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Abstract. In this paper, we study a discrete system of entities residing
on a two-dimensional square grid. Each entity is modelled as a node
occupying a distinct cell of the grid. The set of all n nodes forms initially
a connected shape A. Entities are equipped with a linear-strength
pushing mechanism that can push a whole line of entities, from 1 to
n, in parallel in a single time-step. A target connected shape B is also
provided and the goal is to transform A into B via a sequence of line
movements. Existing models based on local movement of individual
nodes, such as rotating or sliding a single node, can be shown to be
special cases of the present model, therefore their (inefficient, Θ(n2))
universal transformations carry over. Our main goal is to investigate
whether the parallelism inherent in this new type of movement can be
exploited for efficient, i.e., sub-quadratic worst-case, transformations.
As a first step towards this, we restrict attention solely to centralised
transformations and leave the distributed case as a direction for future
research. Our results are positive. By focusing on the apparently hard
instance of transforming a diagonal A into a straight line B, we first
obtain transformations of time O(n

√
n) without and with preserving

the connectivity of the shape throughout the transformation. Then,
we further improve by providing two O(n logn)-time transformations
for this problem. By building upon these ideas, we first manage
to develop an O(n

√
n)-time universal transformation. Our main

result is then an O(n logn)-time universal transformation. We leave
as an interesting open problem a suspected Ω(n logn)-time lower bound.

The full version of the paper with all omitted details is
available on arXiv at: https://arxiv.org/abs/1904.12777.

1 Introduction

As a result of recent advances in components such as micro-sensors, electrome-
chanical actuators, and micro-controllers, a number of interesting systems are
now within reach. A prominent type of such systems concerns collections of
small robotic entities. Each individual robot is equipped with a number of ac-
tuation/sensing/communication/computation components that provide it with
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some autonomy; for instance, the ability to move locally and to communicate
with neighbouring robots. Still, individual local dynamics are uninteresting, and
individual computations are restricted due to limited computational power, re-
sources, and knowledge. What makes these systems interesting is the collec-
tive complexity of the population of devices. A number of fascinating recent
developments in this direction have demonstrated the feasibility and potential
of such collective robotic systems, where the scale can range from milli/micro
[BG15, GKR10, KCL+12, RCN14, YSS+07] down to nano [DDL+09, Rot06].

This progress has motivated the parallel development of a theory of such
systems. It has been already highlighted [MS18] that a formal theory (includ-
ing modelling, algorithms, and computability/complexity) is necessary for fur-
ther progress in systems. This is because theory can accurately predict the most
promising designs, suggest new ways to optimise them, by identifying the crucial
parameters and the interplay between them, and provide with those (centralised
or distributed) algorithmic solutions that are best suited for each given design
and task, coupled with provable guarantees on their performance. As a result, a
number of sub-areas of theoretical computer science have emerged such as mobile
and reconfigurable robotics [ABD+13, BKRT04, CFPS12, CKLWL09, DFSY15,
DDG+18, DGMRP06, DDG+14, DGR+15, DGR+16, DLFS+19, DLFP+18,
FPS12, KKM10, MSS19, SMO+18, YS10, YUY16, YSS+07], passively-mobile
systems [AAD+06, AAER07, MS16, MS18] including the theory of DNA
self-assembly [Dot12, RW00, Win98, WCG+13], and metamorphic systems
[DP04, DSY04a, DSY04b, NGY00, WWA04]; connections are even evident with
the theory of puzzles [BDF+19, Dem01, HD05]. A latest ongoing effort is to join
these theoretical forces and developments within the emerging area of “Algo-
rithmic Foundations of Programmable Matter” [FRRS16]. Programmable matter
refers to any type of matter that can algorithmically change its physical proper-
ties. “Algorithmically” means that the change (or transformation) is the result
of executing an underlying program.

In this paper, we embark from the model studied in [DP04, DSY04a, DSY04b,
MSS19], in which a number of spherical devices are given in the form of a (typi-
cally connected) shape A lying on a two-dimensional square grid, and the goal is
to transform A into a desired target shape B via a sequence of valid movements
of individual devices. In those papers, the considered mechanisms were the abil-
ity to rotate and slide a device over neighbouring devices (always through empty
space). We here consider an alternative (linear-strength) mechanism, by which
a line of one or more devices can translate by one position in a single time-step.

As our main goal is to determine whether the new movement under consider-
ation can in principle be exploited for sub-quadratic worst-case transformations,
we naturally restrict our attention to centralised transformations. We generally
allow the transformations to break connectivity, even though we also develop
some connectivity-preserving transformations on the way. Our main result is a
universal transformation of O(n log n) worst-case running time that is permitted
to break connectivity. Distributed transformations and connectivity-preserving
universal transformations are left as interesting future research directions.
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1.1 Our Approach

In [MSS19], it was proved that if the devices (called nodes from now on) are
equipped only with a rotation mechanism, then the decision problem of trans-
forming a connected shape A into a connected shape B is in P, and a constructive
characterisation of the (rich) class of pairs of shapes that are transformable to
each other was given. In the case of combined availability of rotation and sliding,
universality has been shown [DP04, MSS19], that is, any pair of connected shapes
are transformable into each other. Still, in these and related models, where in
any time step at most one node can move a single position in its local neighbour-
hood, it can be proved (see, for instance, [MSS19]) that there will be pairs of
shapes that require Ω(n2) steps to be transformed into each other. This follows
directly from the inherent “distance” between the two shapes and the fact that
this distance can be reduced by only a constant in every time step. An immediate
question is then “How can we come up with more efficient transformations?”

Two main alternatives have been explored in the literature in an attempt to
answer this question. One is to consider parallel time, meaning that the transfor-
mation algorithm can move more than one node (up to a linear number of nodes
if possible) in a single time step, such as transformations based on pipelining
[DSY04b, MSS19, RCN14]. The other approach is to consider more powerful
actuation mechanisms, that have the potential to reduce the inherent distance
faster than a constant per sequential time-step. Prominent examples in the lit-
erature are the linear-strength models of Aloupis et al. [ABD+13, ACD+08],
in which nodes are equipped with extend/contract arms and of Woods et al.
[WCG+13], in which a whole line of nodes can rotate around a single node (act-
ing as a linear-strength rotating arm). The present paper follows this approach,
by introducing and investigating a linear-strength model in which a node can
push a line of consecutive nodes one position (towards an empty cell) in a single
time-step.

In terms of transformability, our model can easily simulate the combined
rotation and sliding mechanisms of [DP04, MSS19] by restricting movements to
lines of length 1 (i.e., individual nodes). It follows that this model is also capable
of universal transformations, with a time complexity at most twice the worst-
case of those models, i.e., again O(n2). Naturally, our focus is set on exploring
ways to exploit the parallelism inherent in moving lines of larger length in order
to speed-up transformations and, if possible, to come up with a more efficient in
the worst case universal transformation. Further, as reversibility of movements
is still valid for any line movement in our model, we adopt the approach of
transforming any given shape A into a spanning line L (vertical or horizontal).
This is convenient, because if one shows that any shape A can transform fast
into a line L, then any pair of shapes A and B can then be transformed fast to
each other by first transforming fast A into L and then L into B by reversing
the fast transformation of B into L.

We start this investigation by identifying the diagonal shape D (which is
considered connected in our model and is very similar to the staircase worst-
case shape of [MSS19]) as a potential worst-case initial shape to be transformed
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into a line L. This intuition is supported by the O(n2) individual node distance
between the two shapes and by the initial unavailability of long line movements:
the transformation may move long lines whenever available, but has to pay first
a number of movements of small lines in order to construct longer lines. In this
benchmark (special) case, the trivial lower and upper bounds Ω(n) and O(n2),
respectively, hold.

First, we prove that by partitioning the diagonal into
√
n diagonal segments

of length
√
n each, we can first transform each segment in time quadratic in its

length into a straight line segment, then push all segments down to a “collec-
tion row” y0 in time O(n

√
n) and finally re-orient all line segments to form a

horizontal line in y0, paying a linear additive factor. Thus, this transformation
takes total time O(n

√
n), which constitutes our first improvement compared to

the Ω(n2) lower bound of [MSS19]. We then take this algorithmic idea one step
further, by developing two transformations building upon it, that can achieve
the same time-bound while preserving connectivity throughout their course: one
is based on folding segments and the other on extending them.

As the O(
√
n) length of uniform partitioning into segments is optimal for the

above type of transformation, we turn our attention into different approaches,
aiming at further reducing the running time of transformations. Allowing once
more to break connectivity, we develop an alternative transformation based on
successive doubling. The partitioning is again uniform for individual “phases”,
but different phases have different partitioning length. The transformation starts
from a minimal partitioning into n/2 lines of length 2, then matches them to
the closest neighbours via shortest paths to obtain a partitioning into n/4 lines
of length 4, and, continuing in the same way for log n phases, it maintains the
invariant of having n/2i individual lines in each phase i, for 1 ≤ i ≤ log n.
By proving that the cost of pairwise merging through shortest paths in each
phase is linear in n, we obtain that this approach transforms the diagonal into
a line in time O(n log n), thus yielding a substantial improvement. Observe that
the problem of transforming the diagonal into a line seems to involve solving
the same problem into smaller diagonal segments (in order to transform those
into corresponding line segments). Then, one may naturally wonder whether a
recursive approach could be applied in order to further reduce the running time.
We provide a negative answer to this, for the special case of uniform recursion
and at the same time obtain an alternative O(n log n) transformation for the
diagonal-to-line problem.

Our final aim is to generalise the ideas developed for the above benchmark
case in order to come up with equally efficient universal transformations. We suc-
cessfully generalise both the O(n

√
n) and the O(n log n) approaches, obtaining

universal transformations of worst-case running times O(n
√
n) and O(n log n),

respectively. We achieve this by enclosing the initial shape into a square bound-
ing box and then subdividing the box into square sub-boxes of appropriate di-
mension. For the O(n

√
n) bound, a single such partitioning into sub-boxes of

dimension
√
n turns out to be sufficient. For the O(n log n) bound we again em-

ploy a successive doubling approach through phases of an increasing dimension
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of the sub-boxes, that is, through a new partitioning in each phase. Therefore,
our ultimate theorem (followed by a constructive proof, providing the claimed
transformation) states that: “In this model, when connectivity need not neces-
sarily be preserved during the transformation, any pair of connected shapes A
and B can be transformed to each other in sequential time O(n log n)”.

Table 1 summarises the running times of all the transformations developed
in this paper.

Transformation Problem Running Time Lower Bound
DL-Partitioning Diagonal O(n

√
n) Ω(n)

DL-Doubling Diagonal O(n log n) Ω(n)
DL-Recursion Diagonal O(n log n) Ω(n)
DLC-Folding Diagonal Connected O(n

√
n) Ω(n)

DLC-Extending Diagonal Connected O(n
√
n) Ω(n)

U-Box-Partitioning Universal O(n
√
n) Ω(n)

U-Box-Doubling Universal O(n log n) Ω(n)

Table 1: A summary of our transformations and their corresponding worst-case
running times (the trivial lower bound is in all cases Ω(n)). The Diagonal, Diag-
onal Connected, and Universal problems correspond to the DiagonalToLine,
DiagonalToLineConnected, and UniversalTransformation problems,
respectively (being formally defined in Section 2).

Section 2 brings together all definitions and basic facts that are used through-
out the paper. In Section 3, we study the problem of transforming a diagonal
shape into a line, without and with connectivity preservation. Section 4 presents
our universal transformations. In Section 5 we conclude and discuss further re-
search directions that are opened by our work.

2 Preliminaries and Definitions

The transformations considered here run on a two-dimensional square grid. Each
cell of the grid possesses a unique location addressed by non-negative coordinates
(x, y), where x denotes columns and y indicates rows. A shape S is a set of n
nodes on the grid, where each individual node u ∈ S occupies a single cell
cell(u) = (xu, yu), therefore we may also refer to a node by the coordinates of
the cell that it occupies at a given time. Two distinct nodes (x1, y1), (x2, y2) are
neighbours (or adjacent) iff x2 − 1 ≤ x1 ≤ x2 + 1 and y2 − 1 ≤ y1 ≤ y2 + 1
(i.e., their cells are adjacent vertically, horizontally or diagonally). A shape S
is connected iff the graph defined by S and the above neighbouring relation on
S is connected. Throughout, n denotes the number of nodes in a shape under
consideration.
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A line, L ⊆ S, is defined by one or more consecutive nodes in a column or
row. That is, L = (x0, y0), (x1, y1), . . . , (xk, yk), for 0 ≤ k ≤ n, k ∈ Z, is a line iff
x0 = x1 = · · · = xk and |yk − y0| = k, or y0 = y1 = · · · = yk and |xk − x0| = k.
A line move, is an operation by which all nodes of a line L move together in a
single step, towards an empty cell adjacent to one of L’s endpoints. A line move
may also be referred to as step (or move or movement) and time is discrete and
measured in number of steps throughout. A move in this model is equivalent to
choosing a node u and a direction d ∈ {up, down, left, right} and moving u one
position in direction d. This will additionally push by one position the whole
line L of nodes in direction d, L (possibly empty) starting from a neighbour of
u in d and ending at the first empty cell.

More formally and in slightly different terms: A line L =
(x1, y), (x2, y), . . . , (xk, y) of length k, where 1 ≤ k ≤ n, can push all k
nodes rightwards in a single step to positions (x2, y), (x3, y), . . . , (xk+1, y) iff
there exists an empty cell to the right of L at (xk+1, y). The “down”, “left”,
and “up” movements are defined symmetrically, by rotating the whole system
90◦, 180◦, and 270◦ clockwise, respectively.

As already mentioned, we know that there are related settings in which any
pair of connected shapes A and B of the same order (“order” of a shape S
meaning the number of nodes of S throughout the paper) can be transformed
to each other while preserving the connectivity throughout the course of the
transformation.1 This, for example, has been proved for the case in which the
available movements to the nodes are rotation and sliding [DP04, MSS19]. It
can be shown that the model of [DP04, MSS19] is a special case of our model,
implying all transformations established there (with their running time at most
doubled, including universal transformations, are also valid transformations in
the present model).

Lemma 1. The minimum number of line moves by which a line of length k,
1 ≤ k ≤ n, can completely change its orientation2, is 2k − 2.

A property that typically facilitates the development of universal transfor-
mations, is reversibility of movements. To this end, we next show that line move-
ments are reversible.

Lemma 2 (Reversibility). Let (SI , SF ) be a pair of connected shapes of the
same number of nodes n. If SI → SF (“→” denoting “can be transformed to via
a sequence of line movements”) then SF → SI .

Definition 1 (Nice Shape). A connected shape S ∈ NICE if there exists a
central line LC ⊆ S, such that every node u ∈ S \ LC is connected to LC via a
line perpendicular to LC .

1 In this paper, whenever transforming into a target shape B, we allow any placement
of B on the grid, i.e., any shape B′ obtained from B through a sequence of rotations
and translations.

2 From vertical to horizontal and vice versa.
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Proposition 1. Let SNice be a nice shape and SL a straight line, both of the
same order n. Then SNice → SL (and SL → SNice) in O(n) steps.

We now formally define the problems to be considered in this paper.
DiagonalToLine. Given an initial connected diagonal line SD and a target
vertical or horizontal connected spanning line SL of the same order, transform
SD into SL, without necessarily preserving the connectivity during the transfor-
mation.
DiagonalToLineConnected. Restricted version of DiagonalToLine in
which connectivity must be preserved during the transformation.
UniversalTransformation. Give a general transformation, such that, for all
pairs of shapes (SI , SF ) of the same order, where SI is the initial shape and SF

the target shape, it will transform SI into SF , without necessarily preserving
connectivity during its course.

3 Transforming the Diagonal into a Line

We begin our study from the case in which the initial shape is a diagonal line
SD of order n. Our goal throughout the section is to transform SD into a span-
ning line SL, i.e., solve the DiagonalToLine and/or DiagonalToLineCon-
nected problems. We do this, because these problems seem to capture the
worst-case complexity of transformations in this model.

3.1 An O(n
√
n)-time Transformation

We start from DiagonalToLine (i.e., no requirement to preserve connectivity).
Our strategy (called DL-Partitioning) is as follows. We partition the diagonal
into equal segments, as in Figure 1 (a). Then in each segment, we perform
a trivial (inefficient, but enough for our purposes) line formation by moving
each node independently to the leftmost column in that segment(Figure 1 (b)),
which transforms all segments into lines (Figure 1 (c)). Then, we transfer each
line segment all the way down to the bottommost row of the diagonal SD, see
Figure 1 (d). Finally, we change the orientation of all line segments to form
the target spanning line (Figure 1 (e)). More formally, let SD be a diagonal,
occupying (x, y), (x+ 1, y + 1), . . . , (x+ n− 1, y + n− 1), such that x and y are
the leftmost column and the bottommost row of SD, respectively. SD is divided
into d

√
ne segments, l1, l2, . . . , ld

√
ne, each of length b

√
nc, apart possibly from

a single smaller one. Figure 1 (a) illustrates the case of integer
√
n and in what

follows, w.l.o.g., we present the case of integer
√
n for simplicity. This strategy

consists of three phases:
Phase 1: Transforms each diagonal segment l1, l2, . . . , l√n into a line segment.
Notice that segment lk, 1 ≤ k ≤

√
n, contains

√
n nodes occupying positions

(x+ hk, y+ hk), (x+ hk + 1, y+ hk + 1), . . . , (x+ hk +
√
n− 1, y+ hk +

√
n− 1),

for hk = n− k
√
n; see Figure 1 (b). Each of these nodes moves independently to

the leftmost column of lk, namely column x+ hk, and the new positions of the
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√
n√
n

√
n√
n

n
(x, y)

l√n

l√n−1

l2

l1

(a)

√
n

1
2
3

∆ =
√
n− 1

(i, j)

(b)

√
n

n

n−
√
n

l√n

l√n−1

l1
l2

(c)

y +
√
n− 1

y

y + n− 1

x x+
√
n− 1 x+ n− 1

(d)

y

x x+
√
n− 1 x+ n− 1

(e)

Fig. 1: (a) Dividing the diagonal into
√
n segments of length

√
n each (integer√

n case). (b) A closer view of a single segment, where 1, 2, 3, . . . ,
√
n−1 are the

required distances for the nodes to form a line segment at the leftmost column (of
the segment). (c) Each line segment is transformed into a line and transferred
towards the bottommost row of the shape, ending up as in (d). (e) All line
segments are turned into the bottommost row to form the target spanning line.

nodes become (x+hk, y+hk), (x+hk, y+hk + 1), . . . , (x+hk, y+hk +
√
n−1).

Due to symmetry, any segment follows the same procedure of gathering at its
bottommost row. By the end of Phase 1,

√
n vertical line segments have been

created (Figure 1 (c)).
Phase 2: Transfers all

√
n line segments from Phase 1 down to the bottommost

row y of the diagonal SD. Observe that line segment lk has to move distance hk
(see Figure 1 (d)).
Phase 3: Turns all

√
n line segments into the bottommost row y (Figure 1 (e)).

In particular, line lk will be occupying positions (x+hk, y), (x+hk+1, y), . . . , (x+
hk +

√
n− 1, y).

Theorem 1. Given an initial diagonal of n nodes, DL-Partitioning solves the
DiagonalToLine problem in O(n

√
n) steps.

Going one step further, we provide two O(n
√
n)-time transformations, DLC-

Folding and DLC-Extending, that additionally preserve connectivity of the shape
throughout the transformation.3

3 Due to space restrictions, these can be found in the full version of the paper.
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Theorem 2. Given an initial connected diagonal of n nodes, DLC-Folding and
DLC-Extending solve the DiagonalToLineConnected problem in O(n

√
n)

steps.

3.2 An O(n log n)-time Transformation

We now investigate another approach (called DL-Doubling) for DiagonalTo-
Line (i.e., without necessarily preserving connectivity). The main idea is as fol-
lows. The initial configuration can be viewed as n lines of length 1. We start (in
phases) to successively double the length of lines (while halving their number)
by matching them in pairs through shortest paths, until a single spanning line
remains. Let the lines existing in each phase be labelled 1, 2, 3, . . . from top-right
to bottom-left. In each phase, we shall distinguish two types of lines, free and
stationary, which correspond to the odd (1, 3, 5, . . .) and even (2, 4, 6, . . .) lines
from top-right to bottom-left, respectively. In any phase, only the free lines move,
while the stationary stay still. In particular, in phase i, every free line j moves
via a shortest path to merge with the next (top-right to bottom-left) stationary
line j + 1. This operation merges two lines of length k into a new line of length
2k residing at the column of the stationary line. In general, at the beginning of
every phase i, 1 ≤ i ≤ log n, there are n/2i−1 lines of length 2i−1 each. These
are interchangeably free and stationary, starting from a free top-right one, and
at distance 2i−1 from each other. The minimum number of steps by which any
free line of length ki, 1 ≤ ki ≤ n/2 can be merged with the stationary next to it
is roughly at most 4ki = 4 · 2i (by two applications of turning of Lemma 1). By
the end of phase i (as well as the beginning of phase i + 1), there will be n/2i

lines of length 2i each, at distances 2i from each other. The total cost for phase i
is obtained then by observing that each of n/2i free lines is paying at most 4 · 2i
to merge with the next stationary. Thus, the transformation performs a linear
number of steps in each of the log n phases. See Figure 2 for an illustration.

Lemma 3. By the end of phase i, for all 1 ≤ i ≤ log n, DL-Doubling has created
n/2i lines, each of length 2i, by performing O(n) steps in that phase.

Theorem 3. DL-Doubling transforms any diagonal SD of order n into a line
SL in O(n log n) steps.

An interesting observation for DiagonalToLine (i.e., without necessarily
preserving connectivity), is that the problem is essentially self-reducible. This
means that any transformation for the problem can be applied to smaller parts of
the diagonal, resulting in small lines, and then trying to merge those lines into
a single spanning line. An immediate question is then whether such recursive
transformations can improve upon the O(n log n) best upper bound established
so far. The extreme application of this idea is to employ a full uniform recur-
sion (call it DL-Recursion), where SD is first partitioned into two diagonals of
length n/2 each, and each of them is being transformed into a line of length
n/2, by recursively applying to them the same halving procedure. Finally, the
top-right half has to pay a total of at most 4(n/2) = 2n to merge with the
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n/2 free lines of length 1

n/2 stationary lines of length 1

Each free line moves ∆ = 1 to join

the colsest stationary line at phase 1

n/4 free lines of of length 2

n/4 stationary lines of length 2

n/8 free lines of of length 4

n/8 stationary lines of of length 4

Each free line moves ∆ = 3 to

the colsest stationary line at phase 2
After (logn− 2) phases

The final spanning line of n

1
2

3

n− 1
n

1
2
3

n− 1
n

Fig. 2: The process of the O(n log n)-time DL-Doubling. Nodes reside inside the
black and grey cells.

bottom-left half and form a single spanning line (and the same is being re-
cursively performed by smaller lines). By analysing the running time of such
a uniform recursion, we obtain that it is still O(n log n), partially suggesting
that recursive transformations might not be enough to improve upon O(n log n)
(also possibly because of an Ω(n log n) matching lower bound, which is left as
an open question). If we denote by Tk the total time needed to split and merge
lines of length k, then the recursion starts from 1 line incurring Tn and ends
up with n lines incurring T1. In particular, we analyse the recurrence relation:
Tn = 2Tn/2 + 2n = 2(2Tn/4 + n) + 2n = 4Tn/4 + 4n = 4(2Tn/8 + n/2) + 4n =

8Tn/8 + 6n = · · · = 2iTn/2i + 2i · n = · · · = 2lognTn/2log n + 2(log n)n =
n · T1 + 2n log n = n+ 2n log n = O(n log n), because T1 = 1.

Theorem 4. DL-Recursion transforms any diagonal SD of order n into a line
SL of the same order in O(n log n) steps.

4 Universal Transformations

4.1 An O(n
√
n)-time Universal Transformation

In this section, we develop a universal transformation, called U-Box-Partitioning,
which exploits line movements in order to transform any initial connected shape
SI into any target shape SF of the same order n, in O(n

√
n) steps. Due to

reversibility (Lemma 2), it is sufficient to show that any initial connected shape
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SI can be transformed into a spanning line (implying then that any pair of shapes
can be transformed to each other via the line and by reversing one of the two
transformations). We maintain our focus on transformations that are allowed to
break connectivity during their course. Observe that any initial connected shape
SI of order n can be enclosed in an appropriately positioned n×n square (called
a box ). Our universal transformation is divided into three phases:

Phase A: Partition the n×n box into
√
n×
√
n sub-boxes (n in total in order to

cover the whole n×n box). For each sub-box move all nodes in it down towards
the bottommost row of that sub-box as follows. Start filling in the bottommost
row from left to right, then if there is no more space continue to the next row
from left to right and so on until all nodes in the sub-box have been exhausted
(resulting in zero or more complete rows and at most one incomplete row).
Moving down is done via shortest paths (where in the worst case a node has to
move distance 2

√
n); see Figure 3.

Phase B: Choose one of the four length-n boundaries of the n × n box, say
w.l.o.g. the left boundary. This is where the spanning line will be formed. Then,
transfer every line via a shortest path to that boundary (incurring a maximum
distance of n−

√
n per line).

Phase C: Turn all lines (possibly consisting of more than one line on top of
each other), by a procedure similar to that of Figure 1 (e), to end up with a
spanning line of n nodes on the left boundary.

√
n = 6

√
n = 6

√
n = 6

√
n = 6

Fig. 3: An example of moving all nodes in a
√
n ×
√
n sub-box to fill in the

bottommost rows of the sub-box (Phase A).

Lemma 4. A connected shape SI of order n, occupies O(
√
n) sub-boxes.

Proof. It follows directly from Corollary 1, which states that for a given con-
nected shape SI of n nodes enclosed by a square box of size n×n and any uniform
partitioning of that box into sub-boxes of dimension d, then, it holds that SI

can occupy at most O(n
d ) sub-boxes. Here, U-Box-Partitioning is dividing the

n × n square box into
√
n ×
√
n sub-boxes of dimension d =

√
n, therefore, SI

can occupy at most n√
n

= O(
√
n) sub-boxes.

ut

Lemma 5. Starting from any connected shape SI of order n, Phases A and B
complete in O(n

√
n) steps each.
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Lemma 6. Consider any length-n boundary and n nodes forming k lines, where
1 ≤ k ≤ n, that are perpendicular to that boundary. Then, by line movements,
the k lines require at most O(n) steps to form a line of length n on that boundary.
This implies that Phase C is completed in O(n) steps.

Proof. See Figure 4. Observe that the k lines of n nodes are connected perpen-
dicularly to the length-n boundary via k nodes, where 1 ≤ k ≤ n. It means that
there are n− k nodes still waiting to be pushed into that boundary. According
to Lemma 1, each of the n−k nodes requires 2 steps to occupy the border, with
a total of 2(n − k) steps for all n − k nodes to completely fill up the boundary
of length n. Following that, U-Box-Partitioning pushes all k lines in a total t of
at most,

t = 2(n− k) = 2n− 2k

= O(n).

ut

length-n gathering boundary

∆ = n

l1
l2

lk

Fig. 4: The dashed line is a length-n gathering boundary of the n×n box, which
is connected perpendicularly to k lines of n nodes.

Lemma 7. U-Box-Partitioning transforms any connected shape SI into a
straight line SL of the same order n, in O(n

√
n) steps.

Putting Lemma 7 and reversibility (Lemma 2) together gives:

Theorem 5. For any pair of connected shapes SI and SF of the same order n,
U-Box-Partitioning can be used to transform SI into SF (and SF into SI) in
O(n
√
n) steps.

12



4.2 An O(n log n)-time Universal Transformation

We now present an alternative universal transformation, called U-Box-Doubling,
that transforms any pair of connected shapes, of the same order, to each other
in O(n log n) steps. Given a connected shape SI of order n, do the following.
Enclose SI into an arbitrary n × n box as in U-Box-Partitioning (Section 4.1).
For simplicity, we assume that n is a power of 2, but this assumption can be
dropped. Proceed in log n phases as follows: In every phase i, where 1 ≤ i ≤ log n,
partition the n× n box into 2i × 2i sub-boxes, disjoint and completely covering
the n × n box. Assume that from any phase i − 1, any 2i−1 × 2i−1 sub-box is
either empty or has its k, where 0 ≤ k ≤ 2i−1, bottommost rows completely
filled in with nodes, possibly followed by a single incomplete row on top of them
containing l, where 1 ≤ l < 2i−1, consecutive nodes that are left aligned on
that row. This case holds trivially for phase 1 and inductively for every phase.
That is, in odd phases, we assume that nodes fill in the leftmost columns of
boxes in a symmetric way. Every 2i × 2i sub-box (of phase i) consists of four
2i−1×2i−1 sub-boxes from phase i−1, each of which is either empty or occupied
as described above.

Consider the case where i is odd, thus, the nodes in the 2i−1×2i−1 sub-boxes
are bottom aligned. For every 2i× 2i sub-box, move each line from the previous
phase that resides in the sub-box to the left as many steps as required until that
row contains a single line of consecutive nodes, starting from the left boundary
of the sub-box, as shown in Figure 5 (a). With a linear procedure similar to
that of Lemma 6 (and of nice shapes), start filling in the columns of the 2i × 2i

sub-box from the leftmost column and continuing to the right. If an incomplete
column remains, push the nodes in it to the bottom of that column; see Figure
5 (b) for an example. The case of even i is symmetric, the only difference being
that the arrangement guarantee from i − 1 is left alignment on the columns of
the 2i−1 × 2i−1 sub-boxes and the result will be bottom alignment on the rows
of the 2i × 2i sub-boxes of the current phase. This completes the description of
the transformation. We first prove correctness:

(a) (b)

Fig. 5: (a) Pushing left in each 2i × 2i sub-box. (b) Cleaning the orientation by
aligning (filling) the leftmost columns.

Lemma 8. Starting from any connected shape SI of order n, U-Box-Doubling
forms by the end of phase log n a line of length n.

13



Proof. In phase log n, the procedure partitions into a single box, which is the
whole original n × n box. Independently of whether gathering will be on the
leftmost column or on the bottommost row of the box, as all n nodes are con-
tained in it, the outcome will be a single line of length n, vertical or horizontal,
respectively. ut

Now, we shall analyse the running time of U-Box-Doubling. To facilitate
exposition, we break this down into a number of lemmas.

Lemma 9. In every phase i, the “super-shape” formed by the occupied 2i × 2i

sub-boxes is connected.

Proof. By induction on the phase number i (starting from SI connected) and
the observation that a sub-box is occupied iff any of its own sub-boxes (of any
size) had ever been occupied, because nodes are not transferred between 2i × 2i

sub-boxes before phase i+ 1. ut

Lemma 10. Given that U-Box-Doubling starts from a connected shape SI of
order n, the number of occupied sub-boxes in any phase i is O( n

2i ).

Proof. First, observe that a 2i×2i sub-box of phase i is occupied in that phase iff
SI was originally going through that box. This follows from the fact that nodes
are not transferred by this transformation between 2i×2i sub-boxes before phase
i+ 1. Therefore, the 2i × 2i sub-boxes occupied in (any) phase i are exactly the
2i × 2i sub-boxes that the original shape SI would have occupied, thus, it is
sufficient to upper bound the number of 2i × 2i sub-boxes that a connected
shape of order n can occupy. Or equivalently, we shall lower bound the number
Nk of nodes needed to occupy k sub-boxes.

In order to simplify the argument, whenever SI occupies another unoccupied
sub-box, we will award it a constant number of additional occupations for free
and only calculate the additional distance (in nodes) that the shape has to cover
in order to reach another unoccupied sub-box. In particular, pick any node of SI

and consider as freely occupied that sub-box and the 8 sub-boxes surrounding
it. Giving sub-boxes for free can only help the shape, therefore, any lower bound
established including the free sub-boxes will also hold for shapes that do not have
them (thus, for the original problem). Given that free boxes are surrounding the
current node, in order for SI to occupy another sub-box, at least one surrounding
2i × 2i sub-box must be exited. This requires covering a distance of at least 2i,
through a connected path of nodes. Once this happens, SI has just crossed the
boundary between an occupied sub-box and an unoccupied sub-box. Then, by
giving it for free at most 5 more unoccupied sub-boxes, SI has to pay another
2i nodes to occupy another unoccupied sub-box. We then continue applying this
5-for-free strategy until all n nodes have been used.

To sum up, the shape has been given 8 sub-boxes for free, and then for every
sub-box covered it has to pay 2i and gets 5 sub-boxes. Thus, to occupy k = 8+l·5
sub-boxes, at least l · 2i nodes are needed, that is, Nk ≥ l · 2i = k−8

5 · 2
i. But

shape SI has order n, which means that the number of nodes available is upper

14



bounded by n, i.e., Nk ≤ n, which gives k−8
5 · 2

i ≤ Nk ≤ n ⇒ k−8
5 · 2

i ≤ n ⇒
k−8
5 ≤ n

2i ⇒ k ≤ 5
(
n
2i

)
+ 8. We conclude that the number of 2i × 2i sub-boxes

that can be occupied by a connected shape SI , and, thus, also the number of
2i × 2i sub-boxes that are occupied by the transformation in phase i, is at most
5( n

2i ) + 8 = O( n
2i ). ut

As a corollary of this, we obtain:

Corollary 1. Given a uniform partitioning of n × n square box containing a
connected shape SI of order n into d× d sub-boxes, it holds that SI can occupy
at most O(n

d ) sub-boxes.

By using Lemma 10, we can then show that:

Lemma 11. Starting from any connected shape of n nodes, U-Box-Doubling
performs O(n log n) steps during its course.

Proof. We prove this by showing that in every phase i, 1 ≤ i ≤ log n, the
transformation performs at most a linear number of steps. We partition the
occupied 2i× 2i sub-boxes into two disjoint sets, B1 and B0, where sub-boxes in
B1 have at least 1 complete line (from the previous phase), i.e., a line of length
2i−1, and sub-boxes in B0 have 1 to 4 incomplete lines, i.e., lines of length
between 1 and 2i−1 − 1. For B1, we have that |B1| ≤ n

2i−1 . Moreover, for every
complete line, we pay at most 2i−1 to transfer it left or down, depending on the
parity of i. As there are at most n

2i−1 such complete lines in phase i, the total
cost for this is at most 2i · ( n

2i−1 ) = n.
Each sub-box in B1 may also have at most 4 incomplete lines from the pre-

vious phase, where at most two of them may have to pay a maximum of 2i−1 to
be transferred left or down, depending on the parity of i (as the other two are
already aligned). As there are at most n

2i−1 sub-boxes in B1, the total cost for
this is at most 2 · 2i−1 ·

(
n

2i−1

)
= 2n.

Therefore, the total cost for pushing all lines towards the required border in
B1 sub-boxes is at most n + 2n = 3n. For B0, we have (by Lemma 10) that
the total number of occupied sub-boxes in phase i is at most 5

(
n

2i−1

)
+ 8, then

|B0| ≤ 5
(

n
2i−1

)
+8 (taking into account also the worst case where every occupied

sub-box may be of type B0). There is again a maximum of 2 incomplete lines per
such sub-box that need to be transferred a distance of at most 2i−1, therefore,
the total cost for this to happen in every B0 sub-box is at most 2·2i−1(5· n2i +8) =
5n+8·2i ≤ 13n. By paying the above costs, all occupied sub-boxes have their lines
aligned horizontally to their left or vertically to their bottom border, and the final
task of the transformation for this phase is to apply a linear procedure in order
to fill in the left (bottom) border. This procedure costs at most 2k for every k
nodes aligned as above (Lemma 1), therefore, in total at most 2n. This completes
the operation of the transformation for phase i. Putting everything together, we
obtain that the total cost Ti, in steps, for phase i is Ti ≤ 3n+ 13n+ 2n = 18n.
As there is a total of log n phases, we conclude that the total cost T of the
transformation is T ≤ 18n · log n = O(n log n). ut
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Finally, Lemma 8, Lemma 11, and reversibility (Lemma 2) imply that:

Theorem 6. For any pair of connected shapes SI and SF of the same order n,
transformation U-Box-Doubling can be used to transform SI into SF (and SF

into SI) in O(n log n) steps.

5 Conclusions

In this work, we studied a new linear-strength model of line movements. The
nodes can now move in parallel by translating a line of any length by one position
in a single time-step. This model, having the model of [DP04, MSS19] as a special
case, adopts all its transformability results (including universal transformations).
Then, our focus naturally turned to investigating if pushing lines can help achieve
a substantial gain in performance (compared to the Θ(n2) of those models).
Even though it can be immediately observed that there are instances in which
this is the case (e.g., initial shapes in which there are many long lines, thus,
much initial parallelism to be exploited), it was not obvious that this holds also
for the worst case. By identifying the diagonal as a potentially worst-case shape
(essentially, because in it any parallelism to be exploited does not come for free),
we managed to first develop an O(n

√
n)-time transformation for transforming

the diagonal into a line, then to improve upon this by two transformations that
achieve the same bound while preserving connectivity, and finally to provide
an O(n log n)-time transformation (that breaks connectivity). Going one step
further, we developed two universal transformations that can transform any pair
of connected shapes to each other in time O(n

√
n) and O(n log n), respectively.

There is a number of interesting problems that are opened by this work. The
obvious first target (and apparently intriguing) is to answer whether there is an
o(n log n)-time transformation (e.g., linear) or whether there is an Ω(n log n)-
time lower bound matching our best transformations. We suspect the latter, but
do not have enough evidence to support or prove it. Moreover, we didn’t con-
sider parallel time in this paper. If more than one line can move in parallel in
a time-step, then are there variants of our transformations (or alternative ones)
that further reduce the running time? In other words, are there parallelisable
transformations in this model? In particular, it would be interesting to inves-
tigate whether the present model permits an O(log n) parallel time (universal)
transformation, i.e., matching the best transformation in the model of Aloupis
et al. [ACD+08]. It would also be worth studying in more depth the case in
which connectivity has to be preserved during the transformations. In the rele-
vant literature, a number of alternative types of grids have been considered, like
triangular (e.g., in [DDG+14]) and hexagonal (e.g., in [WWA04]), and it would
be interesting to investigate how our results translate there. Finally, an immedi-
ate next goal is to attempt to develop distributed versions of the transformations
provided here.
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