoing influences of nodes in past(u,t)(0)
outside past(u,t)(0) so that they continue to influence new nodes. Assume that in round j − 1 the
adversary directly connects all nodes in past(u,t)(0)\{v} to v. In this way, at time j, v forwards
outside past(u,t)(0) the (j − 2)-states (and all previous ones) of all nodes in past(u,t)(0). Provided
that V \past(u,t)(0) is sufficiently big (see below) the adversary can now keep S = past(u,t)(0)\{v}
disconnected from the rest of the nodes for another Θ(Kl) rounds (in fact, one round less this
time) without violating oit ≤ K as the new influences of the (j − 2)-states of nodes in S may
keep occurring outside S. The same process repeats by a new intermediary v2 ∈ S playing the
role of v this time. Each time the process repeats, in Θ(|S|) rounds the intermediary gets all
outgoing influences outside S and is then removed from S. It is straightforward to observe that a
new incoming influence needs Θ(Kl2) rounds to arrive at u in such a dynamic network. Moreover,
note that V \past(u,t)(0) should also satisfy oit ≤ K but this is easy to achieve by e.g. another
alternating matchings dynamic graph on V \past(u,t)(0) this time. Also, n − l = |V \past(u,t)(0)|
should satisfy n− l = Ω(Kl2)⇒ n = Ω(Kl2) so that the time needed for a w ∈ V \past(u,t)(0) (in
an alternating matchings dynamic graph on V \past(u,t)(0)) to influence all nodes in V \past(u,t)(0)
and start influencing nodes in past(u,t)(0) is asymptotically greater than the time needed for S to
extinct. To appreciate this, observe that if V \past(u,t)(0) was too small then the outgoing influences

of some w ∈ V \past(u,t)(0) that occur every K rounds would reach u before the Θ(Kl2) bound
was achieved. Finally, we note that whenever the number of nodes in V \S becomes odd we keep
the previous alternating matchings dynamic graph and the new node becomes connected every K
rounds to an arbitrary node (the same in every round). When |V \S| becomes even again we return
to a standard alternating matchings dynamic graph.

We now show that even the criterion of Theorem 10, that is optimal if an upper bound on the ct
is known, does not work in dynamic graphs with known an upper bound K on the oit. In particular,
we show that for all times t′ < K(n/4) there is a dynamic graph with oit upper bounded by K, a
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node u, and a time t ∈ IN s.t. past(u,t)(0) = past(u,t)(t
′) while past(u,t)(0) 6= V . In words, for any

such t′ it can be the case that while u has not been yet causally influenced by all initial states its
past set from time 0 may become equal to its past set from time t′, which violates the termination
criterion of Theorem 10.

Theorem 14 ([MCS14]). For all n,K and all times t′ < K(n/4) there is a dynamic graph
with oit upper bounded by K, a node u, and a time t > t′ s.t. past(u,t)(0) = past(u,t)(t

′) while
past(u,t)(0) 6= V .

Proof. For simplicity assume that n is a multiple of 4. As in Proposition 4 (ii), by an alternating
matchings dynamic graph, we can keep two parts V1, V2 of the network, of size n/2 each, discon-
nected up to time K(n/4). Let u ∈ V1. At any time t, s.t. t′ < t ≤ K(n/4), the adversary directly
connects u ∈ V1 to all w ∈ V1. Clearly, at that time, u learns the t′-states (and thus also the
0-states) of all nodes in V1 and, due to the disconnectivity of V1 and V2 up to time K(n/4), u
hears (and has heard up to then) of no node from V2. It follows that past(u,t)(0) = past(u,t)(t

′) and
|past(u,t)(0)| = n/2⇒ past(u,t)(0) 6= V as required.

5.3.3 Hearing the Future In contrast to the previous negative results, we now present an
optimal protocol for counting and all-to-all dissemination in dynamic networks with known an
upper bound K on the oit, that is based on the following termination criterion. By definition of
oit, if future(u,0)(t) = future(u,0)(t + K) then future(u,0)(t) = V . The reason is that if there exist
uninfluenced nodes, then at least one such node must be influenced in at most K rounds, otherwise
no such node exists and (u, 0) must have already influenced all nodes (see also Figure 4). So, a
fundamental goal is to allow a node to know its future set. Note that this criterion has a very
basic difference from all termination criteria that have so far been applied to worst-case dynamic
networks: instead of keeping track of its past set(s) and waiting for new incoming influences a
node now directly keeps track of its future set and is informed by other nodes of its progress. We
assume, for simplicity, a unique leader ` in the initial configuration of the system (this is not a
necessary assumption and we will soon show how it can be dropped).

u

[t, t+K]

future(u,0)(t)

Fig. 4. If there are still nodes that have not heard from u, then if K is an upper bound on the oit, in at most K
rounds another node will hear from u (by definition of the oit).
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Protocol Hear from known. We denote by r the current round. Each node u keeps a list Influ
in which it keeps track of all nodes that first heard of (`, 0) (the initial state of the leader) by u (u
was between those nodes that first delivered (`, 0) to nodes in Influ), a set Au in which it keeps
track of the Inflv sets that it is aware of initially set to (u, Influ, 1), and a variable timestamp
initially set to 1. Each node u broadcast in every round (u,Au) and if it has heard of (`, 0) also
broadcasts (`, 0). Upon reception of an id w that is not accompanied with (`, 0), a node u that
has already heard of (`, 0) adds (w, r) to Influ to recall that at round r it notified w of (`, 0)
(note that it is possible that other nodes also notify w of (`, 0) at the same time without u being
aware of them; all these nodes will write (w, r) in their lists). If it ever holds at a node u that
r > max(v 6=u,r′)∈Influ{r′} + K then u adds (u, r) in Influ (replacing any existing (u, t) ∈ Influ)
to denote the fact that r is the maximum known time until which u has performed no further
propagations of (`, 0). If at some round r a node u modifies its Influ set, it sets timestamp ← r.
In every round, a node u updates Au by storing in it the most recent (v, Inflv, timestamp) triple
of each node v that it has heard of so far (its own (u, Influ, timestamp) inclusive), where the
“most recent” triple of a node v is the one with the greatest timestamp between those whose first
component is v. Moreover, u clears multiple (w, r) records from the Inflv lists of Au. In particular,
it keeps (w, r) only in the Inflv list of the node v with the smallest id between those that share
(w, r). Similarly, the leader collects all (v, Inflv, timestamp) triples in its own A` set. Let tmax
denote the maximum timestamp appearing in Al, that is the maximum time for which the leader
knows that some node was influenced by (`, 0) at that time. Moreover denote by I the set of nodes
that the leader knows to have been influenced by (`, 0). Note that I can be extracted from A` by
I = {v ∈ V : ∃u ∈ V , ∃timestamp, r ∈ IN s.t. (u, Influ, timestamp) ∈ A` and (v, r) ∈ Influ}.
If at some round r it holds at the leader that for all u ∈ I there is a (u, Influ, timestamp) ∈ A`
s.t. timestamp ≥ tmax + K and max(w 6=u,r′)∈Influ{r′} ≤ tmax then the leader outputs |I| or I
depending on whether counting or all-to-all dissemination needs to be solved and halts (it can also
easily notify the other nodes to do the same in K · |I| rounds by a simple flooding mechanism and
then halt).

The above protocol can be easily made to work without the assumption of a unique leader. The
idea is to have all nodes begin as leaders and make all nodes prefer the leader with the smallest id
that they have heard of so far. In particular, we can have each node keep an Infl(u,v) only for the
smallest v that it has heard of so far. Clearly, in O(D) rounds all nodes will have converged to the
node with the smallest id in the network.

Theorem 15 ([MCS14]). Protocol Hear from known solves counting and all-to-all dissemination
in O(D +K) rounds by using messages of size O(n(logK + log n)), in any dynamic network with
dynamic diameter D, and with oit upper bounded by some K known to the nodes.

Proof. In time equal to the dynamic diameter D, all nodes must have heard of `. Then in another
D+K rounds all nodes must have reported to the leader all the direct outgoing influences that they
performed up to time D (nodes that first heard of ` by that time) together with the fact that they
managed to perform no new influences in the interval [D,D+K]. Thus by time 2D+K = O(D+K),
the leader knows all influences that were ever performed, so no node is missing from its I set, and
also knows that all these nodes for K consecutive rounds performed no further influence, thus
outputs |I| = n (for counting) or I = V (for all-to-all dissemination) and halts.

Can these termination conditions be satisfied while |I| < n, which would result in a wrong
decision? Thus, for the sake of contradiction, assume that tmax is the time of the latest influence
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that the leader is aware of, that |I| < n, and that all termination conditions are satisfied. The
argument is that if the termination conditions are satisfied then (i) I = future(`,0)(tmax), that is
the leader knows precisely those nodes that have been influenced by its initial state up to time
tmax. Clearly, I ⊆ future(`,0)(tmax) as every node in I has been influenced at most by time
tmax. We now show that additionally future(`,0)(tmax) ⊆ I. If future(`,0)(tmax)\I 6= ∅, then
there must exist some u ∈ I that has influenced a v ∈ future(`,0)(tmax)\I at most by time tmax
(this follows by observing that ` ∈ I and that all influence paths originate from `). But now
observe that when the termination conditions are satisfied, for each u ∈ I the leader knows a
timestampu ≥ tmax + K, thus the leader knows all influences that u has performed up to time
tmax and it should be aware of the fact that v ∈ future(`,0)(tmax), i.e. it should hold that v ∈ I,
which contradicts the fact that v ∈ future(`,0)(tmax)\I. (ii) The leader knows that in the interval
[tmax, tmax + K] no node in I = future(`,0)(tmax) performed a new influence. These result in
a contradiction as |future(`,0)(tmax)| = |I| < n and a new influence should have occurred in the
interval [tmax, tmax+K] (by the fact that the oit is upper bounded by K).

Optimality follows from the fact that a node u can know at time t that past(u,t)(0) = V only
if past(u,t)(K) = V . This means that u must have also heard of the K-states of all nodes, which
requires Θ(K+D) rounds in the worst case. If past(u,t)(K) 6= V , then it can be the case that there
is some v ∈ V \past(u,t)(K) s.t. u has heard v’s 0-state but not its K-state. Such a node could be a
neighbor of u at round 1 that then moved far away. Again, similarly to Theorem 10, we can have
arbitrarily many nodes to have no neighbor until time K (e.g. in the extreme case were oit is equal
to K) and then from time K onwards are only connected to node v. As u has not heard from the
K-state of v it also cannot have heard of the 0-state of arbitrarily many nodes.

An interesting improvement is to limit the size of the messages to O(log n) bits probably by pay-
ing some increase in time to termination. We almost achieve this by showing that an improvement
of the size of the messages to O(logD+ log n) bits is possible (note that O(logD) = O(logKn)) if
we have the leader initiate individual conversations with the nodes that it already knows to have
been influenced by its initial state. We have already successfully applied a similar technique in
Section 4. The protocol, that we call Talk to known, solves counting and all-to-all dissemination
in O(Dn2 + K) rounds by using messages of size O(logD + log n), in any dynamic network with
dynamic diameter D, and with oit upper bounded by some K known to the nodes.

We now describe the Talk to known protocol by assuming again for simplicity a unique leader
(this, again, is not a necessary assumption).

Protocol Talk to known. As in Hear from known, nodes that have been influenced by the initial
state of the leader (i.e. (`, 0)) constantly forward it and whenever a node v manages to deliver
it then it stores the id of the recipient node in its local Inflv set. Nodes send in each round
the time of the latest influence (i.e. the latest new influence of a node by (`, 0)), call it tmax,
that they know to have been performed so far. Whenever the leader hears of a greater tmax
than the one stored in its local memory it reinitializes the process of collecting its future set. By
this we mean that it waits K rounds and then starts again from the beginning, talking to the
nodes that it has influenced itself, then to the nodes that were influenced by these nodes, and so
on. The goal is for the leader to collect precisely the same information as in Hear from known.
In particular, it sorts the nodes that it has influenced itself in ascending order of id and starts
with the smallest one, call it v, by initiating a talk(`, v, current round) message. All nodes for-
ward the most recent talk message (w.r.t. to their timestamp component) that they know so far.
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Upon receipt of a new talk(`, v, timestamp) message (the fact that it is “new” is recognized by
the timestamp), v starts sending Inflv to the leader in packets of size O(log n), for example a sin-
gle entry each time, via talk(v, `, current round, data packet) messages. When the leader receives a
talk(v, `, timestamp, data packet) message where data packet = END CONV (for “END of CON-
Versation”) it knows that it has successfully received the whole Inflv set and repeats the same
process for the next node that it knows to have been already influenced by (`, 0) (now also including
those that it learned from v). The termination criterion is the same as in Hear from known.

Theorem 16 ([MCS14]). Protocol Talk to known solves counting and all-to-all dissemination
in O(Dn2 + K) rounds by using messages of size O(logD + log n), in any dynamic network with
dynamic diameter D, and with oit upper bounded by some K known to the nodes.

Proof. Correctness follows from the correctness of the termination criterion proved in Theorem 15.
For the bit complexity we notice that the timestamps and tmax are of size O(logD) (which may
be O(logKn) in the worst case). The data packet and the id-components are all of size O(log n).
For the time complexity, clearly, in O(D) rounds the final outgoing influence of (`, 0) will have
occurred and thus the maximum tmax that will ever appear is obtained by some node. In another
O(D) rounds, the leader hears of that tmax and thus reinitializes the process of collecting its future
set. In that process and in the worst case the leader must talk to n − 1 nodes each believing that
it performed n − 1 deliveries (this is because in the worst case it can hold that any new node is
concurrently influenced by all nodes that were already influenced and in the end all nodes claim
that they have influenced all other nodes) thus, in total, it has to wait for O(n2) data packets
each taking O(D) rounds to arrive. The K in the bound is from the fact that the leader waits K
rounds after reinitializing in order to allow nodes to also report whether they performed any new
assignments in the [tmax, tmax+K] interval.

6 Local Communication Windows

We assume here an underlying communication network, which is modeled by an undirected simple
connected graph C = (V,A), where V is a set of nodes and A is a set of undirected edges. We
associate each u ∈ V with a finite integer cu ≥ 1, called u’s neighborhood cover time (or cover time
for simplicity), and let c ∈ INV be a vector of cover times indexed by nodes. We denote by N(u)
the neighborhood of node u in C, that is N(u) = {v ∈ V : {u, v} ∈ A}.

A dynamic graph G = (V,E) has now E : IN≥1 → P(A). We say that G respects a vector of cover
times c ∈ INV if for all r ∈ IN and all u ∈ V it holds that {v ∈ V : {u, v} ∈ ⋃r+cu−1

i=r E(i)} = N(u)
(or ≥ in case we would allow a node to possibly communicate outside its underlying neighborhood);
that is each node u must cover all its possible neighbors in any cu-window of the dynamic graph.
Note that again we do not require the instantaneous graphs to be connected. Nonetheless, it is not
hard to see that this definition guarantees that each node may eventually influence every other
node in the network. We are interested in protocols that are correct for all possible pairs (G, c),
where G is a dynamic graph that respects the vector of cover times c.

First note that if nodes do not know their cover times nor some upper bound on them, then
non-trivial halting computations are impossible. To see this, consider any protocol that terminates
in k steps on some dynamic graph G. Now augment G with some dynamic graph D that has its first
communication with G at time k + 1 and notice that termination on G occurs at time k without
any consideration of D.
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We focus on the case in which each node u knows its precise cover time cu. First of all, notice
that for all cover times c there is a dynamic graph that respects c, namely the static graph in which
E(r) = A for all r ∈ IN. However, not all cover times c admit a worst-case dynamic graph, that
is one in which for all u ∈ V there is an r ∈ IN such that |{v ∈ V : {u, v} ∈ ⋃r+cu−2

i=r E(i)}| <
|N(u)|. It is not hard to see that a cover-time vector c admits a worst-case dynamic graph G iff
∀u ∈ V,∃v ∈ N(u) such that cv ≥ cu.

An interesting question is whether nodes can verify if a given vector of cover times admits a
worst-case dynamic graph. In fact, we want nodes to accept if all cover times are consistent and
fix inconsistent cover times otherwise. Let Cu be an upper bound on cu. Each node u must check
whether there is some v ∈ N(u) such that Cv ≥ Cu. u broadcasts Cu for Cu rounds. If Cv < Cu for
all v ∈ N(u), then u sets Cu to maxv∈N(u){Cv}, otherwise it accepts.

We now deal with the problem of information dissemination and counting and present a protocol
for the latter problem.

Let u = u0, u1, . . . , uk = v be a simple path p joining nodes u, v. The worst case time for u
to influence v by messages traversing p is l(p) =

∑k−1
i=1 min{cui , cui+1} (called length or maximum

delay). Extend l as l(u, v) = minp∈P (u,v) l(p), where P (u, v) is the set of all simple paths joining
u, v. In the dynamic networks under consideration we have that the dynamic diameter is D =
maxu,v∈V l(u, v). It is obvious that if all nodes knew some upper bound H ≥ D then each node
could halt after H rounds knowing that it has influenced and been influenced by all other nodes.
A natural question is whether nodes can achieve this without knowing D in advance. For example,
is there a terminating algorithm for counting (i.e. for computing n) if nodes only know their exact
cover times? In the sequel, we answer this question in the affirmative.

Let

– psum(u,t′)(t) :=
∑

v∈past(u,t′)(t)
cv, and

– fsum(u,t)(t
′) :=

∑
v∈future(u,t)(t′) cv.

Lemma 5. For all times t, t′ such that t ≤ t′, all nodes u, v, and all k ≥ 1, if v ∈ past(u,t′)(t) for
all E then v ∈ past(u,t′+k)(t+ k).

Proof. Take any v ∈ past(u,t′)(t). To show that v ∈ past(u,t′+k)(t+k) we notice that for any dynamic
edge function E′ there exists E such that E′(r + k) = E(r) for all t ≤ r ≤ t′. ut

Lemma 6. past(u,t)(0) ⊆ past(u,psum(u,t)(0)−cv)(0).

Proof. We show that v ∈ past(u,t)(0) implies v ∈ past(u,psum(u,t)(0)−cv)(0). The time-node (v, 0) has

influenced (u, t) via a simple path p that only visits nodes from past(u,t)(0) since (v, 0) (w, j) 
(u, t) for any intermediate node w implies w ∈ past(u,t)(0); to see this note that (w, 0)  (w, j)

for all j ≥ 0. Clearly, the longest such path p′ is a path that is hamiltonian in C[past(u,t)(0)] 8

beginning from u and ending at v. Since l(p) ≤ l(p′) ≤ psum(u,t)(0) − cv and (v, 0)  (u, l(p)) it
also holds that (v, 0) (u,psum(u,t)(0)− cv) or equivalently v ∈ past(u,psum(u,t)(0)−cv)(0). ut

Lemma 7. For all nodes u ∈ V and times t ≥ 0 we have:

1. |past(u,psum(u,t)(0))
(0)| ≥ min{|past(u,t)(0)|+ 1, n} and

2. |future(u,0)(fsum(u,0)(t))| ≥ min{|future(u,0)(t)|+ 1, n}.
8 We denote by G[V ′] the subgraph of a graph G induced by nodes in V ′.
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Proof. We only prove the first statement since the second is symmetric. The only interesting
case is when |past(u,t)(0)| < n in which case there exists w ∈ V \past(u,t)(0). By Lemma 6,
past(u,t)(0) ⊆ past(u,psum(u,t)(0)−cv)(0) ⊆ past(u,psum(u,t)(0))

(0). So we just need to show that there

is a w ∈ past(u,psum(u,t)(0))
(0)\past(u,t)(0). Connectivity ensures that there is some {w, v} ∈ A, for

w ∈ V \past(u,t)(0) and v ∈ past(u,t)(0). Clearly (w, 0) (v, cv). Since (v, 0) (u,psum(u,t)(0)−cv),
by Lemma 5 (v, cv)  (u, psum(u,t)(0)). Transitivity ensures that (w, 0)  (u,psum(u,t)(0)) and
w ∈ past(u,psum(u,t)(0))

(0). ut

Lemma 7 provides us with the following criterion for a node to detect when it has been causally
influenced by all other nodes: |past(u,psum(u,t)(0))

(0)| = |past(u,t)(0)| ⇒ |past(u,t)(0)| = V . That is,

at any time t, any new influence of the state of u by some initial state must occur at most by
time psum(u,t)(0). If this time elapses without any new influence then u knows that it has been
causally influenced by all other nodes. An easier to perform but equivalent test is the following:
t = psum(u,t)(0) ⇒ |past(u,psum(u,t)(0))

(0)| = |past(u,t)(0)| ⇒ |past(u,t)(0)| = V . In the following

proposition, we use the latter criterion to solve counting.

But first define an edge weight w(e) for each edge e ∈ A as w(e) := mincu, cv. We are then
guaranteed that an edge e appears at least once in every time interval of length w(e). This implies
that within time W :=

∑
e∈D(C)w(e), where D(C) is a diameter of C (that is within time equal

to the weighted diameter of C), everyone hears from everyone else and then another
∑

u∈V cu−W
rounds are needed for the nodes to know that they are done.

Proposition 6. Counting can be solved in O(
∑

u∈V cu) rounds using messages of size O(n log n+∑
u∈V cu).

Proof. Each node u maintains a set of UIDs Au, where initially Au(0) = {u}, and a vector cu[] of
cover times indexed by UIDS in Au, where initially cu = (cu). In each round r, u sends (Au, cu)
to all its current neighbors, stores in Au all received UIDs and, for each new UID v /∈ Au(r − 1),
u stores tv in cu. Moreover, nodes keep track of the round number. At the end of each round r, if
r =

∑
v∈Au(r)

cu[v] node u halts and outputs |Au|; otherwise, u continues on to the next round. ut

7 Conclusions

In this chapter, we discussed several recently introduced models and problems regarding com-
putational network analysis which we treated from a theoretical point of view. In Section 4, we
studied the fundamental naming and counting problems (and some variations) in networks that are
anonymous, unknown, and possibly dynamic. Network dynamicity was modeled by the 1-interval
connectivity model [KLO10], in which communication is synchronous and a (worst-case) adversary
chooses the edges of every round subject to the condition that each instance is connected. We first
focused on static networks with broadcast where we proved that, without a leader, counting is
impossible to solve and that naming is impossible to solve even with a leader and even if nodes
know n. These impossibilities carry over to dynamic networks as well. We also showed that a unique
leader suffices in order to solve counting in linear time. Then we focused on dynamic networks with
broadcast. We conjectureed that dynamicity renders nontrivial computation impossible. In view of
this, we allowed the nodes know an upper bound on the maximum degree that will ever appear and
showed that in this case the nodes can obtain an upper bound on n. Finally, we replaced broadcast
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with one-to-each, in which a node may send a different message to each of its neighbors. Interest-
ingly, this natural variation was proved to be computationally equivalent to a full-knowledge model,
in which unique names exist and the size of the network is known.

Then, in Section 5, we discussed the model of [MCS14], which was the first in the literature
to consider worst-case dynamic networks that are free of any connectivity assumption about their
instances. To enable a quantitative study we introduced some novel generic metrics that capture
the speed of information propagation in a dynamic network. We proved that fast dissemination
and computation are possible even under continuous disconnectivity. In particular, we presented
optimal termination conditions and protocols based on them for the fundamental counting and
all-to-all token dissemination problems.

There are many open problems and promising research directions related to the above findings.
We would like to achieve satisfactory lower and upper bounds for counting and information dis-
semination. Techniques from [HCAM12] or related ones may be applicable to achieve quick token
dissemination. It would be also important to refine the metrics proposed in this section so that they
become more informative. For example, the oit metric, in its present form, just counts the time
needed for another outgoing influence to occur. It would be useful to define a metric that counts
the number of new nodes that become influenced per round which would be more informative w.r.t.
the speed of information spreading. Note that in our work (and all previous work on the subject)
information dissemination is only guaranteed under continuous broadcasting. How can the number
of redundant transmissions be reduced in order to improve communication efficiency? Is there a
way to exploit visibility to this end? Does predictability help (i.e. some knowledge of the future)?
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