
Stably Decidable Graph Languages by Mediated
Population Protocols?,??

Ioannis Chatzigiannakis1,2, Othon Michail1,2, and Paul G. Spirakis1,2

1 Research Academic Computer Technology Institute (RACTI)
2 Computer Engineering and Informatics Department (CEID), University of Patras,

26500, Patras, Greece.
Email: {ichatz, michailo, spirakis}@cti.gr

Abstract. We work on an extension of the Population Protocol model
of Angluin et al. that allows edges of the communication graph, G, to
have states that belong to a constant size set. In this extension, the so
called Mediated Population Protocol model (MPP), both uniformity and
anonymity are preserved. We study here a simplified version of MPP in
order to capture MPP’s ability to stably compute graph properties. To
understand properties of the communication graph is an important step
in almost any distributed system. We prove that any graph property is
not computable if we allow disconnected communication graphs. As a
result, we focus on studying (at least) weakly connected communication
graphs only and give several examples of computable properties in this
case. To do so, we also prove that the class of computable properties is
closed under complement, union and intersection operations. Node and
edge parity, bounded out-degree by a constant, existence of a node with
more incoming than outgoing neighbors, and existence of some directed
path of length at least k = O(1) are some examples of properties whose
computability is proven. Finally, we prove the existence of symmetry in
two specific communication graphs and, by exploiting this, we prove that
there exists no protocol, whose states eventually stabilize, to determine
whether G contains some directed cycle of length 2.

1 Introduction

Most recent advances in microprocessor, wireless communication and sensor/act-
uator-technologies envision a whole new era of computing, popularly referred to
as pervasive computing. Autonomous, ad-hoc networked, wirelessly communi-
cating and spontaneously interacting computing devices of small size appearing
in great number, and embedded into environments, appliances and objects of ev-
eryday use will deliver services adapted to the person, the time, the place, or the
context of their use. The nature and appearance of devices will change to be hid-
den in the fabric of everyday life and will be augmenting everyday environments
to form a pervasive computing landscape.
? This work has been partially supported by the ICT Programme of the European

Union under contract number ICT-2008-215270 (FRONTS).
?? A preliminary brief version of this work has appeared in [12].

In a seminal paper [2], Angluin et al. introduced the notion of a computation
by a population to model such systems in which individual agents are extremely
limited and can be represented as finite-state machines. In their model, finite-
state, and complex behavior of the system as a whole emerges from simple rules
governing pairwise interaction of the agents. The computation is carried out by
a collection of agents, each of which receives a piece of the input. These agents
move around and information can be exchanged between two agents whenever
they come sufficiently close to each other. The most important innovations of
the model are inarguably the constant memory constraint imposed to the agents
and the nondeterminism inherent to the interaction pattern. These assumptions
provide us with a concrete and realistic model for future systems.

A population protocol A consists of finite input and output alphabets X
and Y , a finite set of states Q, an input function I : X → Q mapping inputs
to states, an output function O : Q → Y mapping states to outputs, and a
transition function δ : Q × Q → Q × Q. The model assumes a population of
n ≡ |V | agents and a protocol runs on a (simple) directed communication graph
G = (V,E). An agent has a memory of constant size (i.e., O(1) bits) and a
control unit that updates the agent states according to the interactions taking
place; the input and output of the agents may represent a sensor and/or an
actuator. Each protocol has a constant-size description, i.e., independent of n,
that can be stored in each agent of the population. This gives to population
protocols two important properties: uniformity and anonymity ; the transition
function treats all agents in the same way and there is no room in the state of
an agent to store a unique identifier.

The initial goal of the model was to study the computational limitations of
cooperative systems consisting of many limited devices (agents), imposed to pas-
sive (but fair) communication by some scheduler. Much work showed that there
exists an exact characterization of the computable predicates: they are precisely
the semilinear predicates or equivalently the predicates definable by first-order
logical formulas in Presburger arithmetic [2, 3, 5–7]. Some recent work has con-
centrated on performance, supported by a random scheduling assumption [4].
[10] proposed a generic definition of probabilistic schedulers and a collection
of new fair schedulers, and revealed the need for the protocols to adapt when
natural modifications of the mobility pattern occur. [9, 14] considered a huge
population hypothesis (population going to infinity), and studied the dynam-
ics, stability and computational power of probabilistic population protocols by
exploiting the tools of continuous nonlinear dynamics. In [9] it was also proven
that there is a strong relationship between classical finite population protocols
and models given by ordinary differential equations.

There exist a few extensions of the basic model in the relevant literature to
more accurately reflect the requirements of practical systems. In [1] they stud-
ied what properties of restricted communication graphs are stably computable,
gave protocols for some of them, and proposed the model extension with sta-
bilizing inputs. The results of [5] show that again the semilinear predicates are
all that can be computed by this model. Finally, some works incorporated agent

failures [15] and gave to some agents slightly increased computational power [8]
(heterogeneous systems). For an excellent introduction see [7].

Very recently, a natural variation of the basic model was proposed [13], where
the interactions of the agents can be characterized by a state of constant size.
Essentially the model is augmented to include a Mediator, i.e., a global storage
capable of storing very limited information for each communication link (the
state of the link). When pairs of agents interact, they can read and update the
state of the link. Interestignly, although anonymity and uniformity are preserved,
the presence of a mediator allows us to obtain significant more computational
power ; we can build systems with the ability of computing subgraphs and solve
optimization problems concerning the communication graph. In [13] it was shown
that the new model is capable of computing non-semilinear predicates and that
any stably computable predicate belongs to NSPACE(m), where m denotes
the number of edges of the interaction graph. The latter inclusion was proven in
[11] to hold with equality. Finally, [12] constitutes a preliminary brief version of
this work.

In this work (as [1] did for population protocols), we consider a simplification
of the above model in order to explore one of its most important capabilities:
The computability of graph properties. To understand properties of the com-
munication graph is an important step in almost any distributed system. In
particular, we temporarily disregard the input notion of the population and as-
sume that all agents simply start from a unique initial state (and the same holds
for the edges). We are interested in protocols of the new model, that we call
the GDMPP model, that when executed on any communication graph G, after
a finite number of steps stabilize to a configuration where all agents give 1 as
output if G belongs to a graph language L, and 0 otherwise. This is motivated
by the idea of having protocols that eventually accept all communication graphs
(on which they run) that satisfy a specific property, and eventually reject all
remaining communication graphs. The reason for proposing a simplified model
is that it enables us to study what graph properties are stably computable by
the MPP model without the need to keep in mind its remaining parameters.

2 Our Results - Roadmap

In Section 3, we give a formal definition of the GDMPP model. In Section 4,
we focus on weakly connected communication graphs. We prove that the class
of computable graph properties is closed under complement, union, and inter-
section operations. Node and edge parity, bounded out-degree by a constant,
existence of a node with more incoming than outgoing neighbors, and existence
of some directed path of length at least k = O(1) are some examples of proper-
ties whose computability is proven. Moreover, the existence of symmetry in two
specific communication graphs is revealed and is exploited to prove that there
exists no GDMPP, whose states eventually stabilize, to compute the graph lan-
guage 2C, consisting of all weakly connected communication graphs that contain
some 2-cycle. We leave as an interesting open problem whether 2C isn’t com-

putable in the general case. In Section 5, we focus on the universe of all possible
communication graphs, containing also the disconnected ones. In this case (see
Theorem 9) we prove that any nontrivial graph language (we exclude both the
empty language and its complement) is not computable by the GDMPP model.
As an interesting corollary we get that GDMPP cannot compute connectivity
(Corollary 1). Finally, in Section 6 we discuss some future research directions.

3 The model

A Graph Decision Mediated Population Protocol (GDMPP) A consists of a bi-
nary output alphabet Y = {0, 1}, a finite set of agent states Q, an output function
O : Q → Y mapping agent states to outputs, a finite set of edge states S, and a
transition function δ : Q × Q × S → Q × Q × S. If δ(a, b, s) = (a′, b′, s′) we call
(a, b, s) → (a′, b′, s′) a transition, and we define δ1(a, b, s) = a′, δ2(a, b, s) = b′

and δ3(a, b, s) = s′.
We assume that all agents are initially in an initial agent state q0 ∈ Q and

all edges in an initial edge state s0 ∈ S. A graph universe (or graph family) is
any set of communication graphs. We denote by H the graph universe consisting
of all possible communication graphs of any finite number of nodes greater or
equal to 2 (we do not allow the empty graph, the graph with a unique node and
we neither allow infinite graphs) and by G the subset of H containing the weakly
connected ones. All the following definitions hold w.r.t. some fixed graph universe
U . A graph language L is a subset of U containing communication graphs that
possibly share some common property., e.g. L = {G ∈ U | G contains a directed
hamiltonian path}. A graph language L is said to be nontrivial if L 6= ∅ and
L 6= H.

A GDMPP runs on a graph G = (V,E), where V is a population of |V | = n
agents and E is an irreflexive binary relation on V . The graph on which the
protocol runs is considered as the input graph of the protocol. The input graph
of a GDMPP may be any G ∈ U .

A network configuration (or simply configuration) is a mapping C : V ∪
E → Q ∪ S specifying the agent state of each agent in the population and the
edge state of each edge in the communication graph. Let C and C ′ be network
configurations, and let u, υ be distinct agents. We say that C goes to C ′ via
encounter e = (u, υ), denoted C

e→ C ′, if C ′(u) = δ1(C(u), C(υ), C(e)), C ′(υ) =
δ2(C(u), C(υ), C(e)), C ′(e) = δ3(C(u), C(υ), C(e)), and C ′(z) = C(z) for all z ∈
(V −{u, υ})∪(E−{e}). We say that C can go to C ′ in one step, denoted C → C ′,
if C

e→ C ′ for some encounter e ∈ E. We write C
∗→ C ′ if there is a sequence of

configurations C = C0, C1, . . . , Ct = C ′, such that Ci → Ci+1 for all i, 0 ≤ i < t,
in which case we say that C ′ is reachable from C.

An execution is a finite or infinite sequence of network configurations C0, C1,
C2, . . ., where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. An
infinite execution is fair if for every pair of network configurations C and C ′

such that C → C ′, if C occurs infinitely often in the execution, then so does C ′.
A computation is an infinite fair execution.

At any point during the execution of a GDMPP, each agent’s state determines
its output at that time. The output of any agent u under configuration C is
O(C(u)). Note also that the code of any GDMPP is of constant size (independent
of the population size) and, thus, can be stored in each agent (device) of the
population.

Definition 1. Let L be a graph language consisting of all G ∈ U for which, in
any computation of a GDMPP A on G, all agents eventually output 1. Then L
is the language stably recognized by A. A graph language is said to be stably
recognizable by the GDMPP model (also called GDMPP -recognizable) if some
GDMPP stably recognizes it.

Thus, any protocol stably recognizes the graph language consisting of those
graphs on which the protocol always answers “accept”, i.e. eventually all agents
output the value 1 (possibly the empty language).

Definition 2. We say that a GDMPP A stably decides a graph language L ⊆ U
(or equivalently a predicate pL : U → {0, 1} defined as pL(G) = 1 iff G ∈ L) if
for any G ∈ U and any computation of A on G, all agents eventually output 1
if G ∈ L and all agents eventually output 0 if G /∈ L. A graph language is said
to be stably decidable by the GDMPP model (also called GDMPP -decidable)
if some GDMPP A stably decides it.

A GDMPP A has stabilizing states if in any computation of A, after a finite
number of interactions, the states of all agents stop changing.

In some cases, a protocol, instead of stably deciding a language L, may
provide some different sort of guarantee. For example, whenever runs on some
G ∈ L, it may forever remain to configurations where at least one agent is in
state a, and when G′ /∈ L no agent will remain in state a. To formalize this, we
say that a GDMPP A guarantees t : Q∗ → {0, 1} w.r.t. L ⊆ U if, for any G ∈ U ,
any computation of A on G eventually reaches a configuration C, s.t. for all C ′,
where C

∗→ C ′, it holds that t(C ′) = t(C) = 1 if G ∈ L and t(C ′) = t(C) = 0,
otherwise.3

4 Weakly Connected Graphs

In this section, we study an interesting case in which the graph universe is
not allowed to contain disconnected graphs. Thus, here the graph universe is
G and, thus, a graph language can only be a subset of G. The main reason
for selecting this specific universe for devising our protocols is that, if we also
allow disconnected graphs, then, as we shall see, it can be proven that no graph
language is stably decidable.

3 By assuming an ordering on V we can define configurations as strings from Q∗.

4.1 Decidable Graph Languages

Our goal is to show the stable decidability of some interesting graph languages by
providing protocols for them and proving their correctness. To begin, we prove
some closure results to obtain a useful tool for our purpose.

Theorem 1. The class of stably decidable graph languages is closed under com-
plement, union and intersection operations.

Proof. First we show that for any stably decidable graph language L its com-
plement L is also stably decidable. From definition of stable decidability there
exists GDMPP AL that decides L. Thus, for any G ∈ G and any computation
of AL on G all agents eventually output 1 if G ∈ L and 0 otherwise. By com-
plementing the output map OA of A we obtain a new protocol A, with output
map defined as OA(q) = 1 iff OA(q) = 0, for all q ∈ QA = QA, whose agents
eventually output 1 if G /∈ L and 0 otherwise, thus stably deciding L.

Now we show that for any stably decidable graph languages L1 and L2, L3 =
L1 ∪L2 is also stably decidable. Let A1 and A2 be GDMPPs that stably decide
L1 and L2, respectively (we know their existence). We let the two protocols
operate in parallel, i.e. we devise a new protocol A3 whose agent and edge states
consist of two components, one for protocol A1 and one for A2. Let O1 and O2

be the output maps of the two protocols. We define the output map O3 of A3

as O3(q, q′) = 1 iff at least one of O1(q) and O2(q′) equals to 1, for all q ∈ QA1

and q′ ∈ QA2 . If G ∈ L3 then at least one of the two protocols has eventually
all its agent components giving output 1, thus A3 correctly answers “accept”,
while if G /∈ L3 then both protocols have eventually all their agent components
giving output 0, thus A3 correctly answers “reject”. We conclude that A3 stably
decides L3 which proves that L3 is stably decidable.

By defining the output map O3 of A3 as O3(q, q′) = 1 iff O1(q) = O2(q′) = 1,
for all q ∈ QA1 and q′ ∈ QA2 , and making the same composition as before, it is
easy to see that in this case A3 stably decides the intersection of L1 and L2. ut

In some cases it is not easy to devise a protocol that respects the predicate
output convention (the predicate output convention was defined in [2] and simply
requires all agents to eventually agree on the correct output value). In such cases,
we can use the following variation of the Composition Theorem (Theorem 6) of
[13] that facilitates the proof of existence of GDMPP protocols that stably decide
a language.

Theorem 2. If there exists a GDMPP A with stabilizing states that w.r.t. to a
language L guarantees a semilinear predicate, then L is GDMPP-decidable.

Proof. Immediate from the proof of the Theorem 6 of [13]. A can be composed
with a provably existing GDMPP B whose stabilizing inputs are A’s agent states
to give a new GDMPP C that stably decides L w.r.t. the predicate output con-
vention. Note that B is in fact a GDMPP, since its stabilizing inputs are not real
inputs (GDMPPs do not have inputs). It simply updates its state components
by taking also into account the eventually stabilizing state components of A.
Thus, their composition, C, is also a GDMPP.

Theorem 3. (Node Parity & Edge Parity) The graph languages Neven =
{G ∈ G | |V (G)| is even}, Nodd = Neven, Eeven = {G ∈ G | |E(G)| is even},
and Eodd = Eeven are stably decidable.

Theorem 4. (Constant Neighbors - Some Node) The graph language Nout
k =

{G ∈ G | G has some node with at least k outgoing neighbors} is stably decidable
for any k = O(1) (the same holds for N

out

k).

Proof. Initially all agents are in q0 and all edges in 0. The set of agent states
is Q = {q0, . . . , qk} the set of edge states is binary and the output function is
defined as O(qk) = 1 and O(qi) = 0 for all i ∈ {0, . . . , k−1}. We now describe the
transition function. In any interaction through an edge in state 0, the initiator
visits an unvisited outgoing edge, so it marks it by updating the edge’s state
to 1 and increases its own state index by one, e.g. initially (q0, q0, 0) yields
(q1, q0, 1), and, generally, (qi, qj , 0) → (qi+1, qj , 1), if i + 1 < k and j < k, and
(qi, qj , 0) → (qk, qk, 1), otherwise. Whenever two agents meet through a marked
edge they do nothing, except for the case where only one of them is in the special
alert state qk. If the latter holds, then both go to the alert state, since in this
case the protocol has located an agent with at least k outgoing neighbors. To
conclude, all agents count their outgoing edges and initially output 0. Iff one
of them marks its k-th outgoing edge, both end points of that edge go to an
alert state qk that propagates to the whole population and whose output is 1,
indicating that G belongs to Nout

k . ut

Note that N
out

k contains all graphs that have no node with at least k = O(1)
outgoing neighbors, in other words, all nodes have fewer than k outgoing edges,
which is simply the well-known bounded by k out-degree predicate. The same
statement for population protocols appears as Lemma 3 in [1].

Theorem 5. (Constant Neighbors - All Nodes) The graph language Kout
k =

{G ∈ G | Any node in G has at least k outgoing neighbors} is stably decidable
for any k = O(1) (the same holds for K

out

k).

Proof. Note, first of all, that another way to think of Kout
k is Kout

k = {G ∈ Gcon

| No node in G has less than k outgoing neighbors}, for some k = O(1). The
protocol we describe is similar to the one described in the proof of Theorem 4.
The only difference is that when an agent counts its k-th outgoing neighbor as
the initiator of an interaction, it goes to the special alert state qk, but the alert
state is not propagated (e.g. the responder of this interaction keeps its state). It
follows that eventually any node that has marked at least k outgoing edges will
be in the alert state, while any other node that has less than k outgoing edges
will be in some state qi, where i < k. Clearly the protocol has stabilizing states
and provides the following semilinear guarantee:

– If G /∈ Kout
k then at least one agent remains in some state qi, where i < k.

– If G ∈ Kout
k no such state remains.

Thus, Theorem 2 applies, implying that there exists some GDMPP stably
deciding Kout

k w.r.t. the predicate output convention. Thus, both Kout
k and K

out

k

are stably decidable and the proof is complete. ut

Theorem 6. (Compare Incoming and Outgoing Neighbors) The graph
language Mout = {G ∈ G | G has some node with more outgoing than incoming
neighbors} is stably decidable (the same holds for Mout).

Proof. Consider the following protocol: Initially all agents are in state 0 which
is the equality state. An agent can also be in state 1 which is the more-outgoing
state. Initially all edges are in state s0 and S contains also o, i and b, where state
o means that the edge has been used by the protocol only as outgoing so far, i
means only as incoming and b is for “both”. Any agent always remembers if it has
seen so far more outgoing edges or the same number of incoming and outgoing
edges. So, if it is in equality state and is the initiator in an interaction where the
edge has not been used at all (state s0) or has been used only as an incoming
edge (state i), which simply means that only the responder has counted it, then
the agent goes to the more-outgoing state and updates the edge accordingly to
remember that it has counted it. Similarly, if an agent in the more-outgoing state
is the responder of an interaction and the edge is in one of the states s0 or o,
then it goes to the equality state and updates the edge accordingly. If we view
the interaction from the edge’s perspective, then we distinguish the following
cases:

1. The edge is in state s0. Both the initiator and the responder can use it. If
only the initiator uses it (both initiator and responder in equality state),
then the edge goes to state o. If only the responder uses it (both in more-
outgoing state) then the edge goes to state i. If both use it (initiator in
equality and responder in more-outgoing) then it goes to state b. If no one
uses it it remains in s0.

2. The edge is in state o. The initiator cannot use it, since it has already counted
it. If the responder is in more-outgoing state, then it counts it, thus the edge
goes to state b. If, instead, it is in the equality state, the edge remains in
state o.

3. The edge is in state i. The responder cannot use it. If the initiator is in
equality state, then it counts it, thus the edge goes to state b. If, instead, it
is in the more-outgoing state, the edge remains in state i.

4. The edge is in state b. Both the initiator and the responder have used it,
thus nothing happens.

The equality state outputs 0 and the more-outgoing state outputs 1. If there
exists a node with more outgoing edges, then it will eventually remain in the
more-outgoing state giving 1 as output, otherwise all nodes will eventually re-
main in equality state (although some of them may have more incoming edges),
thus giving 0 as output. Computing that at least one more-outgoing state even-
tually remains is semilinear and the protocol, obviously, has stabilizing states,
thus Theorem 2 applies and we conclude that Mout is stably decidable. Closure
under complement implies that Mout is also stably decidable. ut

Remark 1. By symmetry, the corresponding languages N in
k , N

in

k , Kin
k and K

in

k

concerning incoming neighbors, Min = {G ∈ G | G has some node with more
incoming than outgoing neighbors} and M in are also stably decidable.

Theorem 7. (Directed Path of Constant Length) The graph language
Pk = {G ∈ G | G has at least one directed path of at least k edges} is stably
decidable for any k = O(1) (the same holds for P k).

Proof. If k = 1 the protocol that stably decides P1 is trivial, since it accepts iff
at least one interaction happens (in fact it can always accept since all graphs
have at least two nodes and they are weakly connected, and thus P1 = Gcon).
We give a general protocol, DirPath (Protocol 1), that stably decides Pk for
any constant k > 1.

Protocol 1 DirPath

1: Q = {q0, q1, 1, . . . , k}, S = {0, 1},
2: O(k) = 1, O(q) = 0, for all q ∈ Q − {k},
3: δ:

(q0, q0, 0) → (q1, 1, 1)

(q1, x, 1) → (x − 1, q0, 0), if x ≥ 2

→ (q0, q0, 0), if x = 1

(x, q0, 0) → (q1, x + 1, 1), if x + 1 < k

→ (k, k, 0), if x + 1 = k

(k, ·, ·) → (k, k, ·)
(·, k, ·) → (k, k, ·)

Intuitively, the protocol expands non-communicating active paths (they can
interact but the corresponding transitions do nothing, that’s why they are not
appearing in δ). The head of each path counts its length. If the length of an active
path ever becomes equal to k, then a state giving 1 as output is propagated. Note
that, to avoid getting stuck, the protocol keeps backtracking and even totally
releasing the active paths. Fairness condition ensures that if a path of length at
least k exists, then DirPath will eventually find it. ut

4.2 Non Stably Decidable Languages

Now we are about to prove that a specific graph language cannot be stably
decided by GDMPPs with stabilizing states. First we state and prove a useful
lemma.

Lemma 1. For any GDMPP A and any computation (infinite fair execution)
C0, C1, C2, . . . of A on G (Figure 1(a)) there exists a computation C ′

0, C
′
1, C

′
2, . . . ,

C ′
i, . . . of A on G′ (Figure 1(b)) s.t.

Ci(υ1) = C ′
2i(u1) = C ′

2i(u3)
Ci(υ2) = C ′

2i(u2) = C ′
2i(u4)

Ci(e1) = C ′
2i(t1) = C ′

2i(t3)
Ci(e2) = C ′

2i(t2) = C ′
2i(t4)

for any finite i ≥ 0.

Proof. The proof is by induction on i. We assume that initially all nodes are in
q0 and all edges in s0 (initial states). So the base case (for i = 0) holds trivially.
Now we make the following assumption: Whenever the scheduler of A on G (call
it S1) selects the edge e1 we assume that the scheduler, S2, of A on G′ takes two
steps; it first selects t1 and then selects t3. Whenever S1 selects the edge e2, S2

first selects t2 and then t4. Formally, if Ci−1
e1→ Ci then C ′

2(i−1)

t1→ C ′
2i−1

t3→ C ′
2i

and if Ci−1
e2→ Ci then C ′

2(i−1)

t2→ C ′
2i−1

t4→ C ′
2i for every finite i ≥ 1. Obviously,

S2 is not a fair scheduler so to be able to talk about computation we only require
this predetermined behavior to be followed by S2 for a finite number of steps.
After this finite number of steps, S2 goes on arbitrarily but in a fair manner.

Now assume that all conditions are satisfied for some finite step i (inductive
hypothesis). We will prove that the same holds for step i + 1 to complete the
proof (inductive step). There are two cases:

1. Ci
e1→ Ci+1 (i.e. in step i + 1 S1 selects the edge e1): Then we know that S2

first selects t1 and then t3 (in its corresponding steps 2i+1 and 2i+2). That is,
its first transition is C ′

2i
t1→ C ′

2i+1 and its second is C ′
2i+1

t3→ C ′
2(i+1). But from

the inductive hypothesis we know that C ′
2i(u1) = Ci(υ1), C ′

2i(u2) = Ci(υ2)
and C ′

2i(t1) = Ci(e1) which simply means that interaction e1 on G has
the same effect as interaction t1 on G′ (u1 has the same state as υ1, u2

as υ2 and t1 as e1). Thus, C ′
2i+1(u1) = Ci+1(υ1), C ′

2i+1(u2) = Ci+1(υ2)
and C ′

2i+1(t1) = Ci+1(e1). Moreover, in this step t3 and both its endpoints
do not change state (since the interaction concerned t1), thus C ′

2i+1(u3) =
C ′

2i(u3) = Ci(υ1) (the last equation comes from the inductive hypothesis),
C ′

2i+1(u4) = C ′
2i(u4) = Ci(υ2) and C ′

2i+1(t3) = C ′
2i(t3) = Ci(e1). When in

the next step S2 selects t3, t1 and both its endpoints do not change state, thus
C ′

2(i+1)(u1) = C ′
2i+1(u1) = Ci+1(υ1), C ′

2(i+1)(u2) = C ′
2i+1(u2) = Ci+1(υ2)

and C ′
2(i+1)(t1) = C ′

2i+1(t1) = Ci+1(e1). Now let’s see what happens to t3
and its endpoints. Before the interaction the state of u3 is Ci(υ1), the state
of u4 is Ci(υ2) and the state of t3 is Ci(e1), which means that, in C ′

2(i+1), u3

has gone to Ci+1(υ1), u4 to Ci+1(υ2) and t3 to Ci+1(e1). Finally, t2 and t4
have not participated in any of the two interactions of S2 and thus they have
maintained their states, that is C ′

2(i+1)(t2) = C ′
2i(t2) = Ci(e2) = Ci+1(e2)

(the last two equations follow from the inductive hypothesis and the fact
that, in step i + 1, S1 selects e1 which means that e2 maintains its state,
respectively), and similarly C ′

2(i+1)(t4) = Ci+1(e2).

2. Ci
e2→ Ci+1 (i.e. in step i + 1 S1 selects the edge e2): This case is symmetric

to the previous one.
ut

(a) Graph G (b) Graph G′

Fig. 1. G ∈ 2C and G′ /∈ 2C.

Let now A be a GDMPP that stably decides the graph language 2C = {G ∈ G
| G has at least two nodes u, υ s.t. both (u, υ), (υ, u) ∈ E(G) (in other words, G
has at least one 2-cycle)}. So for any computation of A on G, after finitely many
steps, both υ1 and υ2 go to some state that outputs 1, since G ∈ 2C, and do not
change their output value in any subsequent step (call the corresponding output
stable configuration Ci, where i is finite). But according to Lemma 1 there exists
a computation of A on G′ that under configuration C ′

2i has u1, u2, u3 and u4

giving output 1. We use this fact to prove the following impossibility result.

Theorem 8. There exists no GDMPP with stabilizing states to stably decide
the graph language 2C = {G ∈ G | G has at least two nodes u, υ s.t. both
(u, υ), (υ, u) ∈ E(G)}.

Proof. Let A be a GDMPP with stablizing states that stably decides 2C. It
follows that when A runs on G (Figure 1(a)) after a finite number of steps υ1 and
υ2 obtain two states w.l.o.g. q1 and q2, respectively, that output 1 (since A stably
decides 2C) and do not change in any subsequent step (since A has stabilizing
states). Assume that at that point e1 is in s1 and e2 in s′1. Assume also that
there exists a subset S1 = {s1, s2, . . . , sk} of S, of edge states that can be reached
by subsequent interactions of the pair (υ1, υ2) and a subset S2 = {s′1, s′2, . . . , s′l}
of S, of edge states that can be reached by subsequent interactions of the pair
(υ2, υ1), where k and l are both constants independent of n (note that S1 and
S2 are not necessarily disjoint). It follows that for all si ∈ S1, (q1, q2, si) →
(q1, q2, sj), where sj ∈ S1, and for all s′i ∈ S2, (q2, q1, s

′
i) → (q2, q1, s

′
j), where

s′j ∈ S2. In words, none of these reachable edge states can be responsible for a
change in some agent’s state. According to Lemma 1 there exists a computation
of A on G′ (Figure 1(b)) such that after a finite number of steps u1, u3 are in q1,
u2, u4 are in q2, t1, t3 are in s1 and t2, t4 are in s′1. Since A stably decides 2C, at
some subsequent finite step (after we let the protocol run in a fair manner in G′),

some agent obtains a new state q3, since if it didn’t then all agents would always
remain to states q1 and q2 that output 1 (but in G′ there is no 2-cycle and such a
decision is wrong). This must happen through some interaction of the following
two forms: (i) (q1, q2, si), where si ∈ S1 and (ii) (q2, q1, s

′
i), where s′i ∈ S2.

But this is a contradiction, since we showed earlier that no such interaction can
modify the state of any of its end points. Intuitively, if there exists some way for
A to modify one of q1 and q2 in G′ then there would also exist some way for A
to modify one of q1 and q2 in G, after the system has obtained stabilizing states
there, which is an obvious contradiction. ut

5 Graphs not even weakly connected

In this section, our universe is H and, thus, a graph language can only be a subset
of H. Any disconnected graph G in H consists of (weakly or strongly connected)
components G1, G2, . . . , Gt, where t ≥ 2 (note also that any component must
have at least two nodes, to allow computation).

Lemma 2. For any nontrivial graph language L, there exists some disconnected
graph G in L where at least one component of G does not belong to L or there
exists some disconnected graph G′ in L where at least one component of G′ does
not belong to L (or both).

Proof. Let L be such a nontrivial graph language and assume that the statement
does not hold. Then for any disconnected graph in L, all of its components also
belong to L and for any disconnected graph in L, all of its components also
belong to L. There are two main cases:

1. L contains all connected graphs. But L is nontrivial which means that it
must contain at least one disconnected graph. We know that for any discon-
nected graph in L all of its connected components belong to L, but this is a
contradiction, since all connected graphs belong to L.

2. L does not contain all connected graphs. There are now two possible sub-
cases:
(a) L contains at least one connected graph (but not all). This means that

L contains also at least one connected graph. Let G′ = (V ′, E′) be a
connected graph from L and G′′ = (V ′′, E′′) be a connected graph from
L. The disjoint union of G′ and G′′, U = (V ′ ∪ V

′′
, E′ ∪E

′′
) is a discon-

nected graph consisting of two connected components, one belonging to
L and one to L. U itself must belong in one of L and L implying that all
of its components must belong to L or all to L, which is a contradiction.

(b) L contains no connected graph. Thus, since L is nontrivial, it contains
at least one disconnected graph whose connected components belong to
L. But all connected graphs belong to L which is a contradiction.

ut

Theorem 9. Any nontrivial graph language L ⊂ H is not stably decidable by
the GDMPP model.

Proof Idea. The proof of the result is based on the very simple observation that
in disconnected graphs, the various components cannot communicate with each
other. Then Lemma 2 can be used to argue that a language (or its complement)
must contain at least one disconnected graph with a component not in the lan-
guage, so any protocol making some decision on the whole graph would make
the opposite decision on the component (since this component does not belong
to the language and is isolated from the other components), which is contradic-
tory. ut

Proof. Let L be such a language and assume that there exists a GDMPP AL

that stably decides it. Thus, AL has eventually all the agents of G giving output
1 if G ∈ L and all giving output 0 if G /∈ L. Moreover, the protocol AL that has
the output map of AL complemented stably decides L. Those GDMPPs (and
in fact any GDMPP) have no way to transmit data between agents of different
components when run on disconnected graphs. In fact it is trivial to see that,
when run on disconnected graphs, those protocols essentially run individually on
the different components of those graphs. This means that when, for example,
AL runs on a disconnected graph G, where G has at least two components
G1, G2, . . . , Gt, then AL runs in t different copies, one for each component, and
each such copy stably decides the membership of the corresponding component
(on which it runs on) in L. The same holds for AL. By Lemma 2 there exists at
least one disconnected graph in L with at least one component in L or at least
one disconnected graph in L with at least one component in L. If L contains
such a disconnected graph then, obviously, AL when run on this graph, call it G,
has eventually all the nodes of the component(s) in L giving 0 as output. This
is a contradiction, because G ∈ L and AL stably decides L, which means that
all agents should eventually output 1. If L contains such a disconnected graph
then the contradiction is symmetric. ut

As an immediate consequence we get the following corollary:

Corollary 1. The graph language C = {G ∈ H | G is (weakly) connected} is
not GDMPP-decidable.

Proof. C is a nontrivial graph language and Theorem 9 applies. ut

6 Future Work

Whether the graph language 2C (Theorem 8) is not stably decidable by the
GDMPP model in the general case remains an interesting open problem. If it
were, we believe that proving the undecidability of many other properties, like
kC (all graphs with at least one directed cycle of length k) and k-transivity,
would become an easy next step. Our primary focus is to eventually provide a
complete characterization of the class of stably decidable graph languages in the
weakly-connected case. Moreover, consider the variant of the GDMPP model in
which the communication graph G is always complete and an edge initialization
function ι : E → {0, 1} indicates a subgraph of G whose membership in a
language is sought. What are the stably decidable graph languages here?

References

1. D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, and R. Peralta. Sta-
bly computable properties of network graphs. In Proc. Distributed Computing in
Sensor Systems: 1st IEEE International Conference, pages 63-74, 2005.

2. D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation in
networks of passively mobile finite-state sensors. In 23rd Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 290-299, New York, NY,
USA, 2004. ACM.

3. D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):
235-253, 2006.

4. D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols
with a leader. Distributed Computing, 21(3): 183-199, Sept. 2008.

5. D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semi-
linear. In Proc. 25th Annual ACM Symposium on Principles of Distributed Com-
puting, pages 292-299, 2006.

6. D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power
of population protocols. Distributed Computing, 20(4): 279-304, November 2007.

7. J. Aspnes and E. Ruppert. An introduction to population protocols. Bulletin of the
European Association for Theoretical Computer Science, 93:98-117, October 2007.
Columns: Distributed Computing, Editor: M. Mavronicolas.

8. J. Beauquier, J. Clement, S. Messika, L. Rosaz, and B. Rozoy. Self-stabilizing
counting in mobile sensor networks. Technical Report 1470, LRI, Université Paris-
Sud 11, 2007.

9. O. Bournez, P. Chassaing, J. Cohen, L. Gerin, and X. Koegler. On the convergence
of population protocols when population goes to infinity. To appear in Applied
Mathematics and Computation, 2009.

10. I. Chatzigiannakis, S. Dolev, S. P. Fekete, O. Michail, and P. G. Spirakis. Not all
fair probabilistic schedulers are equivalent. In 13th International Conference On
Principles Of DIstributed Systems (OPODIS), pages 33-47, 2009.

11. I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, and P. G. Spirakis.
All symmetric predicates in NSPACE(n2) are stably computable by the medi-
ated population protocol model. FRONTS Technical Report FRONTS-TR-2010-
17, http://fronts.cti.gr/aigaion/?TR=155, April 2010.

12. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Brief announcement: decidable
graph languages by mediated population protocols. In 23rd International Sympo-
sium on Distributed Computing (DISC), Elche, Spain, Sept. 2009.

13. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Mediated population proto-
cols. In 36th International Colloquium on Automata, Languages and Programming
(ICALP), pages 363-374, Rhodes, Greece, 2009.

14. I. Chatzigiannakis and P. G. Spirakis. The dynamics of probabilistic population
protocols. In Distributed Computing, 22nd International Symposium, DISC, volume
5218 of Lecture Notes in Computer Science, pages 498-499, 2008.

15. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and E. Ruppert. When birds
die: Making population protocols fault-tolerant. In Proc. 2nd IEEE International
Conference on Distributed Computing in Sensor Systems, pages 51-66, 2006.

