
All Symmetric Predicates in NSPACE(n2) are
Stably Computable by the Mediated Population

Protocol Model?

Ioannis Chatzigiannakis1,2, Othon Michail1,2, Stavros Nikolaou2,
Andreas Pavlogiannis2, and Paul G. Spirakis1,2

1 Research Academic Computer Technology Institute (RACTI), Patras, Greece
2 Computer Engineering and Informatics Department (CEID), University of Patras

Email: {ichatz, michailo, spirakis}@cti.gr,
{snikolaou, paulogiann}@ceid.upatras.gr

Abstract. This work focuses on the computational power of the Me-
diated Population Protocol model on complete communication graphs
and initially identical edges (SMPP). In particular, we investigate the
class MPS of all predicates that are stably computable by the SMPP
model. It is already known that MPS is in the symmetric subclass of
NSPACE(n2). Here we prove that this inclusion holds with equality,
thus, providing the following exact characterization for MPS: A predi-
cate is in MPS iff it is symmetric and is in NSPACE(n2).

1 Introduction - Population Protocols

Theoretical models for Wireless Sensor Networks (WSNs) have received great
attention recently, mainly because they constitute an abstract but yet formal and
precise method for understanding the limitations and capabilities of this widely
applicable new technology. The Population Protocol model [1] was designed to
represent a special category of WSNs which is mainly identified by two distinctive
characteristics: each sensor node is an extremely limited computational device
and all nodes move according to some mobility pattern over which they have
totally no control.

One reason for studying extremely limited computational devices is that in
many real WSNs’ application scenarios having limited resources is inevitable.
For example, power supply limitations may render strong computational devices
useless due to short lifetime. In other applications, mote’s size is an important
constraint that thoroughly determines the computational limitations. The other
reason is that the population protocol model constitutes the starting point of
a brand new area of research and in order to provide a clear understanding
and foundation of the laws and the inherent properties of the studied systems
it ought to be minimalistic. In terms of computational characterization each

? This work has been partially supported by the ICT Programme of the European
Union under contract number ICT-2008-215270 (FRONTS).

node is simply a finite-state machine additionally equipped with sensing and
communication capabilities and is usually called an agent. A population is the
collection of all agents that constitute the distributed computational system.

The prominent characteristic that diversifies population protocols from clas-
sical distributed systems is the total inability of the computational devices to
control or predict their underlying mobility pattern. Their movement is usually
the result of some unstable environment, like water flow or wind, or the natural
mobility of their carriers, and is known as passive mobility. The agents interact
in pairs and are absolutely incapable of knowing the next pair in the interaction
sequence. This inherent nondeterminism of the interaction pattern is modeled
by an adversary whose job is to select interactions. The adversary is a black-box
and the only restriction imposed is that it has to be fair so that it does not for-
ever partition the population into non-communicating clusters and guaranteeing
that interactions cannot follow some inconvenient periodicity.

As expected, due to the minimalistic nature of the population protocol model,
the class of computable predicates was proven [1, 2] to be fairly small: it is the
class of semilinear predicates, or, equivalently, all predicates definable by first-
order logical formulas in Presburger arithmetic [10], which does not include mul-
tiplication of variables, exponentiations, and many other important and natural
operations on input variables. Moreover, Delporte-Gallet et al. [9] showed that
population protocols can tolerate only O(1) crash failures and not even a single
Byzantine agent.

2 Enhancing the Model

The next big step is naturally to strengthen the population protocol model with
extra realistic and implementable assumptions, in order to gain more compu-
tational power and/or speed-up the time to convergence and/or improve fault-
tolerance. Several promising attempts have appeared towards this direction. In
each case, the model enhancement is accompanied by a logical question: What
is exactly the class of predicates computable by the new model?

An interesting extension was the Community Protocol model of Guerraoui
and Ruppert [11] in which the agents have read-only industrial unique ids picked
from an infinite set of ids. Moreover, each agent can store up to a constant
number of other agents’ ids. In this model, agents are only allowed to compare
ids, that is, no other operation on ids is permitted. The community protocol
model was proven to be extremely strong: the corresponding class consists of
all symmetric predicates in NSPACE(n log n). It was additionally shown that
if faults cannot alter the unique ids and if some necessary preconditions are
satisfied, then community protocols can tolerate O(1) Byzantine agents.

The Passively mobile Machines (PM) model [5] made the assumption that
each agent is a Turing Machine and defined PALOMA protocols as those pro-
tocols that use in every agent space that is bounded by a logarithm in the
population size. Interestingly, it turned out that the agents are able to assign
unique consecutive ids to themselves, get informed of the population size and,

by exploiting these, organize themselves into a distributed Nondeterministic TM
(NTM) that makes full use of the agents’ memories. The TM draws its nonde-
terminism by the nondeterminism inherent in the interaction pattern. The main
result of that work was an exact characterization for the class PLM , of all pred-
icates that are stably computable by PALOMA protocols: it is again precisely
the class of all symmetric predicates in NSPACE(n log n).

3 Our Results - Roadmap

This work focuses on the computational power of another extension of the popu-
lation protocol model that was proposed in [7] (see also [8] and [6]) and is called
the Mediated Population Protocol (MPP) model. The main additional feature
in comparison to the population protocol model is that each link (u, υ) can be
thought of as being itself an agent that only participates in the interaction (u, υ).
The agents u and υ can exploit this joint memory to store pairwise information
and to have it available during some future interaction. Another way to think of
this system is that agents store pairwise information into some global storage,
like, e.g., a base station, called the mediator, that provides a small fixed slot to
each pair of agents. Interacting agents communicate with the mediator to read
and update their collective information.

From [7] we know that the MPP model is strictly stronger than the popula-
tion protocol model since it can compute a non-semilinear predicate. Moreover,
we know that any predicate that is stably computable by the MPP model is
also in NSPACE(n2). In this work, we show that, for complete graphs, this in-
clusion holds with equality, thus, providing the following exact characterization
for the computational power of the MPP model in the fully symmetric case: A
predicate is stably computable by the MPP model iff it is symmetric and is in
NSPACE(n2). We show in this manner that the MPP model is surprisingly
strong.

In section 4, we give a formal definition of the MPP model and introduce a
special class of graphs (the correctly labeled line graphs) that comes up in our
proof later on. Section 5 holds the actual proof. In particular, Subsection 5.1
presents some basic ideas that help us establish a first inclusion. In Subsection
5.2, we show how to extend these ideas in order to prove our actual statement.

4 The Mediated Population Protocol Model

4.1 Formal Definition

A Mediated Population Protocol (MPP) is a 7-tuple (X, Y, Q, S, I,O, δ), where
X, Y , Q, and S are all finite sets and X is the input alphabet, Y is the output
alphabet, Q is the set of agent states, S is the set of edge states, I : X → Q is the
input function, O : Q → Y is the output function, and δ : Q×Q×S → Q×Q×S
is the transition function. If δ(a, b, c) = (a′, b′, c′), we call (a, b, c) → (a′, b′, c′) a
transition, and we define δ1(a, b, c) = a′, δ2(a, b, c) = b′ and δ3(a, b, c) = c′.

An MPP A runs on the nodes of a communication graph G = (V, E), which
is directed without self-loops and multiple edges. V is the population, consisting
of n ≡ |V | agents. E is the set of permissible interactions between the agents.

In the most general setting, each agent initially senses its environment, as a
response to a global start signal, and receives an input symbol from X. Then
all agents apply the input function to their input symbols and obtain their
initial state. Each edge is initially in one state from S as specified by some
edge initialization function ι : E → S, which is not part of the protocol but
generally models some preprocessing on the network that has taken place before
the protocol’s execution.

A network configuration, or simply a configuration, is a mapping C : V ∪E →
Q ∪ S specifying the state of each agent in the population and each edge in
the set of permissible interactions. Let C and C ′ be configurations, and let
u, υ be distinct agents. We say that C goes to C ′ via encounter e = (u, υ),
denoted C

e→ C ′, if C ′(u) = δ1(C(u), C(υ), C(e)), C ′(υ) = δ2(C(u), C(υ), C(e)),
C ′(e) = δ3(C(u), C(υ), C(e)), and C ′(z) = C(z) for all z ∈ (V −{u, υ})∪(E−e).
We say that C can go to C ′ in one step, denoted C → C ′, if C

e→ C ′ for some
encounter e ∈ E. We write C

∗→ C ′ if there is a sequence of configurations
C = C0, C1, . . . , Ct = C ′, such that Ci → Ci+1 for all i, 0 ≤ i < t, in which case
we say that C ′ is reachable from C.

An execution is a finite or infinite sequence of configurations C0, C1, C2, . . .,
where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. We have both
finite and infinite kinds of executions since the adversary scheduler may stop after
a finite number of steps or continue selecting pairs forever. Moreover, a strong
global fairness condition is imposed on the adversary to ensure the protocol
makes progress. An infinite execution is fair if for every pair of configurations
C and C ′ such that C → C ′, if C occurs infinitely often in the execution then
so does C ′. A computation is an infinite fair execution. An interaction between
two agents is called effective if at least one of the initiator’s, the responder’s,
and the edge’s states is modified (that is, if C, C ′ are the configurations before
and after the interaction, respectively, then C ′ 6= C).

4.2 Stable Computation

Throughout this work we assume that the communication graph is complete and
that all edges are initially in a common state s0, that is, ι(e) = s0 for all e ∈ E.
Call this for sake of simplicity the SMPP model (‘S’ standing for “Symmetric”).
An SMPP may run on any such communication graph G = (V, E), where n ≥ 2,
and its input (also called an input assignment) is any x = σ1σ2 . . . σn ∈ X≥2 =
{x ∈ X∗ | |x| ≥ 2}. In particular, by assuming an ordering over V , the input to
agent i is the symbol σi, for all i ∈ {1, 2, . . . , n}. Let p : X≥2 → {0, 1} be any
predicate over X≥2. p is called symmetric if for every x ∈ X≥2 and any x′ which
is a permutation of x’s symbols, it holds that p(x) = p(x′) (in words, permuting
the input symbols does not affect the predicate’s outcome). Any language L ⊆
X≥2 corresponds to a unique predicate pL defined as pL(x) = 1 iff x ∈ L. Such a

language is symmetric iff pL is symmetric. Due to this bijection we use the term
symmetric predicate for both predicates and languages.

Like population protocols, MPPs do not halt. Instead a protocol is required
to stabilize, in the sense that it reaches a point after which the output of every
agent will remain unchanged. A predicate p over X≥2 is said to be stably com-
putable by the SMPP model, if there exists an SMPP A such that for any input
assignment x ∈ X≥2, any computation of A on the complete communication
graph of |x| nodes beginning from the initial configuration corresponding to x
reaches a configuration after which all agents forever output p(x).

Let MPS (standing for “Mediated Predicates in the fully Symmetric case”)
be the class of all stably computable predicates by the SMPP model. Note that
all predicates in MPS have to be symmetric because the communication graph
is complete and all edges are initially in the same state. Let SSPACE(f(n))
and SNSPACE(f(n)) be SPACE(f(n))’s and NSPACE(f(n))’s restrictions
to symmetric predicates, respectively.

4.3 Correctly Labeled Line Graphs

Let G = (V, E) be a communication graph. A line (di)graph L = (K, A) is either
an isolated node (that is, |K| = 1 and A = ∅), which is the trivial line graph, or
a tree such that, if we ignore the directions of the links, two nodes have degree
one and all other nodes have degree two. A line subgraph of G is a line graph
L ⊆ G and is called spanning if K = V . Let d(u) denote the degree of u ∈ K
w.r.t. to A. Let Cl(t) denote the label component of the state of t ∈ V ∪E under
configuration C (in the beginning, we call it state for simplicity).

We say that a line subgraph of G is correctly labeled under configuration C,
if it is trivial and its state is l with no active edges incident to it or if it is
non-trivial and all the following conditions are satisfied:

1. Assume that u, υ ∈ K and d(u) = d(υ) = 1. These are the only nodes in
K with degree 1. Then one of u and υ is in state kt (non-leader or right
endpoint) and the other is either in state lt or in state lh (leader or left
endpoint). The unique eu ∈ A incident to u, where u is w.l.o.g. in state
kt, is an outgoing edge and the unique eυ ∈ A incident to υ is outgoing if
Cl(υ) = lt and incoming if Cl(υ) = lh.

2. For all w ∈ K − {u, υ} (internal nodes) it holds that Cl(w) = k.
3. For all a ∈ A it holds that Cl(a) ∈ {p, i} and for all e ∈ E − A such that e

is incident to a node in K it holds that Cl(e) = 0.
4. Let υ = u1, u2, . . . , ur = u be the path from the leader to the non-leader

endpoint (resulting by ignoring the directions of the arcs in A). Let PL =
{(ui, ui+1) | 1 ≤ i < r} be the corresponding directed path from υ to u.
Then for all a ∈ A ∩ PL it holds that Cl(a) = p (proper edges) and for all
a′ ∈ A − PL that Cl(a′) = i (inverse edges).

See Figure 1 for some examples of correctly labeled line subgraphs. The meaning
of each state will become clear in the proof of Theorem 1 in the following section.

Fig. 1. Some correctly labeled line subgraphs. We assume that all edges not appearing
are in state 0 (inactive).

5 The Computational Power of the SMPP Model

In [7], it was shown that MPS is a proper superset of the set of semilinear
predicates. Here we are going to establish a much better inclusion. In particular,
in Section 5.1 we show that any predicate in SSPACE(n) is also in MPS. In
other words, the SMPP model is at least as strong as a linear space TM that
computes symmetric predicates. Then in Section 5.2 we extend the ideas used
in the proof of this result in order to establish that SSPACE(n2) is a subset
of MPS showing that MPS is a surprisingly wide class. Finally, we improve
to SNSPACE(n2), thus, arriving at an exact characterization for MPS (the
inverse inclusion already exists from [7]).

5.1 A First Inclusion: SSPACE(n) ⊆ MPS

Theorem 1. There is an SMPP A that constructs a correctly labeled spanning
line subgraph of any complete communication graph G.

Proof. We provide a high level description of the protocol A in order to avoid
its many low-level details. All agents are initially in state l, thought of as being
simple leaders. All edges are in state 0 and we think of them as being inactive,
that is, not part of the line subgraph to be constructed. An edge in state p is
interpreted as proper while an edge in state i is interpreted as inverse and both
are additionally interpreted as active, that is, part of the line subgraph to be
constructed. An agent in state k is a (simple) non-leader, an agent in state kt is
a non-leader that is additionally the tail of some line subgraph (tail non-leader),
an agent in state lt is a leader and a tail of some line subgraph (tail leader), and
an agent in state lh is a leader and a head of some line subgraph (head leader).
All these will be clarified in the sequel. A leader is a simple, tail, or head leader.

The agents become organized in correctly labeled line subgraphs by the fol-
lowing transitions: (l, l, 0) → (kt, lh, i), (lh, l, 0) → (k, lh, i), (l, lh, 0) → (lt, k, p),
(lt, l, 0) → (k, lh, i), and (l, lt, 0) → (lt, k, p).

We now describe how two such line graphs L1 and L2 are pieced together.
Denote by l(L) ∈ V and by kt(L) ∈ V the leader and tail non-leader endpoints
of a correctly labeled line graph L, respectively. When l(L1) = u interacts as
the initiator with l(L2) = υ, through an inactive edge, υ becomes a non-leader
with a special mark, e.g. k′, the edge becomes proper with a special mark, and u
becomes a leader in a special state l′ indicating that this state will travel towards
kt(L1) while making all proper edges that it meets inverse and all inverse edges

proper. In order to know its direction, it marks each edge that it crosses. When
it, finally, arrives at the endpoint, it goes to another special state and walks
the same path in the inverse direction until it meets υ again. This walk can be
performed easily, without using the marks, because now all edges have correct
labels (states). To diverge from L1’s endpoint it simply follows the proper links
as the initiator (moving from their tail to their head) and the inverse links as
the responder (moving from their head to their tail) while erasing all marks left
from its previous walk. When it reaches υ it erases its mark, making its state
k, and goes to another special state indicating that it again must walk towards
kt(L1) for the last time, performing no other operation this time. To do that,
it follows the proper links as the responder (from their head to their tail) and
the inverse links as the initiator (from their tail to their head). When it, finally,
arrives at kt(L1) it becomes a normal tail leader and now it is easy to see that L1

and L2 have been merged correctly into a common correctly labeled line graph.
See Figure 2 for an example. The correctness of this process, called the merging
process, is captured by Lemma 1.

(a) Before merging. (b) After merging.

Fig. 2. Two line subgraphs just before the execution and after the completion of the
merging process.

Lemma 1. When the leader endpoints of two distinct correctly labeled line sub-
graphs of G, L1 = (K1, A1) and L2 = (K2, A2), interact via e ∈ E, then, in a
finite number of steps, L1 and L2 are merged into a new correctly labeled line
graph L3 = (K1 ∪ K2, A1 ∪ A2 ∪ {e}).

Initially, G is partitioned into n correctly labeled trivial line graphs. It is
easy to see that correctly labeled line graphs never become smaller and, accord-
ing to Lemma 1, when their leaders interact they are merged into a new line
graph. Moreover, given that there are two correctly labeled line subgraphs in
the current configuration there is always the possibility (due to fairness) that
these line graphs may get merged and there is no other possible effective inter-
action between them. In simple words, two line graphs can only get merged and
there is always the possibility that merging actually takes place. It is easy to see
that this process has to end, due to fairness, in a finite number of steps having
constructed a correctly labeled spanning line subgraph of G (for simplicity, we
call this process the spanning process). ut

Theorem 2. Assume that the communication graph G = (V, E) is a correctly
labeled line graph of n agents, where each agent takes its input symbol in a second

state component (the first component is used for the labels of the spanning process
and is called label component). Then there is an MPP A that when running
on such a graph simulates a deterministic TM M of O(n) (linear) space that
computes symmetric predicates.

Proof. It is already known from [1, 3] that the theorem holds for population
protocols with no inverse edges. It is easy to see that the correct p and i labels
can be exploited by the simulation in order to identify the correct directions. ut

It must be clear now, that if the agents could detect termination of the
spanning process then they would be able to simulate a deterministic TM of
O(n) space that computes symmetric predicates. But, unfortunately, they are
unable to detect termination, because if they could, then termination could also
be detected in any non-spanning line subgraph constructed in some intermediate
step (it can be proven by symmetry arguments together with the fact that the
agents cannot count up to the population size). Fortunately, we can overcome
this by applying the reinitialization technique of [11, 5].

Theorem 3. SSPACE(n) is a subset of MPS.

Proof. Take any p ∈ SSPACE(n). By Theorem 2 we know that there is an
MPP A that stably computes p on a line graph of n nodes. We have to show
that there exists an SMPP B that stably computes p. We construct B to be
the composition of A and another protocol I that is responsible for executing
the spanning and reinitialization processes. Each agent’s state consists of three
components: a read-only input backup, one used by I, and one used by A. Thus,
A and I are, in some sense, executed in parallel in different components.

Protocol I does the following. It always executes the spanning process and
when the merging of two line graphs comes to an end it executes the following
reinitialization process. The new leader u that resulted from merging becomes
marked, e.g. l∗t . Recall that the new line graph has also correct labels. When u
meets its right neighbor, u sets its A component to its input symbol (by copying
it from the input backup), becomes unmarked, and passes the mark to its right
neighbor (correct edge labels guarantee that each agent distinguishes its right
and left neighbors). When the newly marked agent interacts with its own right
neighbor, it does the same, and so on, until the two rightmost agents interact,
in which case they are both reinitialized at the same time and the special mark
is lost. It is easy to see that this process guarantees that all agents in the line
graph become reinitialized and before completion non-reinitialized agents do not
have effective interactions with reinitialized ones (the special marked agent acts
always as the separator between reinitialized and non-reinitialized agents). Note
that if other reinitialization processes are pending from previous reinitialization
steps, then the new one may identify and erase them.

From Theorem 1 we know that the spanning process executed by I results in a
correctly labeled spanning line subgraph of G. The spanning process, as already
mentioned, terminates when the merging of the last two line subgraphs takes
place and merging also correctly terminates in a finite number of steps (Lemma

1). Moreover, from the above discussion we know that, when this happens, the
reinitialization process will correctly reinitialize all agents of the spanning line
subgraph, thus, all agents in the population. But then, independently of its
computation so far, A will run from the beginning on a correctly labeled line
graph of n nodes (this line graph will not be modified again in the future), thus,
it will stably compute p. Finally, if we assume that B’s output is A’s output then
we conclude that the SMPP B also stably computes p, thus, p ∈ MPS. ut

5.2 An Exact Characterization: MPS = SNSPACE(n2)

We now extend the techniques employed so far to obtain an exact characteriza-
tion for MPS.

Theorem 4. Assume that the complete communication graph G = (V, E) con-
tains a correctly labeled spanning line subgraph, where each agent takes its input
symbol in a second state component. Then there is an MPP A that when running
on such a graph simulates a deterministic TM M of O(n2) space that computes
symmetric predicates.

Proof. For simplicity and w.l.o.g. we assume that A begins its execution from
the leader endpoint, that initially the simulation moves all n input symbols to
the leftmost outgoing inactive edges (n−2 leaving from the leader and two more
leaving from the second agent of the line graph), that the left endpoint is a tail
leader, and that the edge states now consist of two components, one used to
identify them as active/inactive and the other used by the simulation.

In contrast to Theorem 2 the simulation also makes use of the inactive edges.
The agent in control of the simulation is in a special state denoted with a star
‘∗’. Since the simulation starts from the left endpoint (tail leader), its state will
be l∗t . When the star-marked leader interacts with its unique right neighbor on
the line graph, the neighbor’s state is updated to a r-marked state (i.e. kr). The
kr agent then interacts with its own right neighbor which is unmarked and the
neighbor updates its state to a special dot state (i.e. k̇) whereas the other agent
(in state kr) is updated to k. Then the only effective interaction is between the
star-marked leader (l∗t) and the dot non-leader (k̇) via the inactive edge joining
them. In this way, the inactive edge’s state component used for the simulation
becomes a part of the TM’s tape. In fact M’s tape consists only of the inactive
edges and is accessed in a systematic fashion which is described below.

If the simulation has to continue to the right, the interaction (l∗t , k̇) sends
the dot agent to state kr. If it has to proceed left, the dot agent goes to state
kl. An agent in state kr interacts with its right neighbor sending it to dot state
whereas a kl agent does the same for its left neighbor. In this way, the dot mark
is moving left and right between the agents by following the active edges in the
appropriate interaction role (initiator or responder) as described in Theorem 1
for the special states traversing through the line graph. The dot mark’s (state’s)
position in the line graph determines which outgoing inactive edge of l∗t will be
used. The sequence in which the dot mark is traversing the graph is the sequence

in which l∗t visits its outgoing inactive edges. Therefore if it has to visit the next
inactive edge it moves the dot mark to the right (via a kr state) or to the left
(via a kl state) if it has to visit the previous one. It should be noted that the dot
marked agent plays the role of the TM’s head since it points the edge (which
would correspond to a tape’s cell in M) that is visited. As stated above only the
inactive edges hold the contents of the TM’s tape. The active ones are used for
allowing the special states (symbols) traverse the line graph.

Consider the case where the dot mark reaches the right non-leader endpoint
(kt) and the simulation after the interaction (l∗t , k̇t) demands to proceed right.
Since l∗t ’s outgoing edges have all been visited by the simulation, the execution
must continue on the next agent (right neighbor of leader endpoint lt) in the
line graph. This is achieved by having another special state traversing from right
to left (since we are in the right non-leader endpoint) until it finds l∗t . Then it
removes its star mark (state) and assigns it to its right neighbor which now takes
control of the simulation visiting its own inactive edges. A similar process takes
place when the simulation, controlled by any non-leader agent, reaches the left
leader endpoint and needs to proceed to the left cell.

When the control of the simulation reaches a non-leader agent (e.g. from the
left leader endpoint side) in order to visit its first edge it places the dot mark to
the left leader endpoint and then to the next (on the right) non-leader and so
forth. If the dot mark reaches the star-marked agent (in the previous example
from the left endpoint side) then it moves the dot to the closer (in the line graph)
agent that can “see” via an inactive edge towards the right non-leader endpoint.
In this way, each agent visits its outgoing edges in a specific sequence (from
leader to non-leader when the simulation moves right and the reverse when it
moves left) providing the O(n2) space needed for the simulation. ut

Theorem 5. SSPACE(n2) is a subset of MPS.

Proof. The main idea is similar to that in the proof of Theorem 3 (based again
on the reinitialization technique). We assume that the edge states consist now
of two components, one used to identify them as active/inactive and the other
used by the simulation (protocol A from Theorem 4).

This time, the reinitialization process attempts to reinitialize not only all
agents of a line graph but also all of their outgoing edges. We begin by describing
the reinitialization process in detail. Whenever the merging process of two line
graphs comes to an end, resulting in a new line graph L, the leader endpoint of
L goes to a special blocked state, let it be lb, blocking L from getting merged
with another line graph while the reinitialization process is being executed. Keep
in mind that L will only get ready for merging just after the completion of the
reinitialization process. By interacting with its unique right neighbor in state k
via an active edge it propagates the blocked state towards that neighbor updating
its state to kb and reinitializing the agent. The block state propagates in the same
way towards the tail non-leader reinitializing and updating all intermediate non-
leaders to kb from left to right. Once it reaches this endpoint, a new special state
k0 is generated which traverses L in the inverse direction. Once k0 reaches the
leader endpoint, it disappears and the leader updates its state to l∗.

Now reinitialization of the inactive edges begins. When the leader in l∗ inter-
acts with its unique right neighbor (via the active edge joining them) it updates
its neighbor’s state to a special bar state (e.g. k̄). When the agent with the bar
state interacts with its own right neighbor, which is unmarked, the neighbor
updates its state to a special dot state (e.g. k̇). Now the bars cannot propa-
gate and the only effective interaction is between the star leader and the dot
non-leader. This interaction reinitializes the state component of the edge used
for the simulation and makes the responder non-leader a bar non-leader. Then
the new bar non-leader turns its own right neighbor to a dot non-leader, the
second outgoing edge of the leader is reinitialized in this manner, and so on,
until the edge joining the star leader (left endpoint) with the dot tail non-leader
(right endpoint) is reinitialized. What happens then is that the bars are erased
one after the other from right to left and finally the star moves one step to the
right. So the first non-leader has now the star and it reinitializes its own inactive
outgoing edges from left to right in a similar manner. The process repeats the
same steps over and over, until the right endpoint of L reinitializes all of its
outgoing edges. When this happens, A will execute its simulation on the correct
reinitialized states. The above process is clearly executed correctly when L is
spanning (because all outgoing edges have their heads on the line graph). When
it isn’t, the correctness of the process is captured by the following lemma.

Lemma 2. Let L and L′ be two distinct line subgraphs of G. If L runs a reini-
tialization process then it always terminates in a finite number of steps.

Proof. If L′ is not running a reinitialization process then there can be no conflict
between L and L′. If L′ is also running its own reinitialization process, a conflict
occurs when a star agent of one graph interacts with a dot agent of the other,
but in both cases the reinitialization process is either not affected or cannot be
delayed, thus, it always terminates in a finite number of steps. ut

We finally ensure that the simulation does not ever alter the agent labels
used by the spanning and reinitialization processes. In the proof of Theorem 4
we made A put marks on the labels in order to get executed correctly. Now we
simply think of these marks as being placed in a separate subcomponent of A
that is ignored by the other processes. ut

Theorem 6. SNSPACE(n2) is a subset of MPS.

Proof. We modify the deterministic TM of Theorem 5 by adding another com-
ponent in each agent’s state which stores a non-negative integer of value at most
equal to the greatest number of non-deterministic choices that the new NTM N
can face at any time. Note that this number is independent of the population
size. In every reinitialization each agent obtains this value from its neighbors ac-
cording to its position (which depends on the distance from the leader endpoint)
in the line graph. Nondeterministic choices are mapped to these values and when-
ever such a choice has to be made, the agent in control of the simulation uses
the value of the agent with whom it has the next arbitrary interaction. The in-
herent nondeterminism of the interaction pattern ensures that choices are made

nondeterministically. If the accept state is reached all agents accept whereas if
the reject state is reached the TM’s computation is reinitialized. Fairness guar-
antees that all paths in the tree representing N ’s nondeterministic computation
will eventually (although maybe after a long time) be followed. ut

We have now arrived at the following exact characterization for MPS.

Theorem 7. MPS = SNSPACE(n2).

Proof. Follows from Theorem 6 and Theorem 8 of [7]. ut

See the corresponding technical report [4] for a formal constructive proof and
some graphical examples.

References

1. Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Per-
alta. Computation in networks of passively mobile finite-state sensors. Distributed
Computing, pages 235–253, mar 2006.

2. Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates
are semilinear. In PODC ’06: Proceedings of the 25th annual ACM Symposium on
Principles of Distributed Computing, pages 292–299. ACM Press, 2006.

3. James Aspnes and Eric Ruppert. An introduction to population protocols. Bulletin
of the European Association for Theoretical Computer Science, 93:98–117, 2007.

4. Ioannis Chatzigiannakis, Othon Michail, Stavros Nikolaou, Andreas Pavlogiannis,
and Paul G. Spirakis. All symmetric predicates in NSPACE(n2) are stably com-
putable by the mediated population protocol model. Technical Report FRONTS-
TR-2010-17, RACTI, 2010. http://fronts.cti.gr/aigaion/?TR=155.

5. Ioannis Chatzigiannakis, Othon Michail, Stavros Nikolaou, Andreas Pavlogiannis,
and Paul G. Spirakis. Passively mobile communicating logarithmic space machines.
Technical Report FRONTS-TR-2010-16, RACTI, 2010. http://fronts.cti.gr/

aigaion/?TR=154. Also CoRR. http://arxiv.org/abs/1004.3395.
6. Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis. Brief announce-

ment: Decidable graph languages by mediated population protocols. In DISC,
pages 239–240, 2009.

7. Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis. Mediated popu-
lation protocols. In 36th International Colloquium on Automata, Languages and
Programming (ICALP), volume 2, pages 363–374, 2009.

8. Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis. Recent advances
in population protocols. In MFCS ’09: Proceedings of the 34th International Sym-
posium on Mathematical Foundations of Computer Science 2009, pages 56–76.
Springer-Verlag, 2009.

9. Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Eric Ruppert.
When birds die: Making population protocols fault-tolerant. In DCOSS, pages
51–66, 2006.

10. S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics, 16:285–296, 1966.

11. Rachid Guerraoui and Eric Ruppert. Names trump malice: Tiny mobile agents
can tolerate byzantine failures. In 36th International Colloquium on Automata,
Languages and Programming (ICALP), pages 484–495, 2009.

