
Not All Fair Probabilistic Schedulers are
Equivalent?

Ioannis Chatzigiannakis1, Shlomi Dolev2, Sándor P. Fekete3,
Othon Michail1, and Paul G. Spirakis1

1 Research Academic Computer Technology Institute (RACTI), and Computer
Engineering and Informatics Department (CEID), University of Patras, 26500,

Patras, Greece
2 Department of Computer Science, Ben-Gurion University of the Negev, Israel 84105

3 Department of Computer Science, Braunschweig University of Technology,
Braunschweig, Germany

Email: {ichatz, michailo, spirakis}@cti.gr, dolev@cs.bgu.ac.il,

s.fekete@tu-bs.de

Abstract. We propose a novel, generic definition of probabilistic sched-
ulers for population protocols. We then identify the consistent proba-
bilistic schedulers, and prove that any consistent scheduler that assigns
a non-zero probability to any transition i → j, where i and j are con-
figurations satisfying i 6= j, is fair with probability 1. This is a new
theoretical framework that aims to simplify proving specific probabilis-
tic schedulers fair. In this paper we propose two new schedulers, the State
Scheduler and the Transition Function Scheduler. Both possess the sig-
nificant capability of being protocol-aware, i.e. they can assign transition
probabilities based on information concerning the underlying protocol.
By using our framework we prove that the proposed schedulers, and also
the Random Scheduler that was defined by Angluin et al. [2], are all
fair with probability 1. Finally, we define and study equivalence between
schedulers w.r.t. performance and correctness and prove that there exist
fair probabilistic schedulers that are not equivalent w.r.t. to performance
and others that are not equivalent w.r.t. correctness.

Keywords. population protocol, probabilistic scheduler, fair scheduler, fairness,
communicating automata, sensor network.

1 Introduction

Recently, Angluin et al. [2, 3] introduced the notion of a computation by a Pop-
ulation Protocol to model distributed systems in which individual agents are ex-
tremely limited and can be represented as finite-state machines. In their model,
complex behavior of the system as a whole emerges from the rules governing

? This work has been partially supported by the ICT Programme of the European
Union under contract number ICT-2008-215270 (FRONTS).

pairwise interaction of the agents. The computation is carried out by a collec-
tion of agents, each of which receives a piece of the input. These agents move
around and information can be exchanged between two agents whenever they
come into contact with (or sufficiently close to) each other. The goal is to ensure
that every agent can eventually output the value that is to be computed.

An execution of a protocol proceeds from the initial configuration by in-
teractions between pairs of agents. In a real distributed execution, interactions
could take place simultaneously, but, when writing down an execution, simulta-
neous interactions can be ordered arbitrarily. Angluin et al. think of the order
in which pairs of agents come into contact and interact as being chosen by an
adversary. From a particular system configuration, the adversary decides which
of the possible different interactions will be selected; essentially, it decides the
computation sequence (i.e. schedule of interactions). So, the designer’s goal is to
make protocols work correctly under any schedule the adversary may choose.

In such models there may exist diverging (infinite) schedules of interactions
such that during their execution some event becomes possible infinitely often
but it has not an infinite number of occurrences. If the adversary selects such a
sequence, it will lead the system to unfair situations, where although an event is
realizable infinitely often, it never occurs because conflicts are resolved in a non
equitable manner. To deal with these issues, a fairness restriction is imposed on
the adversarial scheduler: the scheduler is not allowed to avoid a possible step
forever. The fairness constraint allows the scheduler to behave arbitrarily for an
arbitrarily long period of time, but does require that it behave nicely eventually.
Therefore correctness is a property that can be satisfied eventually.

Fairness relative to a set of states is important since most of the “interesting”
system properties express reachability relations of some set of states [16]. In
other words, fairness becomes crucial when a property is to be proven in formal
systems based on non-deterministic models. In this work we try to apprehend
the concept of fairness in the basic population protocol model. To do so, we focus
on the class of probabilistic schedulers proposed in [2, 3], in which the scheduler
selects randomly the next pair to interact. We define two new adversaries that
are bound by the fairness constraint of [2]. The “reasonable” scheduling policies
that they introduce lead to significantly different performance characterizations
for some protocols well studied in the relevant literature. We show that the
current notion of fairness gives rise to many difficulties in studying not only
performance but also protocol correctness.

In the area initiated by the proposal of the Population Protocol (PP) model
[2] much work has been devoted to the, now, well-known fact that the set of
computable predicates of the basic (complete interaction graph) PP model and
most of its variants is exactly equal or closely related to the set of semilinear
predicates. Moreover, in [2, 3], the Probabilistic Population Protocol model was
proposed, in which the scheduler selects randomly and uniformly the next pair
to interact. More recent work has concentrated on performance, supported by
this random scheduling assumption. Additionally, several extensions of the basic
model have been proposed in order to more accurately reflect the requirements

of practical systems. In [1], Angluin et al. studied what properties of restricted
communication graphs are stably computable, gave protocols for some of them,
and proposed a model extension with stabilizing inputs. In [11] the Mediated
Population Protocol (MPP) model was proposed that extends the PP model with
communication links that are able to store states. The MPP model was proved
to be computationally stronger than the PP model and it was observed that it is
especially capable of deciding graph properties, concerning the communication
graph on which the protocol runs. In [9] the decidable graph properties by MPPs
where studied for the first time and it was proven that connectivity cannot be
decided by the new model. Unfortunatelly, the class of decidable graph languages
by MPPs remains open. Finally, some works incorporated agent failures and gave
to the agents slightly increased memory capacity. For the interested reader, [7]
and [12] constitute nice introductions to the subject.

In Section 2 we provide a brief introduction to the PP model. In Section
3.1 we give a novel generic definition of probabilistic schedulers. We then study
separately those that are consistent, i.e. those that never change the one-step
transition probabilities between configurations, and state and prove a theorem
that constitutes a useful tool for proving that a specific probabilistic scheduler is
fair. In 3.2 we present the protocol-oblivious Random Scheduler as was proposed
in [2] and define two new schedulers that are protocol-aware, namely the State
Scheduler and Transition Function Scheduler. We then use our tool and prove
that all these schedulers are fair with probability 1. In Section 3.3 we define time
equivalence and computational equivalence of two probabilistic fair schedulers
w.r.t. some population protocol A. In Section 4 we study the performance of the
OR Protocol (based on an example of [7]) when faced with our schedulers. This
makes it evident that the fairness condition alone, as has been defined by Angluin
et al. in [2], is not sufficient to guarantee the construction of protocols that
perform well under all kinds of allowed schedulers. It seems that a protocol may
perform optimally under some fair scheduler but at the same time reach its worst-
case performance under some other, also provably fair, scheduler. In other words,
we show that there exists a protocol for which two fair probabilistic schedulers are
not time equivalent. Thus, either some stronger definition of fairness needs to be
proposed or there needs to be some other way to formally exclude protocol-aware
schedulers and other (yet unknown) types of schedulers that can be adjusted to
lead to divergent performance scenarios. In Section 5 we show that, due to the
weakness characterizing the selected notion of fairness, not only performance
but also protocol correctness depends greatly on the underlying scheduler. To
do so, we consider the Majority Protocol that was proven correct with high
probability in [6] (if certain rational assumptions are satisfied), and study its
behavior under the Transition Function Scheduler. We show that the Majority
Protocol has a great probability of failure if the underlying scheduler is assumed
to be the protocol-aware Transition Function Scheduler, which in turn implies
that the Transition Function Scheduler is not computationally equivalent to the
Random Scheduler w.r.t. the Majority Protocol. Finally, in Section 6 we discuss
some promising future research directions.

2 Population Protocols

A population protocol (PP) is a 6-tuple (X,Y,Q, I,O, δ), where X, Y , and Q are
all finite sets, and X is the input alphabet, Y is the output alphabet, Q is the set
of states, I : X → Q is the input function, O : Q → Y is the output function,
and δ : Q × Q → Q × Q is the transition function. If δ(a, b) = (a′, b′), we call
(a, b)→ (a′, b′) a transition and we define δ1(a, b) = a′ and δ2(a, b) = b′.

A population protocol A = (X,Y,Q, I,O, δ) runs on a communication graph
(also known as interaction graph) G = (V,E) (G is here assumed to be directed
and without multiple edges or self-loops). From now on we will use the letter n to
denote the cardinality of V (size of the population). Initially, all agents (i.e. the
elements of V) receive a global start signal, sense their environment and each
one receives an input symbol from X. After receiving their input symbol, all
agents apply the input function to it and go to their initial state (e.g. all agents
that received σ ∈ X begin with initial state I(σ) ∈ Q). An adversary scheduler
selects in each step a directed pair of agents (u, υ) ∈ E, where u, υ ∈ V and
u 6= υ, to interact. Assume that the scheduler selects the pair (u, υ), that the
current states of u and υ are a, b ∈ Q, respectively, and that δ(a, b) = (a′, b′).
Agent u plays the role of the initiator in the interaction (u, υ) and υ that of
the responder. When interacting, u and υ apply the transition function to their
directed pair of states, and, as a result, u goes to a′ and υ to b′ (both update
their states according to δ, and specifically, the initiator applies δ1 while the
responder δ2).

A configuration is a snapshot of the population states. Formally, a configura-
tion is a mapping C : V → Q specifying the state of each agent in the population.
C0 is the initial configuration (for simplicity we assume that all agents apply the
input function at the same time) and, for all u ∈ V , C0(u) = I(x(u)), where x(u)
is the input symbol sensed by agent u. Let C and C ′ be configurations, and let u,
υ be distinct agents. We say that C goes to C ′ via encounter e = (u, υ), denoted
C

e→ C ′, if C ′(u) = δ1(C(u), C(υ)), C ′(υ) = δ2(C(u), C(υ)), and C ′(w) = C(w)
for all w ∈ V −{u, υ}, that is, C ′ is the result of the interaction of the pair (u, υ)
under configuration C and is the same as C except for the fact that the states of
u, υ have been updated according to δ1 and δ2, respectively. We say that C can
go to C ′ in one step, denoted C → C ′, if C e→ C ′ for some encounter e ∈ E. We
write C ∗→ C ′ if there is a sequence of configurations C = C0, C1, . . . , Ct = C ′,
such that Ci → Ci+1 for all i, 0 ≤ i < t, in which case we say that C ′ is reachable
from C.

3 Schedulers

3.1 Fair Probabilistic Schedulers

As defined in [3], the transition graph T (A, G) of a protocol A running on a
communication graph G (or just T when no confusion arises) is a directed graph
whose nodes are all possible configurations and whose edges are all possible
one-step transitions between those configurations.

Definition 1. A probabilistic scheduler, w.r.t. a transition graph T (A, G), de-
fines for each configuration C ∈ V (T) an infinite sequence of probability dis-
tributions of the form (dC1 , d

C
2 , . . .), over the set Γ+(C) = {C ′ | C → C ′} (the

possibly closed out-neighbourhood of C), where dCt : Γ+(C) → [0, 1] and such
that

∑
C′∈Γ+(C) d

C
t (C ′) = 1 holds, for all t and C.

The initial configuration C0 depends only on the values sensed by the population
and, in particular, it is formed by their images under the input function. So, for
the time being, we can assume that C0 is selected in a deterministic manner. Let
Ct denote the configuration selected by the scheduler at step t (the configuration
of the system after t selections of the scheduler and applications of the transition
function). Assume that it is the lth time that Ct is encountered during the
execution so far; then a probabilistic scheduler selects Ct+1 randomly, according
to the distribution dCtl . In other words, dCl denotes the probability distribution
over Γ+(C) when C is encountered for the lth time.

Definition 2. We call a probabilistic scheduler consistent, w.r.t. a transition
graph T (A, G), if for all configurations C ∈ V (T), it holds that dC = dC1 = dC2 =
. . ., which, in words, means that any time the scheduler encounters configuration
C it chooses the next configuration with the same probability distribution dC over
Γ+(C), and this holds for all C (each with its own distribution).

From now on, and when no confusion arises, we shall use the letters i and j not
only to denote configuration indices but also to denote configurations themselves.
Note that a consistent probabilistic scheduler for T (A, G) is simply a labeling P :
E(T)→ [0, 1] on the arcs of T , such that for any i ∈ V (T),

∑
j∈Γ+(i) P (i, j) = 1.

So, any time a consistent scheduler encounters a configuration i, it selects the
next configuration j according to the probability distribution defined by the
labels of the arcs leaving from i. Note that in the latter case, if we remove from
T all e ∈ E(T) where P (e) = 0 then the resulting graph D is the underlying
graph of a finite Markov chain where the state space is C = QV (all possible
configurations) and for all i, j ∈ C, if i→ j then IPij = P (i, j), i.e. equal to the
label of arc (i, j), otherwise IPij = 0.

A strongly connected component of a directed graph is final iff no arc leads
from a node in the component to a node outside. A configuration is final iff it
belongs to a final strongly connected component of the transition graph.

An execution is a finite or infinite sequence of configurations C0, C1, C2, . . .,
where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. An infinite
execution is fair if for every possible transition C → C ′, if C occurs infinitely
often in the execution then C ′ also occurs infinitely often. A computation is an
infinite fair execution.

Let yC , where yC(u) = O(C(u)) for all u ∈ V , denote the output (assign-
ment) of configuration C. We say that a computation of a population protocol
A stabilizes to output yC if it contains a configuration C such that for all C ′

reachable from C we have that yC′ = yC .

Theorem 1. Let Ξ = C0, C1, . . . be an infinite execution of A on G, FΞ be the
set of configurations that occur infinitely often in Ξ, and TFΞ be the subgraph of
T (A, G) induced by FΞ . Ξ is a computation (i.e. it is additionally fair) iff TFΞ
is a final strongly connected component of T (A, G).

Proof. The “only if” part was proven in [3]. We prove here the “if” part. Assume
that TFΞ is a final strongly connected component of T (A, G) and that Ξ is not
fair (i.e. that the statement of the “if” part does not hold). Then there exists
some configuration C ∈ FΞ (i.e. appearing infinitely often) and a C ′ /∈ FΞ such
that C → C ′. But this contradicts the fact that TFΞ is final. ut

We now keep the preceding definitions of Ξ, T (A, G), FΞ , TFΞ , but addi-
tionally assume a consistent scheduler.

Theorem 2. If for all i ∈ FΞ and all configurations j s.t. i → j it holds that
IPij > 0, then Ξ is a computation with probability 1.

Proof. Because i is persistent and all its successor configurations j may occur
in one step from i with non-zero probability it follows that those j are also
persistent with probability 1, i.e. they also occur infinitely often in Ξ, thus Ξ is
a computation with probability 1, by definition. ut

Definition 3. A scheduler S is fair if for any protocol A, any communication
graph G, and any infinite execution Ξ of A on G caused by S, Ξ is also a
computation (i.e. additionally fair).

Intuitively a scheduler is fair if it always leads to computations.

Theorem 3. Any consistent scheduler, for which it holds that IPij > 0, for any
protocol A, any communication graph G, and all configurations i, j ∈ V (T (A, G))
where i→ j and i 6= j, is fair with probability 1.

Proof. First of all, note that the underlying Markov chain graph of such a sched-
uler is the transition graph without possibly some self-loops. Assume that the
statement does not hold. Then the probability that a specific infinite execution
Ξ of some protocol A on some graph G caused by the scheduler is not a compu-
tation is non-zero. This means that a Ξ may occur, for which there exists some
configuration i ∈ FΞ and j /∈ FΞ such that i→ j. Now there are two cases:

1. i = j. In this case the contradiction is trivial, because it follows that i ∈ FΞ
while at the same time i /∈ FΞ .

2. i 6= j. However, by assumption IPij > 0, and because i is persistent j must
also be with probability 1.

ut

3.2 Proposed Schedulers

In [2] a probabilistic scheduler that selects the next ordered pair to interact at
random, independently and uniformly from all ordered pairs corresponding to
arcs of the communication graph (i.e. elements of E) was defined. Here we call
this scheduler Random Scheduler, and define two new probabilistic schedulers,
namely the State Scheduler and the Transition Function Scheduler.

The Random Scheduler. To generate Ci+1 the Random Scheduler selects
an ordered pair (u, υ) ∈ E at random, independently and uniformly (each with
probability 1/|E|), and applies the transition function to (Ci(u), Ci(υ)).

The State Scheduler. Consider a population protocol for k-mutual exclu-
sion, in which only k agents are in state 1 and the rest of the population is
in state 0. When an agent that holds a token interacts with another agent, it
passes the token. Now consider an execution where n� k and we use the Ran-
dom Scheduler. In the case in which the communication graph is complete, the
probability of selecting a pair with states (1, 0) is much smaller than selecting
a pair with states (0, 0), meaning that the scheduler may initiate a large num-
ber of interactions that do not help the protocol in making progress. The State
Scheduler instead of selecting a pair of processes independently and uniformly
it selects a pair based on the states of the processes. It first selects a pair of
states and in the sequel it selects one process from each state. Thus it allows
the “meaningful” transitions to be selected more often and may avoid selecting
a large number of interactions that delay the protocol’s progress.

More formally, an ordered pair of states (q, q′) is said to be an interaction
candidate under configuration C if ∃(u, υ) ∈ E such that C(u) = q and C(υ) =
q′. Then a configuration Ci+1 is generated from Ci as follows: (i) by drawing
an order pair (q, q′) of states at random, independently and uniformly from all
ordered pairs of states that are interaction candidates under Ci, (ii) drawing an
ordered pair (u, υ) such that Ci(u) = q and Ci(υ) = q′ from all such pairs at
random, independently and uniformly, (iii) applying the transition function δ to
(Ci(u), Ci(υ)) and updating the states of u and υ accordingly to obtain Ci+1.

The Transition Function Scheduler. Continuing the same argument, we
define one more scheduler that assumes knowledge of the protocol executed.
It examines the transition function δ and selects pairs of agents based on the
defined transitions. In the case in which function δ defines transitions that do
not change the state, neither of the initiator nor of the responder agent (e.g.,
(α, β) → (α, β)), these transitions are ignored by the scheduler. This scheduler
guarantees that all interactions will lead to a state change of either the initiator
or the responder or both.

More formally, suppose → is a binary relation over Q2 which is the rela-
tion analogue of the corresponding transition function δ. The reflexive reduction
of →, denoted by →̇, is simply → without members related to themselves by
→. A configuration Ci+1 is generated from Ci as follows: (i) by drawing a pair
((q1, q2), (q′1, q

′
2)) at random, independently and uniformly from all such pairs be-

longing to ·→ for which (q1, q2) is an interaction candidate under Ci, (ii) drawing
an ordered pair (u, υ) such that Ci(u) = q1 and Ci(υ) = q2 from all such pairs

at random, independently and uniformly, (iii) applying the transition function
δ to (Ci(u), Ci(υ)) and updating the states of u and υ accordingly to obtain
Ci+1 (if in step (i) there exists no such interaction candidate, then the Transi-
tion Function Scheduler becomes a Random Scheduler, and remains in the same
configuration for an infinite number of steps).

Given the above schedulers we can classify any scheduler for population pro-
tocols based on whether it assumes any knowledge on the actual protocol exe-
cuted or not.

Definition 4. We call a scheduler protocol-oblivious (or agnostic) if it con-
structs the interaction pattern without any knowledge on the protocol executed
and protocol-aware if it takes into account information concerning the underly-
ing protocol.

Based on this classification, the Random Scheduler is a protocol-oblivious sched-
uler while the State and Transition Function Schedulers are protocol-aware.

Theorem 4. The Random Scheduler, State Scheduler, and Transition Function
Scheduler are all fair with probability 1.

Proof. Let T (A, G) be any transition graph.

– Random Scheduler. Let i be any configuration in V (T). Any time i is encoun-
tered, any j for which i → j is selected with probability IPij = |Kij |/|E|,
where Kij = {e | e ∈ E(G) and i e→ j}, which is independent of the number
of times i has been encountered. Thus the Random Scheduler is consistent.
Moreover, |Kij | > 0, because from definition of i → j we have that ∃e ∈ E
(E is used instead of E(G)) such that i e→ j. Thus IPij > 0 and Theorem 3
applies implying that the Random Scheduler is fair with probability 1.

– State Scheduler. Let i, j be distinct configurations in V (T) such that i→ j.
When the State Scheduler has chosen i to select the next configuration of the
execution, it performs two experiments. First it selects a pair of states (q, q′)
from all interaction candidates. Then it selects an arc e from all (u, υ) ∈ E
such that i(u) = q and i(υ) = q′. Let Kij again denote the set of arcs (i.e.
interactions) that convert i to j. Let also Mij = {(q, q′) | ∃(u, υ) ∈ Kij

such that i(u) = q and i(υ) = q′} and ICi denote the set of all interaction
candidates under i (note thatMij ⊆ ICi). Now 1/|ICi| is the probability that
a specific interaction candidate is selected by the scheduler. Let K(q,q′)

ij =
{(u, υ) | (u, υ) ∈ Kij and i(u) = q, i(υ) = q′} (the subset of Kij containing
all arcs (u, υ) that convert i to j and where the state of u is q and the state
of υ is q′) and E

(q,q′)
i = {(u, υ) | (u, υ) ∈ E and i(u) = q, i(υ) = q′}. Now

given a chosen interaction candidate (q, q′) ∈ Mij the probability that j is
selected is equal to |K(q,q′)

ij |/|E(q,q′)
i |. Thus we have

IPij =
∑

(q,q′)∈Mij

|K(q,q′)
ij |

|ICi||E(q,q′)
i |

.

|K(q,q′)
ij |, |ICi| and |E(q,q′)

i | for all (q, q′) ∈ Mij only depend on the specific
configurations i and j and are always the same w.r.t. different times at which
i is encountered by the scheduler. Thus the State Scheduler is consistent.
Moreover, since (i→ j)⇒ ∃e = (u, υ) ∈ E such that i e→ j. Let q and q′ be
the states of u and υ under i, respectively. It follows that (q, q′) ∈ Mij and
that |Mij | > 0. Finally, note that e ∈ K(q,q′)

ij , because e ∈ Kij , i(u) = q, and
i(υ) = q′. Thus IPij > 0, Theorem 3 applies and as a consequence the State
Scheduler is fair with probability 1.

– Transition Function Scheduler. In the case in which i 6= j, IPij is defined as
in the State Scheduler, by simply replacing the phrase “interaction candi-
date” with “interaction candidate that constitutes the lhs of some rule in the
reflexive reduction of δ”. So also this scheduler is consistent and fair with
probability 1. Note that when i = j and i has at least one out-neighbor in T
different from i, then IPij = 0, since this scheduler does not select transitions
that leave the states of the participating agents unaffected. Moreover, if i has
a unique out-going arc (in T) pointing to itself, then the scheduler selects
i for an infinite number of steps with probability 1 (in this case becomes a
Random Scheduler). In both cases no problem arises, because for Theorem
3 to apply we only require IPij > 0 for all i 6= j such that i→ j.

ut

3.3 Equivalence Between Schedulers

Definition 5. Two fair probabilistic schedulers S1 and S2 are called time equiv-
alent w.r.t. a protocol A iff all computations of A under S1 and S2 beginning
from the same initial configuration take asymptotically the same expected time
(number of steps) to convergence.

Definition 6. Two fair probabilistic schedulers S1 and S2 are called computa-
tionally equivalent w.r.t. a protocol A iff for all computations of A under S1 and
S2 beginning from the same initial configuration, w.h.p., A stabilizes to the same
output assignment (the output assignment of a configuration C is yC : V → Y
defined as yC(u) = O(C(u)) for all u ∈ V).

4 Not All Fair Probabilistic Schedulers are Time
Equivalent

We use a simple protocol, called the OR Protocol or the One-Way Epidemic
Protocol, based on an example of [7], in which each agent with input 0 simply
outputs 1 as soon as it interacts with some agent in state 1. We, also, assume
that the underlying communication graph is complete. Formally, we have Q =
X = Y = {0, 1} and the transitions defined by δ are the following:

(0, 0)→ (0, 0) (1, 0)→ (1, 1)
(0, 1)→ (1, 1) (1, 1)→ (1, 1)

Essentially, if all agents have input 0, no agent will ever be in state 1. If
some agent has input 1, given a fair scheduler, we expect that the number of
agents with state 1 will increase and will eventually reach n. In both cases, due
to fairness, all agents will eventually stabilize to the correct output value, though
an important fundamental questions is “how fast is stability reached?” and “how
do different schedulers affect the performance of the protocol?”.

In [4], Angluin et al. characterized the behavior of the OR Protocol in com-
plete communication graphs as a one-way epidemic. They showed that the num-
ber of interactions for the epidemic to finish in the case of the Random Scheduler
is Θ(n log n) w.h.p., by exploiting the well-known coupon collector problem.

Theorem 5. The State Scheduler and the Transition Function Scheduler are
time equivalent w.r.t. the One-Way Epidemic Protocol.

Proof. Both schedulers require only O(n) interactions. In particular, the Tran-
sition Function Scheduler can choose only between transitions (1, 0) → (1, 1)
and (0, 1)→ (1, 1) that both increase the number of agents in state 1 by one. If
initially at least one agent is in state 1, then in each step one agent goes from
state 0 to state 1 (no new agents in state 0 emerge) and because the agents are
n, in at most n − 1 steps all agents will be in state 1 and stability will have
been reached. In the case of the State Scheduler, assume the worst-case scenario
in which initially only one agent is in state 1. Because the graph is complete,
the interaction candidates are in the first step (0, 0), (0, 1), and (1, 0). So, ini-
tially, there is a 2/3 probability to select a transition that gives birth to a new
1. When this happens, in an expected number of 1.5 steps, all four left-hand
sides of the rules of δ will be interaction candidates (until the step in which only
one 0 remains, when again the probability of progress becomes 2/3). In all other
possible configurations the probability to progress is 1/2, thus progress is always
made with at least probability 1/2, which in turn implies that on average at
most 2(n− 1) (i.e. again O(n)) steps are expected until stability is reached. ut

The above discussion indicates that the performance of a population protocol
clearly depends on the scheduler’s functionality. In fact, it seems here that the
additional knowledge, concerning the transition function, allowed to the State
Scheduler and the Transition Function Scheduler provides us with interaction
patterns that always lead to optimal computations. However, we can show that
the same knowledge may also allow the definition of fair schedulers that lead the
protocols to worst-case scenarios. To do so we slightly modify the State Scheduler
to obtain a new scheduler, called the Modified Scheduler. Let us consider the
case in which the scheduler is weakly protocol-aware in the sense that it can only
partition the rules of the transition function to classes (possibly with elements
sharing some common property and assign some probability to each class.

Definition 7. The Modified Scheduler selects from the class of the identity rules
(rules that leave both the state of the initiator and that of the responder unaf-
fected) with probability 1− ε and from all the remaining rules with probability ε,

where 0 < ε < 1. Those probabilities are then evenly divided into the correspond-
ing class members. All other components of the Modified Scheduler’s definition
remain the same as in the case of the State Scheduler.

Theorem 6. The Modified Scheduler can lead the One-Way Epidemic Protocol
to arbitrarily bad performance.

Proof. First of all, note that the Modified Scheduler is fair with probability 1,
because the transition probabilities may have been modified but still remain non-
zero for non-loop arcs of T and independent of the number of steps. Consider
now the situation in which n− 2 nodes are initially in state 0 and the remaining
2 are in state 1. Because n− 2 0s have to be converted to 1s, it follows that the
probability that the computation stabilizes in less than n− 2 steps is 0. Let the
random variable D denote the number of steps until the computation stabilizes
(all agents become 1). We have already shown that IP[D = i] = 0 for i < n− 2.
Note that IP[D = i] equals IP[the last remaining 0 becomes 1 in step i]. Let also
Ni denote the number of non-identity rules that have appeared in i steps. For
the computation to stabilize in i steps, exactly n − 3 non-identity rules must
have been chosen in the first i − 1 steps (n − 3 0s converted to 1s and one 0
remaining) and also a non-identity rule in the last step (the last 0 is converted
to a 1). Note that Ni is a binomial random variable having parameters (i, ε).
Then for all i ≥ n− 2

IP[D = i] = IP[Ni−1 = n− 3] · IP[non-identity rule appears in step i]

=
[(

i− 1
n− 3

)
εn−3(1− ε)i−1−(n−3)

]
· ε

=
(
i− 1
n− 3

)
εn−2(1− ε)i−n+2

and the expectation of D is

IE[D] =
(n− 2)

ε
.

The calculation of the above result can be found in the technical report at
http://fronts.cti.gr/aigaion/?TR=93.

Obviously, IE[D] can become arbitrarily large, by decreasing ε (that is, the
probability that a non-identity rule is selected) and the theorem follows. For
example, if we set ε = (n− 2)/2n, given that n > 2, then the expected number
of steps to convergence is exponential in the size of the population. ut

Thus, it is evident that the fairness condition, as has been defined by An-
gluin et al. in [2], is not sufficient to guarantee the construction of protocols
that perform well under all kinds of allowed schedulers. It seems that a protocol
may perform optimally under some fair scheduler but at the same time reach
its worst-case performance under some other, also provably fair, scheduler. Ob-
viously, either some stronger definition of fairness needs to be proposed, that,

for example, would characterize the Modified Scheduler as unfair in the case in
which ε is far away from 1/2, possibly because it always seems to prefer some
class of rules from others, or maybe protocol-aware schedulers and other kinds of
yet unknown schedulers that can be adjusted to lead to divergent performance
scenarios, should somehow be formally prohibited.

Theorem 7. There exists at least one protocol w.r.t. which some fair probabilis-
tic schedulers are not time equivalent.

Proof. Follows by comparing the expected running time of the One-Way Epi-
demic Protocol under the State and Transition Function Schedulers to its ex-
pected running time under the Random and Modified Schedulers (the latter
expected times are from [4] and Theorem 6). ut

5 Not all Fair Probabilistic Schedulers are
Computationally Equivalent

Now we are about to show that, due to the weakness characterizing the selected
notion of fairness, not only performance but also protocol correctness depends
greatly on the underlying scheduler. Assume that each agent initially votes for
one of some election candidates x and y or chooses to vote blank, denoted by
b. If x is the majority vote, then we want every agent to eventually output x,
otherwise y (we assume here that the state of an agent is also its output). Now
let us consider the following one-way protocol that was proposed in [6].

(x, b)→ (x, x) (x, y)→ (x, b)
(y, b)→ (y, y) (y, x)→ (y, b)

In words, when an x meets a b it convinces it to vote x, when a y meets a b
it convinces it to vote y, an x switches a y to the blank-undecidable state, and a
y does the same to an x. Given an initial configuration of xs, ys and blanks that
contains at least one non-blank, the goal is for the agents to reach consensus on
one of the values x or y. Additionally, the value chosen should be the majority
non-blank initial value, provided it exceeds the minority by a sufficient margin.
In [6] it was proven that if the above protocol runs under the Random Scheduler
on any complete graph with n nodes then with high probability consensus is
reached in O(n log n) interactions and the value chosen is the majority provided
that its initial margin is ω(

√
n log n).

It seems that this is not the case when the underlying scheduler is the Transi-
tion Function Scheduler. Intuitively, the Transition Function Scheduler does not
take into great account the advantage of xs. Let Nx(t), Ny(t), and Nb(t) denote
the number of xs, ys, and bs before step t+1, respectively. Note that when all xs,
ys and bs appear in the population then the probability of Nx(t+ 1) = Nx(t) + 1
is 1/4 and the same holds for Ny(t + 1) = Ny(t) + 1. But when the Random
Scheduler is assumed, then the greater the number of xs, the more the arcs
leading from xs to bs, thus the greater the probability of Nx(t+ 1) = Nx(t) + 1.

Fig. 1. The two-dimensional symmetric random walk. We show that the probability
that the particle will reach the Ny axis before reaching the Nx axis is constant.

Lemma 1. The Majority Protocol errs under the Transition Function Scheduler
with constant probability, when x = Θ(y) in the initial configuration (x and y
are used instead of Nx and Ny, respectively).

Proof. The probability of the minority to win is equal to the probability that
the symmetric walk (Nx, Ny) beginning from the initial point (x0, y0) will meet
the Ny axis before meeting the Nx axis. The particle moves to each of its 4
neighboring points with probability 1/4 (see Figure 1, where 0 and 1 are the
probabilities that we assign to the boundaries that constitute the collection of
points for which the system stabilizes to a winning vote). The only exception is
when the number of bs becomes equal to zero. But in this case the xs decrease
by one with probability 1/2, the same holds for the ys and with probability 1
a b appears again and the walk returns to its initial symmetric distribution (to
simplify the argument we ignore those states, because they do not strongly affect
the probability that we want to compute). To the best of our knowledge, this
kind of symmetric random walk in two dimensions has only been studied in [15],
a paper cited by Feller [13], and is closely related to the Dirichlet problem. For
any interior point (x, y), if u(x, y) denotes the probability that the minority wins
(the walk meets the Ny axis before meeting the Nx axis), then

u(x, y) =
1
4

(u(x+ 1, y) + u(x, y + 1) + u(x− 1, y) + u(x, y − 1)), (1)

and we are interested in the value of u(x, y) when x = Θ(y), that is the initial
number of xs and the initial number of ys are of the same order (e.g. x = n/2
and y = n/4). The homogeneous solution of (1) is u(x, y) = x+y

2n and the general
(with the boundary conditions into account) is x+y

2n + f(x, y), where f(x, y) is a
particular non-homogeneous solution. When x, y = Θ(n) the u(x, y) behaves as
the homogeneous, thus u(n/2, n/4) is equal to 3/8, which is constant. ut

Theorem 8. There exists at least one protocol w.r.t. which two fair probabilistic
schedulers are not computationally equivalent.

Proof. The Random Scheduler is not computationally equivalent to the Transi-
tion Function Scheduler w.r.t. the Majority Protocol, because there exists some
initial margin in the case in which the majority is x, which is ω(

√
n log n) and

also the initial number of xs and the initial number of ys are of the same order.
For example, in the case in which x = 3n/4 − k (where k � n) and y = n/4,
x and y are of the same order and x − y ' n/2 = ω(

√
n log n) for sufficiently

large n. But given an initial configuration satisfying the above dynamics, under
the Random Scheduler the protocol w.h.p. stabilizes to a majority winning con-
figuration, while under the Transition Function Scheduler from Lemma 1 there
is a constant probability that the protocol will stabilize to a minority winning
configuration. Thus, it does not hold that w.h.p. those schedulers make the pro-
tocol stabilize to the same output assignment (see again Definition 6). ut

6 Future Research Directions

In the area initiated by the proposal of the Population Protocol (PP) model
[2] many unresolved problems remain. The PP model makes absolutely minimal
assumptions about the underlying system. The agents follow a completely un-
predictable movement, they cannot store unique identifiers, and even a single
Byzantine failure can lead to global failure of the system. How can we readjust
(relax) those assumptions to more accurately reflect practical sensor network
systems? For example in [14], Guerraoui and Ruppert assumed that the agents
are equipped with read-only IDs (from the industry) and that they are also ca-
pable of storing a constant number of other agents’ IDs. In this manner they
obtained a very strong model, which they call the Community Protocol model,
that can solve any decision problem in NSPACE(n log n) (and is additionally
robust to Byzantine failures of a constant number of agents). In [11] they allowed
the communication links to store states from a set of cardinality that is indepen-
dent of the population size, to obtain the Mediated Population Protocol model
that is also stronger than the PP model. In the case of wireless communication
is there some architecture to reasonably implement the proposed model without
using a global storage (for more information about the global storage idea the
reader is referred to http://fronts.cti.gr/aigaion/?TR=65, i.e. the corresponding
technical report of [11])? In the latter model either an exact characterization
of the class of solvable problems has to be found or at least some impossibility
results should appear to provide a first insight of what the model is incapable
of computing (a first attempt can be found in [9], and in [11] it was proven that
all stably computable predicates belong to NSPACE(m), where m denotes the
number of edges of the communication graph). Finally, how can someone verify
safely and quickly, in a distributed or centralized way, that a specific protocol
meets its design objectives? This crucial problem remains open and has to be
solved if our protocols are to be run in real critical application scenarios.

Acknowledgements. We wish to thank an anonymous reviewer who made
very useful comments to a previous version of this work.

References

1. D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, and R. Peralta. Sta-
bly computable properties of network graphs. In Proc. Distributed Computing in
Sensor Systems: 1st IEEE International Conference, pages 63-74, 2005.

2. D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation in
networks of passively mobile finite-state sensors. In 23rd Annual ACM Sympsium
on Principles of Distributed Computing (PODC), pages 290-299, New York, NY,
USA, 2004. ACM.

3. D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):
235-253, 2006.

4. D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols
with a leader. Distributed Computing, 21(3): 183-199, Sept. 2008.

5. D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semi-
linear. In Proc. 25th Annual ACM Symposium on Principles of Distributed Com-
puting, pages 292-299, 2006.

6. D. Angluin, J. Aspnes, and D. Eisenstat. A simple population protocol for fast ro-
bust approximate majority. In 21st International Symposium on Distributed Com-
puting (DISC), volume 4731 of Lecture Notes in Computer Science, pages 20–32.
Springer, 2007.

7. J. Aspnes and E. Ruppert. An introduction to population protocols. Bulletin of the
European Association for Theoretical Computer Science, 93:98-117, October 2007.
Columns: Distributed Computing, Editor: M. Mavronicolas.

8. I. Chatzigiannakis and P. G. Spirakis. The dynamics of probabilistic population
protocols. In Distributed Computing, 22nd International Symposium, DISC, volume
5218 of Lecture Notes in Computer Science, pages 498-499, 2008.

9. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Decidable Graph Languages by
Mediated Population Protocols. In 23nd International Symposium on Distributed
Computing (DISC), Elche, Spain, Sept. 2009. (Also FRONTS Technical Report
FRONTS-TR-2009-16, http://fronts.cti.gr/aigaion/?TR=80)

10. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Experimental verification and
performance study of extremely large sized population protocols. FRONTS Techni-
cal Report FRONTS-TR-2009-3, http://fronts.cti.gr/aigaion/?TR=61, Jan. 2009.

11. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Mediated Population Proto-
cols. In 36th International Colloquium on Automata, Languages and Programming
(ICALP), pages 363-374, Rhodes, Greece, 2009.

12. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Recent Advances in Popula-
tion Protocols. In 34th International Symposium on Mathematical Foundations of
Computer Science (MFCS), August 24-28, 2009, Novy Smokovec, High Tatras,
Slovakia.

13. W. Feller. An Introduction to Probability Theory and Its Applications. Vol. 1,
Wiley, 3rd Edition, 1968.

14. R. Guerraoui and E. Ruppert. Names Trump Malice: Tiny Mobile Agents Can
Tolerate Byzantine Failures. In 36th International Colloquium on Automata, Lan-
guages and Programming (ICALP), pages 484-495, Rhodes, Greece, 2009.

15. W. H. McCrea and F. J. W. Whipple. Random Paths in Two and Three Dimen-
sions. Proc. Roy. Soc. Edinburgh 60, 281-298, 1940.

16. J.P. Queille and J. Sifakis. Fairness and Related Properties in Transition Systems
- A temporal Logic to Deal with Fairness. Acta Informatica 19, 195-220, 1983.

