
Computational Models for Wireless Sensor Networks: A
Survey?

Apostolos Filippas2, Stavros Nikolaou2, Andreas Pavlogiannis2,
Othon Michail1,2, Ioannis Chatzigiannakis1,2, and Paul G. Spirakis1,2

1 Research Academic Computer Technology Institute (RACTI), Patras, Greece
2 Computer Engineering and Informatics Department (CEID), University of Patras, Patras, Greece. ??

Email:{filippas, snikolaou, paulogiann}@ceid.upatras.gr
{michailo, ichatz, spirakis}@cti.gr

Abstract

Here we survey various computational models for Wireless Sensor Networks (WSNs). The population
protocol model (PP) considers networks of tiny mobile finite-state artifacts that can sense the environment
and communicate in pairs to perform a computation. The mediated population protocol model (MPP)
enhances the previous model by allowing the communication links to have a constant size buffer, providing
more computational power. The graph decision MPP model (GDM) is a special case of MPP that focuses
on the MPP’s ability to decide graph properties of the network. Another direction towards enhancing the
PP is followed by the PALOMA model in which the artifacts are no longer finite-state automata but Turing
Machines of logarithmic memory in the population size. A different approach to modeling WSNs is the
static synchronous sensor field model (SSSF) which describes devices communicating through a fixed
communication graph and interacting with their environment via input and output data streams. In this
survey, we present the computational capabilities of each model and provide directions for further research.

Keywords: population protocols, wireless sensor networks, diffuse computation

1 Introduction

Given the emergence of pervasive computing Wireless Sensors Networks (WSNs) will
play an increasingly important role in future critical systems’ infrastructure and should
subsequently be correct, reliable and robust. Theoretical models for WSNs have re-
cently received great attention as they constitute an abstract but yet formal and precise
method for understanding the laws and inherent properties of this widely applicable
new technology. The population protocol (PP) model was designed to represent WSNs
consisting of severely limited mobile agents with no control over their own movement
that compute by direct pairwise interaction.

? This work has been partially supported by the ICT Programme of the European Union under contract
number ICT-258885 (SpitFIRE).

?? A. Filippas, S. Nikolaou, and A. Pavlogiannis are undergraduate students at the time of submission.

A reason towards studying extremely limited computational devices is that in real
WSNs application scenarios, having limited resources is inevitable as constraints on
each node’s size and cost translate into severe limitations in power, storage, processing
and communication. Another reason is that the minimalistic nature of the PP model
makes it a concrete and realistic model for WSNs and provides a starting point in the
understanding of their limitations and capabilities. Furthermore, while at a first glance
PPs may seem like they are only related to WSNs, applications in other fields exist and
are discussed in [Angluin, Aspnes, Diamadi, Fischer and Peralta (2006)]. For example,
PPs can be used in modeling collections of molecules undergoing chemical reactions. A
defining characteristic of the PPs that diversifies them from classic distributed systems
is the total inability of the agents to control or predict their underlying mobility pattern.
Their movement pattern is usually the result of some natural phenomenon, for example
river flow, wind, or sensors attached to some carrier, and is known as passive mobility.

However, the basic model may sometimes prove to be too minimalistic. The next
natural step is to enhance the PP model with realistic and implementable assumptions
in order to increase its computational power. First, in the MPP model the PP is extended
with a Mediator capable of storing limited information for each communication link.
Another extension is the PALOMA model, where agents are equipped with memory
logarithmic in the population size, enabling them to have unique ids. This assumption
extremely strengthens the model and is surprisingly natural: only 256 bits are required
for 2256 agents, which is an astronomical population size. Another model is the SSSF,
where mobility no longer holds. Agents operate synchronously and exchange streaming
data with their environment. In this way, SSSF can target sensing problems that require
constant communication with the environment.

2 The Population Protocol Model

2.1 Formal Definition

A Population Protocol (PP), proposed in [Angluin, Aspnes, Diamadi, Fischer and Per-
alta (2006)], consists of a finite set of states Q, finite input and output alphabets X
and Y , an input function I : X → Q mapping inputs to states, an output function
O : Q → Y mapping states to outputs, and a transition function δ : Q × Q → Q × Q
that describes how pairs of agents interact. If δ(p, q) = (p′, q′), we call (p, q)→ (p′, q′)
a transition and we define δ1(p, q) = p′ and δ2(p, q) = q′. If for all (p, q) ∈ Q2 there is
only one possible transition (p, q) 7→ (p′, q′), then the PP is deterministic.

A PP runs on a directed communication graph G = (V,E), where n = |V | is the
number of nodes, and therefore the population size, and m = |E| is the number of
edges. Intuitively, an edge (u, v) ∈ E means that u and v are able to interact with u

playing the role of the initiator and v being the responder. The distinct roles of the two
agents is a fundamental symmetry breaking assumption of the PP model.

A (population) configuration C : V → Q is a snapshot of the population states
and can be described by a vector of all of the agent states. Let C,C ′ be population
configurations and u, v be distinct agents. We say that C goes to C ′ via encounter
e = (u, v), denoted C e→ C ′, if C ′ is the result of the interaction of the pair (u, v) under
configuration C. We say that C goes to C ′ in one step, denoted C → C ′, if C e→ C ′

for some encounter e ∈ E. We write C ∗→ C ′ if there is a sequence of configurations
C = C0, C1, . . . , Cn = C ′, such that Ci → Ci+1 for all i, 0 ≤ i < n, in which case we
say that C ′ is reachable from C.

An execution is a finite or infinite sequence of configurations C0, C1, . . . where C0

is the initial configuration and Ci → Ci+1 for all i ≥ 0. The schedule of interactions
can be thought as being chosen by an adversarial scheduler, on whom a strong global
fairness condition is imposed. Intuitively, the scheduler cannot partition the agents into
non-communicating clusters by avoiding a single interaction forever. More formally, if
C occurs infinitely often in a fair execution and C → C ′, then C ′ also occurs infinitely
often in the execution. A computation is an infinite fair execution.

Two of the most critical properties of the PP model are its uniformity and anonymity.
A PP is uniform if its specification is independent of the population size. PPs are anony-
mous, as the agents are not equipped with unique identifiers and are treated in the same
way by the transition function.

2.2 Stable Computation

An input assignment x : V → X is a mapping describing the input of each agent
in the population. An output assignment y : V → Y is a mapping describing the
output of each agent. Let X = XV denote the set of all input assignments, Y = Y V

the set of all output assignments and C = QV the set of all possible configurations.
The input function is now naturally extended to a mapping from input assignments to
configurations, I : X → C, by writing I(x) = Cx. Similarly, the output function is
naturally extended to a mapping from configurations to output assignments, I : C → Y ,
by writing O(C) = yC .

Unlike a Turing Machine, a PP controlled by an infinitely working scheduler does
not halt but rather converges. For this reason, the notion of stability is introduced. A
configuration C is output-stable if O(C) = O(C ′) for all C ′ reachable from C. An
infinite computation output-stabilizes if it contains an output-stable configuration C, in
which case we say that it stabilizes to output y = O(C). A PPA running in a population
V stably computes an input-output relation RA if ∀x ∈ X ,∀y ∈ Y, RA(x, y) holds iff
there is a computation of A beginning in configuration I(x) that stabilizes to output y.

In the special case in which RA is single-valued, we write FA(x) = y and say that A
stably computes the partial function FA : X → Y .

A predicate is a function p : X → {0, 1} and is stably computable, if some PP sta-
bly computes it. A predicate p is symmetric if ∀x1, x2 ∈ X where x1 is a permutation
of x2’s symbols, it holds that p(x1) = p(x2). Because of the anonymity property and
the communication graph’s symmetry, the PP model can stably compute only symmet-
ric predicates. Semilinear predicates are predicates whose support is a semilinear set;
that is, a finite union of linear sets. A set of vectors in Nk is linear if it is of the form
{b+ l1a1+ l2a2+ ...+ lmam | li ∈ N}, where b is a base vector, ai are basis vectors and
li are non-negative coefficients. As proved in [Ginsburg and Spanier (1966)] , semilin-
ear predicates are precisely those that can be defined by first-order logical formulas in
Presburger arithmetic. Authors proved in [Angluin, Aspnes and Eisenstat (2006)], that a
predicate is stably computable by the basic PP model iff it is semilinear, thus providing
an exact characterization of the computational power of the model.

3 Mediated Population Protocols

Since the computational power of the basic PP model has been characterized com-
pletely, several extensions have been proposed in order to circumvent some of its funda-
mental restrictions. In [Chatzigiannakis et al. (2009b)], the authors considered the case
in which not only the agents but also the communication links are equipped with a buffer
of constant size. Intuitively, the interaction graph can then be seen as a distributed mem-
ory of size O(n+m) instead of just O(n), where m is the number of edges. However,
since the agent memory remains constant, this distributed memory is not easily manage-
able. Despite the inherent difficulties, the authors managed to address some problems
concerning graph properties, as well as compute predicates that are non-semilinear.

3.1 The MPP Model

The Mediated Population Protocol (MPP) model consists of the basic Population Pro-
tocol Model with the following extensions: a set of edge states S and the transition
function δ : Q×Q× S → Q×Q× S.

As in the PP model, the agents receive an input symbol and enter an initial state.
We also assume that the edges are initialized through an edge initialization function ι
which is not part of the protocol but models some preprocessing on the network that has
taken place before the protocol’s execution. The definition of a network configuration is
slightly modified to take into account the agent states as well as the edge states. Finally,
the notions of execution, fairness and stable computation remain unchanged.

3.2 Computation of a Non-Semilinear Predicate

Problem 1. Upon initialization, every agent receives an input symbol a, b or c. Let Nx

be the number of agents initialized with symbol x. Compute the predicateNc = Na ·Nb.

Note that on complete communication graphs the number of edges between agents with
input symbol a and agents with input symbol b is Na ·Nb. With that in mind it is easy
to devise a protocol that stably computes the multiplication predicate.

Assume that each agent receives an input symbol from X = {a, b, c} and enters
a special state qa, qb or qc. Moreover, we assume that each edge is either marked or
unmarked. Initially, all edges are unmarked. The computation goes as follows: when-
ever two agents with input symbols a and b interact via an unmarked edge, the a-agent
enters a special state ȧ. Being in this state, the agent will only interact with a c-agent in
order to mark it.

Due to the observation made above, a fair execution will lead all the a-agents in
the state ȧ exactly Na · Nb times in total. Each time an agent enters state ȧ it searches
for a c-agent to mark, while the ȧ-agent enters state a. If the predicate holds, such
markings will eventually leave agents neither in state c nor in state ȧ. In any other case,
some redundant c or ȧ states will always be present in the population (denoting that
Nc > Na ·Nb or Nc < Na ·Nb, respectively).

But how can the population determine whether no agent is either in state c or in
state ȧ? Notice that this is a semilinear predicate and thus can be stably computed by
a population protocol. So, the population can launch a simple protocol in parallel, and
determine the outcome of the computation of the multiplication predicate.

It is well known that the multiplication predicate is not semilinear, thus the MPP
model is strictly more powerful than the basic PP. To gain an upper bound in computabil-
ity one can easily construct a nondeterministic TM M of space O(m) that simulates an
MPP having m edges. Intuitively, M has to store a network configuration each time.
At each step a nondeterministic choice selects a pair of agents to interact, as well as
the edge between them, and updates the configuration appropriately. In order to accept,
M has to compute whether a configuration C in which all agents output 1 is reachable
from the initial configuration. Moreover, it needs to verify that no configuration C ′ is
reachable from C in which at least one agent changes its output. This condition is the
complement of a similar reachability problem. Since NSPACE is closed under com-
plement [Immerman (1988)],M can successfully verify this condition and thus simulate
the given MPP correctly. Whether this bound is tight remains an open problem.

4 GDM

The Graph Decision Mediated Population Protocol (GDM) model is a special case of
the MPP model concerned with graph languages. The following definition holds w.r.t.
some fixed graph universe U .

Definition 1. A graph language L is a subset of U containing communication graphs
that possibly share a common property.

Some examples of graph languages are: The graph language consisting of all strongly
connected members of U , L = {G ∈ U |G contains a directed hamiltonian path}, and
L = {G ∈ U |G has an even number of edges}.

In general, we are not just interested in recognizing whether a certain property holds
in a communication graph, but also obtaining a specific subgraph that satisfies that prop-
erty. In order to do that, the authors equipped the model with an output instruction r that
informs the output viewer on how to interpret the output. For example, if a problem had
to do with choosing some nodes, a protocol would mark those nodes and r would be:
Choose any marked node.

The authors in [Chatzigiannakis et al. (2009a)] showed that in order to compute
any non-trivial graph language, the network graph has to be weakly connected. Indeed,
communication graphs that are not even weakly connected consist of several weakly
connected components. Then any nontrivial property might hold in only some of them.
Since agents between different weakly connected components cannot interact, no uni-
form decision can be made.

With all the above in mind, we demonstrate the power of the GDM model by pre-
senting a protocol that computes a graph language.

4.1 A Simple Graph Protocol

Definition 2. Given a graph G = (V,E), a matching M in G is a set of pairwise
non-adjacent edges; that is, no two edges in M share a common vertex.

Problem 2. Given a graph G = (V,E), find a maximal matching; that is, a matching
M such that when any edge not in M is added in M , it is no longer a matching.

In Protocol 1 we present a simple approach to solve the Maximal Matching problem.
It is easy to verify that no two adjacent edges go to state 1, since the node that they

share can only take the q0 → q1 transition only once. Moreover, due to fairness, any
two agents in state q0 will eventually interact, thus, marking the shared edge as “1”.

Finally, in order to address more complicated problems, the authors have observed
that the class of graph languages that are stably computable by the GDM model is closed
under complement, union and intersection operations.

Protocol 1 Maximal Matching

1: X = {0}, Y = {0, 1}
2: Q = {q0, q1}, S = {0, 1}
3: I(0) = q0
4: ι(e) = 0, ∀e ∈ E.
5: r: “Get every e ∈ E for which se = 1 (where se is the state of e)”
6: δ(q0, q0, 0) → (q1, q1, 1)

5 Extending to Logarithmic Space

In [Chatzigiannakis et al. (2010)], the authors examined the case of equipping the agents
with read/write memory that is logarithmic in the size of the population. Notice that
this is the weakest assumption required to support unique ids across the population.
However, in order to preserve the anonymity constraint, all the agents must be identical,
thus no such ids could be present at the beginning of the computation. Despite this
restriction, the authors devised an algorithm that generates unique ids from scratch.

The PALOMA (standing for “PAssively-mobile LOgarithmic MAchines”) model
assumes that agents are Turing Machines of memory that is logarithmic in the size
of the population. An interaction between two agents results in the exchange of some
information that can be logarithmic in length. After this exchange has taken place, each
agent will process the information it has received. As this will usually take some time,
each agent is equipped with a working flag that indicates whether an agent is busy doing
internal computation, or waits for an interaction. When the working flag of an agent is
set, any interactions in which that agent is one of the participants are aborted.

As the agents now have enough memory to store unique ids, the authors exploited
the symmetry breaking property of the initiator-responder distinction and provided a
protocol that generates unique ids from scratch. Intuitively, at first all agents have the
same id, that is, 0. At each point, any interaction between agents that have the same id
will cause the id of the initiator to be incremented. Of course, the protocol itself cannot
detect the termination of the id generation process. However, it is easy to verify that this
process will eventually stabilize to a correct id-assignment when the agents having the
ids n− 2 will interact (we know that this will eventually happen because of the fairness
condition). Observe that at that point the agents are not only distinguishable, but also
aware of the size of the population n.

Having each agent associated with a unique id, the authors managed to simulate
a deterministic TM of space O(n log n). Moreover, by computation reinitiation tech-
niques and by exploiting the fairness condition the authors managed to simulate a non-
deterministic TM of the same space bounds. Finally, by applying some techniques pre-
sented in the case of the MPP model it is easy to verify that any PALOMA protocol can

be simulated by a nondeterministic TM of spaceO(n log n). This concludes the charac-
terization of the PALOMA computability: it is exactly the class of symmetric predicates
that are computed by a nondeterministic TM of space O(n log n).

6 The Sensor Field Model

The Static Synchronous Sensor Field (SSSF) is a recently proposed model [Alvarez et al.
(2009)] which addresses networks of tiny heterogeneous artifacts and allows processing
over constant flows (streams) of data originating from the environment. This feature is
not provided by the models presented so far and is required by various sensing problems.

The SSSF model consists of a set of devices and a communication graph G. The
devices come with the ability to send and receive streaming information to and from the
environment. The model permits however, the inclusion of devices with various con-
strains like for example absence of sensing capabilities or restricted memory capacity,
allowing heterogeneity in the network and breaking uniformity (in contrast with the PP
model). An additional assumption is that the devices are synchronized and in each round
they do the following: They receive data from the environment (items of alphabet U)
and their neighbors (items of alphabet X also called communication items) in G. Then
they apply the transition function (δk for each device k) on their current state (from the
set of states Qk) and input, updating their configuration. Finally they send data to their
neighbors and environment (items of V). It should be noted that the transition function
is not global as in the the models presented so far. Also note thatG is static, so that every
round a device interacts with the same neighboring devices in G. This differs from the
previously described models where arbitrary pairs of neighboring agents interact.

Each device k (w.l.o.g. from now on only devices with sensing capabilities are con-
sidered) is associated with a data stream wk. A data stream is a sequence of data items
wik for i ≥ 1 and each such item is received in round i by the device k as an input from
the environment. In contrast to the models described in other sections the devices in
SSSF receive and use environmental input constantly during the computation. Further-
more, in SSSF each device k outputs in each round i ≥ 1 a data item vik.

A computation in SSSF is an infinite sequence of snapshots of the devices’ network.
The first snapshot is a tuple of the initial states of all devices. Each subsequent snap-
shot represents one round t and includes the states of all devices as well as the inputs
and outputs (both environment and communication data items) of every device on that
round. The devices’ states in each snapshot corresponding to round t are produced by
application of the transition function δk for each device k on the states of the previous
snapshot (representing round t− 1) using the input data of the round.

Due to the streaming data exchange with the environment the computation of SSSF
is related to a stream behavior which associates the input streams of all devices to their

output streams. Note that both input and output streams concern the environment and
not the communication with neighboring devices. This association defines the function
fF that a SSSF F computes. Given a tuple of input data streams and an integer t ≥ 1,
fF outputs the data streams produced by the computation of F on the previous input
until round t. It is said that sensor field F computes function f (defined on data streams)
with latency d if given a tuple of input data streams, F outputs the t-th element of f for
the same input, on round t+ d.

A SSSF F solves a sensing problem Π if given a n-tuple of data streams u =
(uk)1≤k≤n as input, it computes a m-tuple v = (υk)1≤k≤m (where m ≤ n) so that the
relation RΠ defined by the problem Π , is satisfied between u and v. An example of
such problem is the Average Monitoring, studied in [Alvarez et al. (2009)], where given
n data streams (uk)1≤k≤n for n ≥ 1, n data streams (υk)1≤k≤n must be computed
so that each device k outputs in any round t the average of the input data values of
devices 1, . . . , k in t. Optimal algorithms have been proposed for the above problem
w.r.t. latency and other metrics, on certain topologies of G.

Although the basic SSSF model does not place any memory restrictions, it can be
easily adapted to support computation on memory-restricted devices. A variation of
SSSF called constant memory SSSF assumes that each device has constant-size memory
to store input data (originating from the environment and neighbors) and therefore only
a constant number of packets (chosen arbitrarily) can be received in each round whereas
sending packets can be done via a broadcast operation to all neighbors.

For each SSSF F a language L(F) is associated to its function fF including the
tuples of all input data items and their corresponding to fF outputs. It has been proven
[Alvarez et al. (2009)] that the languages associated to constant memory SSSFs belong
to the class DSPACE(n +m) where n is the number of devices and m the commu-
nication links. Finally, including additional non-sensing devices in G (since as stated
before SSSF is a non-uniform model) enables the solution of monitoring a property P
computable in polynomial time, using a constant memory SSSF of polynomial size and
latency w.r.t. the number of sensing devices n. Clearly, there is a trade-off between the
memory size of each device and the number of additional devices in G.

7 Conclusions - Future Research Directions

So far, we have presented some computational models for the field of wireless sensor
networks. Although most issues concerning the basic PP model have been closed, there
exists a wide area of open problems that constitute an interesting direction for future
work on the subject in general.

It is yet unknown whether the MPP model can take advantage of its whole memory
effectively. It seems that a careful manipulation of the graph edges could let us align the

agents to a single line, thus building the infrastructure of a TM. However, no such proof
is yet available.

It is also interesting to explore the computational power of populations equipped
with f(n) memory in general. Are there any thresholds of f(n) that define the behavior
of such populations? For example, it seems that when f(n) = Ω(log n), the simulation
of a TM of n · f(n) memory is possible. Does a space hierarchy theorem hold for sym-
metric predicates in these cases? And what is the computational power of populations
when f(n) = o(log n)?

Finally, the SSSF model is still young and there are many directions to explore. The
support of dynamic communication graphs which is a common scenario in real systems
or the potential need for creating and managing virtual topologies so that the static
communication graph analysis can be used, require both additional effort and study. The
energy consumption has not yet been considered although it is an important performance
measure and therefore an appropriate energy model would be an interesting feature to
import.

References

Alvarez, C., Duch, A., Gabarro, J. and Serna, M. (2009), Sensor field: A computational
model, in ‘Algorithmic Aspects of Wireless Sensor Networks’, pp. 3–14.

Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M. J. and Peralta, R. (2006), ‘Compu-
tation in networks of passively mobile finite-state sensors’, Distributed Computing
pp. 235–253.

Angluin, D., Aspnes, J. and Eisenstat, D. (2006), Stably computable predicates are semi-
linear, in ‘PODC ’06: Proceedings of the 25th annual ACM Symposium on Principles
of Distributed Computing’, ACM Press, New York, NY, USA, pp. 292–299.

Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A. and Spirakis, P. (2010),
Passively mobile communicating logarithmic space machines, Technical Report
FRONTS-TR-2010-16. http://fronts.cti.gr/aigaion/?TR=154.

Chatzigiannakis, I., Michail, O. and Spirakis, P. (2009a), Decidable graph languages
by mediated population protocols, in ‘23rd International Symposium on Distributed
Computing (DISC 2009)’, Vol. 5805 of LNCS, pp. 239–240.

Chatzigiannakis, I., Michail, O. and Spirakis, P. (2009b), Mediated population proto-
cols, in ‘36th International Colloquium on Automata, Languages and Programming
(ICALP 2009)’, Vol. 5556 of LNCS, pp. 363–374.

Ginsburg, S. and Spanier, E. H. (1966), ‘Semigroups, Presburger formulas, and lan-
guages.’, Pac. J. Math. 16, 285–296.

Immerman, N. (1988), ‘Nondeterministic space is closed under complementation’,
SIAM J. Comput. 17(5), 935–938.

