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Abstract. In this work, we introduce the notion of time to some well-
known combinatorial optimization problems. In particular, we study
problems defined on temporal graphs. A temporal graph D = (V,A)
may be viewed as a time-sequence G1, G2 . . . , Gl of static graphs over
the same (static) set of nodes V . Each Gt = D(t) = (V,A(t)) is called
the instance of D at time t and l is called the lifetime of D. Our main
focus is on analogues of traveling salesman problems in temporal graphs.
A sequence of time-labeled edges (e.g. a tour) is called temporal if its
labels are strictly increasing. We begin by considering the problem of
exploring the nodes of a temporal graph as soon as possible. In contrast
to the positive results known for the static case, we prove that, it cannot
be approximated within cn, for some constant c > 0, in general temporal
graphs and within (2 − ε), for every constant ε > 0, in the special case
in which D(t) is connected for all 1 ≤ t ≤ l, both unless P = NP. We
then study the temporal analogue of TSP(1,2), abbreviated TTSP(1,2),
where, for all 1 ≤ t ≤ l, D(t) is a complete weighted graph with edge-
costs from {1, 2} and the cost of an edge may vary from instance to in-
stance. The goal is to find a minimum cost temporal TSP tour. We give
several polynomial-time approximation algorithms for TTSP(1,2). Our
best approximation is (1.7 + ε) for the generic TTSP(1,2) and (13/8 + ε)
for its interesting special case in which the lifetime of the temporal graph
is restricted to n. In the way, we also introduce temporal versions of other
fundamental combinatorial optimization problems, for which we obtain
polynomial-time approximation algorithms and hardness results.

1 Introduction

A temporal graph is, informally speaking, a graph that changes with time. A
great variety of both modern and traditional networks such as information and
communication networks, social networks, transportation networks, and several
physical systems can be naturally modeled as temporal graphs.
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In this work, we restrict attention to discrete time. This is totally plausible
when the dynamicity of the system is inherently discrete, which is for exam-
ple the case in synchronous mobile distributed systems that operate in discrete
rounds, but can also satisfactory approximate a wide range of continuous-time
systems. Moreover, this choice gives to the resulting models and problems a
purely combinatorial flavor. We also restrict attention to systems in which only
the relationships between the participating entities may change and not the en-
tities themselves. Therefore, in this paper, a temporal graph D = (V,A) may
always be viewed as a sequence G1, G2 . . . , Gl of static graphs over the same
(static) set of nodes V . Each Gt = D(t) = (V,A(t)) is called the instance of D
at time t and l is called the lifetime of D.

Though static graphs have been extensively studied, for their temporal gener-
alization we are still far from having a concrete set of structural and algorithmic
principles. Additionally, it is not yet clear how is the complexity of combinatorial
optimization problems affected by introducing to them a notion of time. In an
early but serious attempt to answer this question, Orlin [Orl81] observed that
many dynamic languages derived from NP-complete languages can be shown to
be PSPACE-complete. Among the other few things that we do know, is that
the max-flow min-cut theorem holds with unit capacities for time-respecting
paths [Ber96]. Additionally, Kempe et al. [KKK00] proved that, in temporal
graphs, the classical formulation of Menger’s theorem is violated and the compu-
tation of the number of node-disjoint s-t paths becomes NP-complete. In a very
recent work [MMCS13], among other things, the authors achieved a reformula-
tion of Menger’s theorem which is valid for all temporal graphs and introduced
several interesting cost minimization parameters for optimal temporal network
design. Dutta et al. [DPR+13], working on a distributed online dynamic network
model, presented offline centralized algorithms for the k-gossip problem.

We make here one more step towards the direction of revealing the algo-
rithmic principles of temporal graphs. In particular, we introduce the study of
traveling salesman problems in temporal graphs, which, to the best of our knowl-
edge, have not been considered before in the literature. Our main focus is on
the Temporal Traveling Salesman Problem with Costs One and Two
abbreviated TTSP(1,2) throughout the paper. In this problem, we are given a
temporal graph D = (V,A) every instance of which is a complete graph, i.e.
D(t) = (V,A(t)) is complete for all 1 ≤ t ≤ l. Moreover, the edges of every D(t)
are weighted according to a cost function c : A→ {1, 2}. Observe that A is a set
of time-edges (e, t), where e is an edge and t is the time at which e appears. So,
the cost function c is allowed to assign different cost values to different instances
of the same edge, therefore, in this model, costs are dynamic in nature. We are
asked to find a Temporal TSP tour (abbreviated TTSP tour) of minimum total
cost. A TSP tour (u1, t1, u2, t2, . . . , tn−1, un, tn, u1) is temporal if ti < ti+1 for
all 1 ≤ i ≤ n− 1. The cost of such a TSP tour is

∑
1≤i≤n c((ui, ui+1), ti), where

un+1 = u1. We should remark that, in general, the lifetime of D is not restricted
and therefore it can be much greater than n. Whenever we restrict attention to
limited lifetime, this will be explicitly stated. We should also emphasize that,
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throughout this work, the entire temporal graph is provided to the centralized
algorithms in advance. It is useful to observe that TTSP(1,2) seems to be natu-
rally closer to the Asymmetric TSP(1,2) and this seems to hold independent
of whether the temporal graph has directed or undirected instances. In most
places we assume directed edge-sets, however keep in mind that the undirected
case is not expected to be any simpler. Finally, note that ATSP(1,2) is a special
case of TTSP(1,2) which implies that TTSP(1,2) is also APX-hard [PY93] and
cannot be approximated within any factor less than 207/206 [KS13].

1.1 Our Approach-Contribution

We now summarize our approach to approximate TTSP(1,2). Note that all the
approximation algorithms that we present in this work are polynomial-time al-
gorithms on a binary encoding of the temporal graph, i.e. on |〈D〉|. In the static
case, one easily obtains a (3/2)-factor approximation for ATSP(1,2) by comput-
ing a perfect matching maximizing the number of ones and then patching the
edges together arbitrarily. This works well, because such a minimum cost perfect
matching can be computed in polynomial time in the static case. This was one
of the first algorithms known for ATSP(1,2). Other approaches have improved
the factor to the best currently known 5/4 [Blä04]. Unfortunately, as we shall
see, even the apparently simple task of computing a matching maximizing the
number of ones is not that easy in temporal graphs. In particular, we prove that
computing a matching maximizing the number of ones and additionally satisfy-
ing the temporal condition that all its edges appear at distinct times is NP-hard.
The reason that we insist on distinct times is that we can form a temporal TSP
tour by patching the edges of a matching only if the edges of the matching can
be strictly ordered in time. In fact, an additional requirement is that the edges of
the matching should have time differences of at least two, so that we can always
fit a patching-edge between two time-consecutive edges of the matching. We call
the corresponding problem Max-TEM(≥2).

We naturally then search for good approximations for Max-TEM(≥2). We
follow two main approaches. One is to reduce the problem to Maximum In-
dependent Set (MIS) in (k + 1)-claw free graphs and the other is to reduce
it to k′-Set Packing for some k and k′ to be determined. The first approach
gives a (7/4 + ε)-approximation (= 1.75 + ε) for the generic TTSP(1,2) and a
(12/7+ε)-approximation (≈ 1.71+ε) for the special case of TTSP(1,2) in which
the lifetime is restricted to n. The latter is obtained by approximating a tem-
poral path packing instead of a matching. The second approach improves these
to 1.7 + ε for the general case and to 13/8 + ε = 1.625 + ε when the lifetime is
n. In all cases, ε > 0 is a small constant (not necessarily the same in all cases)
adopted from the factors of the approximation algorithms for independent set
and set packing. We leave as an interesting open problem whether a (3/2)-factor
for TTSP(1,2) or its special case with lifetime restricted to n is within reach.

Apart from TTSP(1,2) we also consider the Temporal (Node) Explo-
ration (abbreviated TEXP) problem, in which we are given a temporal graph
(unweighted and non-complete) and the goal is to visit all nodes of the temporal
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graph, by possibly revisiting nodes, minimizing the arrival time (in the static
case, appears as Graphic TSP in the literature). Though, in the static case,
the decision version of the problem, asking whether a given graph is explorable,
can be solved in linear time, we show that in the temporal case it becomes NP-
complete. Additionally, in the static case, there is a (3/2 − ε)-approximation
for undirected graphs [GSS11] and a O(log n/ log logn) for directed [AGM+10].
In contrast to these, we prove that there exists some constant c > 0 such that
TEXP cannot be approximated within cn unless P = NP. Additionally, we
prove that even the special case in which every instance of the temporal graph
is connected, cannot be approximated within (2 − ε), for every constant ε > 0,
unless P = NP. On the positive side, we show that TEXP can be approximated
within the dynamic diameter (definition in Section 2) of the temporal graph.

Finally, in the way to approaching the above two main problems, we also ob-
tain several interesting side-results, such as a [3/(5+ε)]-approximation for Max-
TEM(≥2), a [1/(7/2+ε)]-approximation for Temporal Path Packing (TPP)
when the lifetime is restricted to n, and in the full paper a (1/5)-approximation
for Max-TTSP and an inapproximability result stating that for any polynomial
time computable function α(n), Temporal Cycle Cover cannot be approx-
imated within α(n), unless P = NP. To the best of our knowledge, all the
aforementioned temporal problems are first studied in this work.

In Section 2, we formally define the model of temporal graphs under consid-
eration and provide all further necessary definitions. Section 2.1 presents formal
definitions of all temporal problems that we consider in this work. In Section 3,
we consider the Temporal Exploration problem. Then, in Section 4 we in-
troduce and study the TTSP(1,2) problem in weighted temporal graphs.

2 Preliminaries

Definition 1. A temporal graph (or dynamic graph) D is an ordered pair of
disjoint sets (V,A) such that A ⊆

(
V
2

)
× IN (V 2\{(u, u) : u ∈ V } in case of a

digraph). The set V is the set of nodes and the set A is the set of time-edges.

A temporal (di)graph D = (V,A) can be also viewed as a static (underlying)
graph GD = (V,E), where E = {e : (e, t) ∈ A for some t ∈ IN} contains all
edges that appear at least once, together with a labeling λD : E → 2IN defined
as λD(e) = {t : (e, t) ∈ A} (we omit the subscript D when no confusion can
arise). We denote by λ(E) the multiset of all labels assigned by λ to GD and
by λmin = min{l ∈ λ(E)} (λmax = max{l ∈ λ(E)}) the minimum (maximum)
label of D. We define the lifetime (or age) of a temporal graph D as α(D) =
λmax − λmin + 1. Note that in case λmin = 1 we have α(D) = λmax.

For every time t ∈ IN, we define the t-th instance of a temporal graph
D = (V,A) as the static graph D(t) = (V,A(t)), where A(t) = {e : (e, t) ∈ A}
is the (possibly empty) set of all edges that appear in D at time t. A tem-
poral graph D = (V,A) may be also viewed as a sequence of static graphs
(G1, G2, . . . , Gα(D)), where Gi = D(λmin + i − 1) for all 1 ≤ i ≤ α(D). An-
other, often convenient, representation of a temporal graph is the following. The
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static expansion of a temporal graph D = (V,A) is a DAG H = (S,E) defined as
follows. If V = {u1, u2, . . . , un} then S = {uij : λmin − 1 ≤ i ≤ λmax, 1 ≤ j ≤ n}
and E = {(u(i−1)j , uij′) : if (uj , u

′
j) ∈ A(i) for some λmin ≤ i ≤ λmax}.

A temporal (or time-respecting) walk W of a temporal graph D = (V,A)
is an alternating sequence of nodes and times (u1, t1, u2, t2, . . . , uk−1, tk−1, uk)
where (uiui+1, ti) ∈ A, for all 1 ≤ i ≤ k − 1, and ti < ti+1, for all 1 ≤ i ≤ k − 2.
We call tk−1 − t1 + 1 the duration (or temporal length) of the walk W , t1 its
departure time and tk−1 its arrival time. A journey (or temporal/time-respecting
path) J is a temporal walk with pairwise distinct nodes. A (u, v)-journey J is
called foremost from time t ∈ IN if it departs after time t and its arrival time is
minimized. The temporal distance from a node u at time t (also called time-node
(u, t)) to a node v is defined as the duration of a foremost (u, v)-journey from
time t. We say that a temporal graph D = (V,A) has dynamic diameter d, if
d is the minimum integer for which it holds that the temporal distance from
every time-node (u, t) ∈ V ×{0, 1, . . . , α(D)− d} to every node v ∈ V is at most
d. A temporal matching of a temporal graph D = (V,A) is a set of time-edges
M = {(e1, t1), (e2, t2), . . . , (ek, tk)}, such that (ei, ti) ∈ A, for all 1 ≤ i ≤ k,
ti 6= tj , for all 1 ≤ i < j ≤ k, and {e1, e2, . . . , ek} is a matching of GD.

Similarly to weighted graphs we may define weighted temporal graphs by
introducing a (temporal) cost function c : A → C, where C denotes the range
of the costs, e.g. C = IN. A temporal graph D = (V,A) is called complete
(continuously connected) if D(t) is complete (connected, resp.) for all 1 ≤ t ≤
α(D). In these cases, we may also say that D has complete/connected instances.

Throughout the text, unless otherwise stated, we denote by n the number of
nodes of (temporal) (di)graphs. When no confusion may arise, we use the term
edge for both undirected edges and arcs. Finally, a δ-factor (polynomial-time)
approximation algorithm for a problem Π satisfies δ ≥ 1 if Π is a minimization
problem and δ ≤ 1 if Π is a maximization problem.

2.1 Problem Definitions

Temporal Exploration - TEXP. Given a temporal graph D = (V,A) and a
source node s ∈ V , find a temporal walk that begins from s and visits all nodes
minimizing the arrival time.

TTSP(1,2). Given a complete temporal graph D = (V,A) and a cost function
c : A→ {1, 2} find a temporal TSP tour of minimum total cost.

Max-TEM(≥k). Given a temporal graph D = (V,A) find a maximum cardinality
temporal matching M = {(e1, t1), (e2, t2), . . . , (eh, th)} satisfying that there is a
permutation ti1 , ti2 , . . . , tih of the tjs s.t. ti(l+1)

≥ til + k for all 1 ≤ l ≤ h− 1.

Temporal Path Packing - TPP. We are given a temporal graph and we want
to find time and node disjoint time-respecting paths maximizing the number of
edges used. By time disjoint we require that they correspond to distinct intervals
that differ by ≥ 2 in time.
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3 Exploration of Temporal Graphs

In this section, we study the Temporal Exploration (TEXP) problem in
(unweighted) temporal graphs. In contrast to several positive results known for
the static case, we show that in temporal graphs the problem is quite hard. In
particular, we show that the decision version of the problem is NP-complete and
we give two hardness of approximation results for the optimization version, one
for the generic case and another for the special case in which the temporal graph
is continuously connected. On the positive side, we approximate the optimum of
the generic instances within the dynamic diameter of the temporal graph.

3.1 Deciding Explorability is Hard in Temporal Graphs

Note that a walk in the (Temporal) Exploration is allowed to revisit nodes
several times. Let us first focus on static graphs. Consider the decision version
DEXP of Exploration in which the goal is to decide whether a given graph is
explorable. DEXP and finding an arbitrary solution can be solved in linear time
for both undirected and directed static graphs. On the other hand, we prove
that its temporal version, abbreviated DTEXP, is NP-complete.

3.2 Hardness of Approximate Temporal Exploration

Theorem 1. There exists some constant c > 0 such that TEXP cannot be ap-
proximated within cn unless P = NP.

The reason that we managed to obtain such a strong inapproximability result
was that we were free to totally break at some point the connectivity of the
temporal graph. This freedom is lost in continuously connected temporal graphs.

Theorem 2. For every constant ε > 0, there is no (2 − ε)-approximation for
TEXP in continuously (strongly) connected temporal graphs unless P = NP.

Proof. The reduction is from Hamiltonian Path (abbreviated Hampath). We
prove that a (2− ε)-factor approximation for TEXP in continuously connected
temporal graphs could be used to decide Hampath. Let (G, s) be an instance
of Hampath. We construct an instance of TEXP consisting of a continuously
strongly connected temporal graph D = (V,A) and a source node s′. D consists
of three static graphs T1, T2, and T3 as illustrated in Figure 1. The first graph T1
(Figure 1(a)) consists of G1 = G and a set V2 of additional nodes, i.e. V = V1∪V2.
Denote by n, n1, and n2 the cardinalities of V , V1, and V2, respectively. For the
time being it suffices to assume that n2 > n1. We set s′ = s. We connect
every node of V1 to the leftmost node of V2, then continue with a directed path
spanning V2 (i.e. a hamiltonian path on V2), and finally we connect the rightmost
node of V2 to each node of V1. T1 persists until time n1 − 1, that is D(t) = T1
for all 1 ≤ t ≤ n1 − 1. Then, at time n1, D changes to the second graph T2
(Figure 1(b)) which is the same as T1 without the internal edges of set V1 (those
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are the edges of G that were present in T1). T2 persists until time n2 − 1, that
is D(t) = T2 for all n1 ≤ t ≤ n2 − 1. Finally, at time n2, D changes to the
third graph T3 (Figure 1(c)) in which each of V1 and V2 has its nodes connected
by a line of 2-cycles and the left endpoints of the two sets are also connected
by a 2-cycle. T3 is preserved up to the lifetime of D, that is D(t) = T3 for all
n2 ≤ t ≤ α(D). To ensure explorability of D, it suffices to set α(D) = 2n2 + n1.
Note that D is a continuously strongly connected temporal graph because T1,
T2, and T3 are strongly connected graphs.

G1 = G

s

V2

steps [1, n1 − 1]

(a)

V1

V2

steps [n1, n2 − 1]

(b)

V1

V2

steps [n2, 2n2 + n1]

s

(c)

Fig. 1. The temporal graph constructed by the reduction. (a) T1 (b) T2 (c) T3

(⇒) If G is hamiltonian, then the hamiltonian path of G1, followed by an
edge leading from V1 to V2, and finally followed by the hamiltonian path on
V2 gives a hamiltonian journey of D and thus V can be explored optimally in
n1 + n2 − 1 steps.

(⇐) If G is not hamiltonian, then we prove that in this case the optimum ex-
ploration needs at least 2n2+1 steps. Observe that by time n1−1 the exploration
cannot have visited all nodes of V1 because G1 is not hamiltonian from s (Figure
1(a)). This remains true until time n2 − 1, because in the interval [n1, n2 − 1]
the only edges that lead to nodes in V1 cannot have been reached before time n2
(Figure 1(b)). So, by time n2 − 1 there is an unvisited node in V1. Moreover, by
the same time the rightmost node of V2 is also unvisited because the temporal
distance from (s, 0) to it is n2. Then, even if at time n2 the exploration hits one
of them, the other is at distance ≥ n2 + 1 because the leftmost node of V1 in
Figure 1(c) is s. So, in total, at least 2n2 + 1 steps are needed to explore V .
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It remains to prove that the above reduction can be adjusted to introduce
the claimed gap. As ε is a constant, we can restrict attention to instances of
Hampath of order at least 2/ε and provide a gap introducing reduction from
those instances (which obviously still remain hard to decide), that is n1 ≥ 2/ε⇒
ε ≥ 2/n1 ⇒ 2−ε ≤ 2−(2/n1). Moreover, in the above reduction set n2 = n21+n1
(observe that we can set n2 equal to any polynomial-time computable function
of n1). So, by what has been proved so far, we have that:

– If G is hamiltonian, then OPT = n1 + n2 − 1 = n21 + 2n1 − 1.
– If G is not hamiltonian, then OPT ≥ 2n2 + 1 = 2(n21 +n1) + 1 > 2(n21 +n1).

Consider the hamiltonian case. As 2− ε ≤ 2− (2/n1) we have

(2− ε)(n21 + 2n1 − 1) ≤ (2− 2

n1
)(n21 + 2n1 − 1) = 2n21 + 4n1 − 2− 2n1 − 4 +

2

n1

= 2(n21 + n1) + (
2

n1
− 6) ≤ 2(n21 + n1).

Thus, wheneverG is hamiltonian, the (2−ε)-approximation algorithm returns
a solution of cost ≤ (2 − ε)OPT = (2 − ε)(n21 + 2n1 − 1) ≤ 2(n21 + n1). On the
other hand, whenever G is not hamiltonian, OPT > 2(n21 + n1) and thus also
the solution returned by the algorithm must have cost > 2(n21 + n1). Thus a
(2−ε)-approximation algorithm would decide instances of Hampath of order at
least 2/ε in polynomial time, by comparing the solution to the polynomial-time
computable 2(n21 + n1) threshold. This cannot be the case unless P = NP. ut

On the positive side:

Theorem 3. We provide a d-approximation algorithm for TEXP restricted to
temporal graphs with dynamic diameter ≤ d and lifetime ≥ (n− 1)d.

4 Temporal Traveling Salesman with Costs One and Two

In this section, we deal with TTSP(1,2) which is a generalization of the well
known ATSP(1,2) to weighted temporal graphs. Recall that in TTSP(1,2) we
are given a complete temporal graph D = (V,A), with its time-edges weighted
according to a cost function c : A → {1, 2}, and we are asked to find a tempo-
ral TSP tour of minimum total cost. Our approach is to compute a temporal
matching using many 1s and then extend it to a TTSP tour. Unfortunately:

Theorem 4. Max-TEM(≥k) is NP-hard for every independent of the lifetime
polynomial-time computable k ≥ 1.

4.1 Approximating TTSP(1,2) via Maximum Independent Sets

Clearly, by taking an arbitrary temporal TSP tour, one obtains a trivial 2-factor
approximation for TTSP(1,2). In the worst case, its cost is 2n (paying always
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2s) while the cost of the optimum TSP tour is at least n (paying always 1s). Can
we do better? Recall that, in ATSP(1,2) it is known that we can do much better
as there is a (5/4)-factor approximation [Blä04]. In this section, we provide our
first approximation algorithms for both the generic TTSP(1,2) and its special
case with lifetime restricted to n. To do this, we first show that, though by
Theorem 4 Max-TEM(≥2) is NP-hard, it can still be approximated within some
constant via a reduction to Maximum Independent Set (MIS) in 5-claw free
graphs. Recall that a graph is k-claw free if there is no k-independent set in
the neighborhood of any node. We then translate this to an approximation for
TTSP(1,2). For the restricted lifetime case we follow in Section 4.1.1 a similar
approach by approximating a temporal path packing this time.

We begin by showing that a constant factor approximation algorithm for
Max-TEM(≥2) translates to a constant approximation algorithm for TTSP(1,2)
with factor strictly smaller than 2. This then naturally motivates us to search
for constant approximations for temporal matchings.

Lemma 1. An (1/c)-factor approximation for Max-TEM(≥2) implies a (2 −
1
2c )-factor approximation for TTSP(1,2).

We now present a constant factor approximation for Max-TEM(≥1).

Theorem 5. There is a (3/5)-approximation algorithm for Max-TEM(≥1).

Proof. We are given a temporal graph D = (V,A) and our goal is to return
a temporal matching M of maximum cardinality. To simplify the description
let us consider the static expansion H = (S,E) of D. Now given an edge e =
(u(i−1)j , uij′) of the static expansion we may think of it as having the following
positions for conflicts with other edges, i.e. edges that cannot be taken together
with e in a temporal matching: (1) Edges of the same row as e, i.e. all edges
of the form (u(i−1)l, uil′), (2) edges of the same column as u(i−1)j , i.e. all edges
that have one endpoint of the form ukj , and (3) edges of the same column as
uij′ , i.e. all edges that have one endpoint of the form ukj′ . Consider now the
graph G = (E,K) where (e1, e2) ∈ K iff e1 and e2 satisfy some of the above
three constraints. Observe that the set of nodes E of G is the set of edges of the
static expansion H. It is straightforward to observe that temporal matchings of
D are now equivalent to independent sets of G. Observe now that G is 4-claw
free which means that there is no 4-independent set in the neighborhood of any
node. To see this take any e ∈ E and any set {e1, e2, e3, e4} of four neighbors of
e in G. As there are only three constraints at least two of the neighbors, say ei
and ej , must be connected to e by the same constraint. Finally, observe that if
ei and ej both satisfy the same constraint with e (e.g. belong to the same row
as e) then they must satisfy the same constraint with each other (e.g. if ei and
ej belong to the same row as e then ei belongs to the same row as ej) implying
that ei and ej are also connected by an edge in G. From [Hal95] we have a factor
of 3/5 for MIS in 4-claw free graphs. ut

The following lemma makes a slight modification to the proof of Theorem 5
to obtain a constant approximation for Max-TEM(≥2).
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Lemma 2. There is a 1
2+ε -approximation algorithm for Max-TEM(≥2).

Theorem 6. There is a (7/4 + ε)-approximation algorithm for TTSP(1, 2).

4.1.1 Lifetime Restricted to n We now restrict our attention to tempo-
ral graphs with lifetime α(D) restricted to n. In this case, we show that an
extension of the above ideas provides us with an improved 12/7 ≈ 1.71-factor
approximation for TTSP(1, 2). A difference now is that instead of approximating
a temporal matching we approximate a temporal path packing.

Lemma 3. An (1/c)-factor approximation for TPP implies a (2 − 1
c )-factor

approximation for TTSP(1, 2).

Lemma 4. There is a 1
(7/2)+ε -factor approximation for TPP when α(D) = n.

Proof. We directly express a TPP as an independent set of time-edges in the
static expansion H = (S,E). Given an edge e = (uij , u(i+1)j′) ∈ E we add the
following constraints. (1) All edges with tail uik (i.e. for all 1 ≤ k ≤ n), (2) all
edges (u(i−1)k, uil) such that l 6= j or k = j′, (3) all edges (u(i+1)k, u(i+2)l) such
that k 6= j′ or l = j, (4) all edges (with tails) in [1, i − 2] ∪ [i + 2, n] that have
an endpoint in the same column as the tail of e, and (5) all edges (with tails) in
[1, i−2]∪[i+2, n] that have an endpoint in the same column as the head of e. Note
now that the resulting graph of constraints is (7 + 1)-claw free. From [Hal95],
in (h + 1)-claw free graphs, for all h ≥ 4, MIS can be approximated within
1/(h/2 + ε). As in our case h = 7 we have a [1/(7/2 + ε)]-factor approximation
for MIS and thus for TPP. ut
Theorem 7. There is a (12/7 + ε)-factor approximation algorithm for
TTSP(1, 2) when α(D) = n.

4.2 Improved Approximations for TTSP(1,2) via Set Packing

We now present a different reduction idea, from Max-TEM(≥2) to k-Set Pack-
ing this time, that gives improved approximations for TTSP(1,2).

Lemma 5. There is a 3
5+ε -approximation algorithm for Max-TEM(≥2).

Proof. We express the temporal matching problem as a 4-Set Packing. Then,
from [Cyg13], we have that k-Set Packing can be approximated within 3/(k+
1 + ε) yielding 3/(5 + ε) for k = 4. In k-Set Packing we are given a family
F ⊆ 2U of sets of size at most k, where U is some universe of elements, and
we are asked to find a maximum size subfamily of F of pairwise disjoint sets.
Given D = (V,A), we set U = V ∪{1, 2, . . . , α(D)}. Let H = (S,E) be the static
expansion of D. Construct now F as follows. For every (uij , u(i+1)j′) ∈ E set
F ← F ∪ {{uj , uj′ , i − 1, i}}. Clearly, {uj , uj′ , (i − 1), i} ∈ 2U because uj , uj′ ,
i− 1, and i are pairwise distinct elements, thus indeed F ⊆ 2U . Note that every
set contains 4 elements, thus we have created an instance of 4-Set Packing.
The claim follows by observing that there is a temporal matching of size h in D
iff there is a packing of F of size h. ut
Theorem 8. There is a (1.7 + ε)-approximation algorithm for TTSP(1, 2).
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4.2.1 Lifetime Restricted to n Now assume again that the lifetime α(D)
of the temporal graph is restricted to n. In this case, we devise via a reduction to
3-Set Packing an improved 13/8 = 1.625-factor approximation for TTSP(1, 2).

Theorem 9. There is a (13/8 + ε)-factor approximation algorithm for
TTSP(1, 2) when α(D) = n.

Proof. Every TTSP tour, including the optimum tour, must necessarily use pre-
cisely the time-labels 1, 2, . . . , n because otherwise it cannot cover all nodes in n
steps. So, the optimum TTSP tour can be partitioned into two temporal match-
ings, MO and ME , both with time differences ≥ 2 between consecutive labels.
MO is the odd matching using labels 1, 3, 5, . . . and ME is the even matching
using labels 2, 4, 6, . . .. So, if we denote by OPTTTSP the cost of the optimum
TTSP tour and by o(D′) the number of edges of cost one of a single-label sub-
graph D′ of the temporal graph D, we have o(MO) + o(ME) = 2n−OPTTTSP .

We now approximate the maximum odd and maximum even matchings of
the temporal graph D (counting the number of edges of cost one). Assume,
for example, that we want to approximate the maximum matching that uses
only odd labels (the even labels case is symmetric). We express it as a 3-Set
Packing as follows. Recall that in 3-Set Packing we are given a family F ⊆ 2U

of sets of size at most 3, where U is some universe of elements, and we are
asked to find a maximum size subfamily of F of pairwise disjoint sets. We set
U = V ∪ LO, where LO = {1, 3, 5, . . .} ⊂ {1, 2, . . . , n} is the set of all odd
labels. Now consider the subgraph H = (S,E) of the static expansion of D
consisting only of the edges of cost one that appear at odd times and construct
F as follows. For every (uij , u(i+1)j′) ∈ E set F ← F ∪ {{uj , uj′ , i}}. Clearly,
{uj , uj′ , i} ∈ 2U because uj , uj′ , and i are pairwise distinct elements, thus indeed
the constructed F ⊆ 2U . Note that every set contains 3 elements, thus we have
created an instance of 3-Set Packing. It is not hard to show that there is an
odd temporal matching of size h iff there is a packing of size h. The reason is
that two sets {u, v, t} and {u′, v′, t′} do not conflict and can be picked together
in the packing iff the corresponding edges can be picked at the same time in
an odd temporal matching. Now, from [Cyg13], we have that k-Set Packing
can be approximated within 3/(k + 1 + ε) yielding 3/(4 + ε′) for k = 3. We
omit ε′ in the sequel and add it in the end. So, if we denote by OPTO and
ALGO (OPTE and ALGE) the size of the optimum odd (even) matching and
of the odd (even) matching produced by the above algorithm, respectively, we
have ALGO ≥ 3

4OPTO and ALGE ≥ 3
4OPTE . Now from the two computed

matchings we keep the one with maximum cardinality. Denote its cardinality by
ALGM . Clearly, 2ALGM ≥ ALGO + ALGE , so we have

ALGM ≥
1

2
(ALGO + ALGE) ≥ 1

2
· 3

4
(OPTO + OPTE) =

3

8
(OPTO + OPTE)

≥ 3

8
[o(MO) + o(ME)] =

3

8
(2n−OPTTTSP ) =

6

8
n− 3

8
OPTTTSP

Now, we complete the produced matching arbitrarily with the missing edges
to obtain a TTSP tour. This is feasible because the matching has time differences
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≥ 2 between its edges. Denote by ALGTTSP the cost of the produced TTSP tour.
As in the worst case, every added edge has cost 2, we have

ALGTTSP ≤ 2n−ALGM ≤ 2n− 6

8
n+

3

8
OPTTTSP =

10

8
n+

3

8
OPTTTSP

≤ 10

8
OPTTTSP +

3

8
OPTTTSP =

13

8
OPTTTSP . ut
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