
Simple and Fast Approximate Counting and
Leader Election in Populations?

Othon Michail1, Paul G. Spirakis1,2, and Michail Theofilatos1

1 Department of Computer Science, University of Liverpool, UK
2 Computer Engineering and Informatics Department, University of Patras, Greece
Email: {Othon.Michail, P.Spirakis, Michail.Theofilatos}@liverpool.ac.uk

Abstract. We study the problems of leader election and population
size counting for population protocols: networks of finite-state anony-
mous agents that interact randomly under a uniform random scheduler.
We provide simple protocols for approximate counting of the size of the
population and for leader election. We show a protocol for leader elec-

tion that terminates in O(log2 n
logm

) parallel time, where 1 ≤ m ≤ n is a
parameter, using O(max{m, logn}) states. By adjusting the parameter
m between a constant and n, we obtain a single leader election protocol
whose time and space can be smoothly traded off between O(log2 n) to
O(logn) time and O(logn) to O(n) states. We also give a protocol which
provides an upper bound n̂ of the size n of the population, where n̂ is at
most na for some constant a > 1. This protocol assumes the existence of
a unique leader in the population and stabilizes in Θ(logn) parallel time,
using constant number of states in every node, except from the unique
leader which is required to use Θ(log2 n) states.

Keywords: population protocol, epidemic, leader election, counting, approxi-
mate counting, polylogarithmic time protocol

1 Introduction

Population protocols [1] are networks that consist of very weak computational
entities (also called nodes or agents), regarding their individual capabilities.
These networks have been shown that are able to construct complex shapes [2]
and perform complex computational tasks when they work collectively. Leader
Election, which is a fundamental problem in distributed computing, is the pro-
cess of designating a single agent as the coordinator of some task distributed
among several nodes. The nodes communicate among themselves in order to de-
cide which of them will get into the leader state. Counting is also a fundamental

? All authors were supported by the EEE/CS initiative NeST. The last author was also
supported by the Leverhulme Research Centre for Functional Materials Design. This
work was partially supported by the EPSRC Grant EP/P02002X/1 on Algorithmic
Aspects of Temporal Graphs.

problem in distributed computing, where nodes must determine the size n of the
population. Finally, we call Approximate Counting the problem in which nodes
must determine an estimation k of the population size n. Counting can be then
considered as a special case of population size estimation, where k = n.

Many distributed tasks require the existence of a leader prior to the execution
of the protocol and, furthermore, some knowledge about the system (for instance
the size of the population) can also help to solve these tasks more efficiently with
respect both to time and space.

Consider the setting in which an agent is in an initial state a, the rest n− 1
agents are in state b and the only existing transition is (a, b)→ (a, a). This is the
one-way epidemic process and it can be shown that the expected time to conver-
gence under the uniform random scheduler is Θ(n log n) (e.g., [3]), thus Θ(log n)
parallel time. Here, parallel time is the total number of interactions divided by
n. In this work, we make an extensive use of epidemics, which means that infor-
mation is being spread throughout the population, thus all nodes will obtain this
information in O(log n) expected parallel time. We use this property to construct
an algorithm that solves the Leader Election problem. In addition, by observing
the rate of the epidemic spreading under the uniform random scheduler, we can
extract valuable information about the population. This is the key idea of our
Approximate Counting algorithm.

1.1 Related Work

The framework of population protocols was first introduced by Angluin et al. [1]
in order to model the interactions in networks between small resource-limited
mobile agents. When operating under a uniform random scheduler, population
protocols are formally equivalent to a restricted version of stochastic Chemical
Reaction Networks (CRNs), which model chemistry in a well-mixed solution [4].
“CRNs are widely used to describe information processing occurring in natural
cellular regulatory networks, and with upcoming advances in synthetic biology,
CRNs are a promising programming language for the design of artificial molec-
ular control circuitry” [5,6]. Results in both population protocols and CRNs can
be transfered to each other, owing to a formal equivalence between these models.

Angluin et al. [7] showed that all predicates stably computable in popula-
tion protocols (and certain generalizations of it) are semilinear. Semilinearity
persists up to o(log log n) local space but not more than this [8]. Moreover, the
computational power of population protocols can be increased to the commu-
tative subclass of NSPACE(n2), if we allow the processes to form connections
between each other that can hold a state from a finite domain [9], or by equip-
ping them with unique identifiers, as in [10]. For introductory texts to population
protocols the interested reader is encouraged to consult [11,9] and [12] (the lat-
ter discusses population protocols and related developments as part of a more
general overview of the emerging theory of dynamic networks).

Optimal algorithms, regarding the time complexity of fundamental tasks in
distributed networks, for example leader election and majority, is the key for
many distributed problems. For instance, the help of a central coordinator can

2

lead to simpler and more efficient protocols [3]. There are many solutions to the
problem of leader election, such as in networks with nodes having distinct labels
or anonymous networks [13,14,15,16,17].

Although the availability of an initial leader does not increase the compu-
tational power of standard population protocols (in contrast, it does in some
settings where faults can occur [18]), still it may allow faster computation. Specif-
ically, the fastest known population protocols for semilinear predicates without
a leader take as long as linear parallel time to converge (Θ(n)). On the other
hand, when the process is coordinated by a unique leader, it is known that
any semilinear predicate can be stably computed with polylogarithmic expected
convergence time (O(log5 n)) [19].

For several years, the best known algorithm for leader election in population
protocols was the pairwise-elimination protocol of Angluin et al. [1], in which all
nodes are leaders in state l initially and the only effective transition is (l, l) →
(l, f). This protocol always stabilizes to a configuration with unique leader, but
this takes on average linear time. Recently, Doty and Soloveichik [20] proved
that not only this, but any standard population protocol requires linear time
to solve leader election. This immediately led the research community to look
into ways of strengthening the population protocol model in order to enable the
development of sub-linear time protocols for leader election and other problems
(note that Belleville, Doty, and Soloveichik [21] recently showed that such linear
time lower bounds hold for a larger family of problems and not just for leader
election). Fortunately, in the same way that increasing the local space of agents
led to a substantial increase of the class of computable predicates [8], it has
started to become evident that it can also be exploited to substantially speed-up
computations. Alistarh and Gelashvili [15] proposed the first sub-linear leader
election protocol, which stabilizes in O(log3 n) parallel time, assuming O(log3 n)
states at each agent. In a very nice work, Gasieniec and Stachowiak [16] designed
a space optimal (O(log log n) states) leader election protocol, which stabilises in
O(log2 n) parallel time. They use the concept of phase clocks (introduced in
[3] for population protocols), which is a synchronization and coordination tool
in distributed computing. General characterizations, including upper and lower
bounds, of the trade-offs between time and space in population protocols were
recently achieved in [22]. Moreover, some papers [23,24] have studied leader
election in the mediated population protocol model.

For counting, the most studied case is that of self-stabilization, which makes
the strong adversarial assumption that arbitrary corruption of memory is possi-
ble in any agent at any time, and promises only that eventually it will stop. Thus,
the protocol must be designed to work from any possible configuration of the
memory of each agent. It can be shown that counting is impossible without hav-
ing one agent (the “base station”) that is protected from corruption [25]. In this
scenario Θ(n log n) time is sufficient [26] and necessary [27] for self-stabilizing
counting.

In the less restrictive setting in which all nodes start from the same state
(apart possibly from a unique leader and/or unique ids), not much is known.

3

In a recent work, Michail [28] proposed a terminating protocol in which a pre-
elected leader equipped with two n-counters computes an approximate count
between n/2 and n in O(n log n) parallel time with high probability. The idea is
to have the leader implement two competing processes, running in parallel. The
first process counts the number of nodes that have been encountered once, the
second process counts the number of nodes that have been encountered twice,
and the leader terminates when the second counter catches up the first. In the
same paper, also a version assuming unique ids instead of a leader was given.

A uniform protocol for exact population counting, but much more compli-
cated than here is provided by our team and other co-authors in [29].

The task of counting has also been studied in the related context of worst-case
dynamic networks [30,31,32,33,34].

1.2 Contribution

In this work we employ the use of simple epidemics in order to provide efficient
solutions to approximate counting the size of a population of agents and also to
leader election in populations. Our model is that of population protocols. Our
goal for both problems is to get polylogarithmic parallel time and to also use
small memory per agent. First, we show how to approximately count a popula-
tion fast (with a leader) and then we show how to elect a leader (very fast) if
we have a crude population estimate.
(a) We start by providing a protocol which provides an upper bound n̂ of the
size n of the population, where n̂ is at most na for some a > 1. This protocol
assumes the existence of a unique leader in the population. The runtime of the
protocol until stabilization is Θ(log n) parallel time. Each node except from the
unique leader uses only a constant number of states. However, the leader is re-
quired to use Θ(log2 n) states.
(b) We then look into the problem of electing a leader. We assume an approx-
imate knowledge of the size of the population (i.e., an estimate n̂ of at most
na, where n is the population size) and provide a protocol (parameterized by
the size m of a counter for drawing local random numbers) that elects a unique

leader w.h.p. in O(log2 n
logm) parallel time, with number of states O(max{m, log n})

per node.
(c) Finally, we combine our two protocols in order to provide a size oblivious

protocol which elects a leader in O(log2 n
logm) parallel time.

2 The model

In this work, the system consists of a population V of n distributed and anony-
mous (i.e., do not have unique IDs) processes, also called nodes or agents, that
are capable to perform local computations. Each of them is executing as a de-
terministic state machine from a finite set of states Q according to a transition
function δ : Q×Q→ Q×Q. Their interaction is based on the probabilistic (uni-
form random) scheduler, which picks in every discrete step a random edge from
the complete graph G on n vertices. When two agents interact, they mutually

4

access their local states, updating them according to the transition function δ.
The transition function is a part of the population protocol which all nodes store
and execute locally.

The time is measured as the number of steps until stabilization, divided
by n (parallel time). The protocols that we propose do not enable or disable
connections between nodes, in contrast with [2], where Michail and Spirakis
considered a model where a (virtual or physical) connection between two pro-
cesses can be in one of a finite number of possible states. The transition function
that we present throughout this paper, follows the notation (x, y) → (z, w),
which refers to the process states before (x and y) and after (z and w) the
interaction, that is, the transition function maps pairs of states to pairs of states.

The Leader Election Problem. The problem of leader election in distributed
computing is for each node eventually to decide whether it is a leader or not
subject to only one node decides that it is the leader. An algorithm A solves the
leader election problem if eventually the states of agents are divided into leader
and follower, a leader remains elected and a follower can never become a leader.
In every execution, exactly one agent becomes leader and the rest determine
that they are not leaders. All agents start in the same initial state q and the
output is O = {leader, follower}. A randomized algorithm R solves the leader
election problem if eventually only one leader remains in the system w.h.p.

Approximate Counting Problem. We define as Approximate Counting the prob-
lem in which a leader must determine an estimation n̂ of the population size,
where n̂

a < n < n̂. We call the constant a the estimation parameter.

3 Fast Counting with a unique leader

In this section we present our Approximate Counting protocol. The protocol is
presented in Section 3.1. In Section 3.2 we prove the correctness of our protocol
and finally, in Section 5, experiments that support our analysis can be found.

3.1 Abstract description and protocol

In this section, we construct a protocol which solves the problem of approxi-
mate counting. Our probabilistic algorithm for solving the approximate count-
ing problem requires a unique leader who is responsible to give an estimation
on the number of nodes. It uses the epidemic spreading technique and it stabi-
lizes in O(log n) parallel time. There is initially a unique leader l and all other
nodes are in state q. The leader l stores two counters in its local memory, ini-
tially both set to 0. We use the notation l(cq,ca), where cq is the value of the
first counter and ca is the value of the second one. The leader, after the first
interaction starts an epidemic by turning a q node into an a node. Whenever a
q node interacts with an a node, its state becomes a ((a, q) → (a, a)). The first
counter cq is being used for counting the q nodes and the second counter ca for
the a nodes, that is, whenever the leader l interacts with a q node, the value of
the counter cq is increased by one and whenever l interacts with an a node, ca

5

is increased by one. The termination condition is cq = ca and then the leader
holds a constant-factor approximation of log n, which we prove that with high
probability is 2cq+1 = 2ca+1.
We first describe a simple terminating protocol that guarantee with high prob-
ability n−a ≤ ne ≤ na, for a constant a, i.e., the population size estimation is
polynomially close to the actual size. Chernoff bounds then imply that repeating
this protocol a constant number of times suffices to obtain n/2 ≤ ne ≤ 2n with
high probability.

Protocol 1 Approximate Counting (APC)

Q = {q, a, l(cq,ca)}
δ :
(l(0,0), q)→ (l(1,0), a)
(a, q)→ (a, a)
(l(cq,ca), q)→ (l(cq+1,ca), q), if cq > ca
(l(cq,ca), a)→ (l(cq,ca+1), a), if cq > ca
(l(cq,ca), ·)→ (halt, ·), if cq = ca

3.2 Analysis

Lemma 1. When half or less of the population has been infected, with high
probability cq > ca. In fact, cq − ca ≈ ln (n/2)−

√
log n > 0.

The previous results show that the counter cq is a function of n and with
high probability greater than ca until half of the population becomes infected.
Chernoff bounds show that w.h.p. cq ≈ ln (n/2), while ca ≈ ln 2 and w.h.p.
ca <

√
log n.

Corollary 1. APC does not terminate w.h.p. until more than half of the popu-
lation becomes infected.

When the infected agents are in the majority, cq is increased by a small con-
stant number, while ca eventually catches up the first counter. The termination
condition (cq = ca) is satisfied and the leader gives a constant-factor approxi-
mation of log n. A proof can be found in the full version of the paper.

Lemma 2. Our Approximate Counting protocol terminates after Θ(log n) par-
allel time w.h.p..

It takes Θ(log n) parallel time for half agents to become infected. At that
point, it holds that |ca − cq| = O(log n). When the a nodes are in the majority,
this difference reaches zero after Θ(log n) leader interactions. Thus, the total
parallel time to termination is Θ(log n). A proof can be found in the full version
of the paper.

Lemma 3. When half or less of the population has been infected, with high
probability cq < log (n/2) + ε and cq > log (n/2) − ε. When more than half of
the population is infected, cq is expected to increase by log 2 and w.h.p. less than
log n.

Corollary 2. When cq = ca, w.h.p. 2cq+1 is an upper bound on n.

6

4 Leader Election with approximate knowledge of n

The existence of a unique leader agent is a key requirement for many popula-
tion protocols [3] and generally in distributed computing, thus, having a fast
protocol that elects a unique leader is of high significance. In this section, we
present our Leader Election protocol, giving, at first, an abstract description 4.1,
the algorithm 4.2 and then, we present the analysis of it 4.3. Finally, we have
measured the stabilization time of this protocol for different population sizes
and the results can be found in section 5.

4.1 Abstract description

We assume that the nodes know an upper bound on the population size nb,
where n is the number of nodes and b is any big constant number.
All nodes store three variables; the round e, a random number r and a counter
c and they are able to compute random numbers within a predefined range
[1,m]. We define two types of states; the leaders (l) and the followers (f).
Initially, all nodes are in state l, indicating that they are all potential leaders.
The protocol operates in rounds and in every round, the leaders compete with
each other trying to survive (i.e., do not become followers). The followers just
copy the tuple (r, e) from the leaders and try to spread it throughout the
population. During the first interaction of two l nodes, one of them becomes
follower, a random number between 1 and m is being generated, the leader
enters the first round and the follower copies the round e and the random
number r from the leader to its local memory. The followers are only being
used for information spreading purposes among the potential leaders and they
cannot become leaders again. Throughout this paper, n denotes the population
size and m the maximum number that nodes can generate.

Information spreading. It has been shown that the epidemic spreading of
information can accelerate the convergence time of a population protocol. In this
work, we adopt this notion and we use the followers as the means of competition
and communication among the potential leaders. All leaders try to spread their
information (i.e., their round and random number) throughout the population,
but w.h.p. all of them except one eventually become followers. We say that a
node x wins during an interaction if one of the following holds:

– Node x is in a bigger round e.
– If they are both in the same round, node x has bigger random number r.

One or more leaders L are in the dominant state if their tuple (r1, e1) wins every
other tuple in the population. Then, the tuple (r1, e1) is being spread as an
epidemic throughout the population, independently of the other leaders’ tuples
(all leaders or followers with the tuple (r1, e1) always win their competitors).
We also call leaders L the dominant leaders.

7

Transition to next round. After the first interaction, a leader l enters the
first round. We can group all the other nodes that l can interact with into three
independent sets.

– The first group contains the nodes that are in a bigger round or have a bigger
random number, being in the same round as l. If the leader l interacts with
such a node, it becomes follower.

– The second group contains the nodes that are in a smaller round or have a
smaller random number, being in the same round as l. After an interaction
with a node in this group, the other node becomes a follower and the leader
increases its counter c by one.

– The third group contains the followers that have the same tuple (r, e) as l.
After an interaction with a node in this group, l increases its counter c by
one.

As long as the leader l survives (i.e., does not become a follower), it increases
or resets its counter c, according to the transition function δ. When the counter
c reaches b log n, where nb is the upper bound on the population size, it resets
it and round r is increased by one. The followers can never increase their round
or generate random numbers.

Stabilization. The protocol that we present stabilizes, as the whole population
will eventually reach in a final configuration of states. To achieve this, when the

round of a leader l reaches d 2b logn−log(b log2 n)
logm e, l stops increasing its round r,

unless it interacts with another leader. This rule guarantees the stabilization of
our protocol.

4.2 The protocol

In this section, we present our Leader Election protocol. We use the notation
pr,e to indicate that node p has the random number r and is in the round e.
Also, we say that (r1, e1) > (r2, e2) if the tuple (r1, e1) wins the tuple (r2, e2). A
tuple (r1, e1) wins the tuple (r2, e2) if e1 > e2 or if they are in the same round
(e1 = e2), it holds that r1 > r2.

4.3 Analysis

The leader election algorithm that we propose, elects a unique leader after

O(log2 n
logm) parallel time w.h.p.. To achieve this, the algorithm works in stages,

called epochs throughout this paper and the number of potential leaders de-
creases exponentially between the epochs. An epoch i starts when any leader
enters the ith round (r = i) and ends when any leader enters the (i+1)th round
(r = i+ 1). Here we do the exact analysis for m = log n. This can be generalized
to any m between a constant and n.

Lemma 4. During the execution of the protocol, at least one leader will always
exist in the population.

8

Protocol 2 Leader Election

Q = {l, fr,e, lr,e} : r ∈ [1,m]
δ :

#First interaction between two nodes. One of them becomes follower and the other
remains leader. The leader generates a random number r and enters the first round
(e = 1).
(l, l)→ (lr,1, fr,1)

#A leader in round 0 always loses (i.e., becomes a follower) against a node in a
higher round.
(fr,e, l)→ (fr,e, fr,e)
(lr,e, l)→ (lr,e, fr,e), lcounter = lcounter + 1

#The winning node propagates its tuple. If a leader loses, it becomes follower.
(fr,i, fs,j)→ (fk,l, fk,l), if (r, i) > (s, j) then (k, l) = (r, i) else (k, l) = (s, j)
(lr,i, ls,j) → (lk,l, fk,l), lcounter = lcounter + 1, if (r, i) ≥ (s, j) then (k, l) =
(r, i) else (k, l) = (s, j)
(lr,i, fs,j)→ (fs,j , fs,j), if (s, j) > (r, i)
(lr,i, fs,j)→ (lr,i, fr,i), lcounter = lcounter + 1, if (r, i) > (s, j)
(lr,e, fr,e)→ (lk,j , fk,j), lcounter = lcounter + 1

#When a leader increases its counter, the following code is being executed. It
checks whether it has reached c logn. If yes, it moves to the next round, generates
a new random number and checks if it has reached the final round in order to
terminate.
if (lcounter = b logn) then{

Increase round;
Generate a new random number between 1 and m;
Reset counter to zero;

if (Round = d 2b logn−log(b log2 n)
logm

e) Stop increasing the round, unless
you interact with a leader;

}

Our protocol does not allow all nodes to become followers. A proof is in the
full version of the paper.

Lemma 5. Assume an epoch e and k leaders with the dominant tuple (r, e) in
this epoch. The expected parallel time to convergence of their epidemic in epoch
e is Θ(logn).

Lemma 6. If a counter c of a leader l reaches b log n, its epidemic will have
already been spread throughout the whole population w.h.p..

The previous lemma implies that no leader enters the next round if the
epidemic has not been spread throughout the whole population before. This is
important as we need to ensure that a non-dominant leader becomes follower by
the end of an epoch, otherwise, the number of leaders would not be decreased

9

exponentially between successive epochs. A proof can be found in the full version
of the paper.

Theorem 1. After O(logn
logm) epochs, there is a unique leader in the population

w.h.p..

The number of potential leaders decreases exponentially between the epochs,
and after O(logn

logm), a unique leader exists in the population. A proof can be
found in the full version of the paper.

Theorem 2. Our Leader Election protocol elects a unique leader in O(log2 n
log logn)

parallel time w.h.p..

Proof. There are initially n leaders in the population. During an epoch e, by
Lemma 5 the dominant tuple spreads throughout the population in Θ(log n)
parallel time, by Lemma 6 no (dominant) leader can enter to the next epoch
if their epidemic has not been spread throughout the whole population before
and by Theorem 1, there will exist a unique leader after O(logn

logm) epochs w.h.p.,

thus, for m = b log n the overall parallel time is O(log2 n
log logn). Finally, by Lemma

4, the unique leader can never become follower and according to the transition
function in Protocol 2, a follower can never become leader again.
The rule which says the leaders stop increasing their rounds if r >=
2b logn−log (b log2 n)

logm , unless they interact with another leader, implies that the

population stabilizes in O(log2 n
log logn) parallel time w.h.p. and when this happens,

there will exist only one leader in the population and eventually, our protocol
always elects a unique leader.

Remark 1. By adjusting m to be any number between a constant and n and
conducting a very similar analysis we may obtain a single leader election protocol
whose time and space can be smoothly traded off between O(log2 n) to O(log n)
time and O(log n) to O(n) space.

4.4 Dropping the assumption of knowing logn

Call a population protocol size-oblivious if its transition function does not de-
pend on the population size. Our leader election protocol requires a rough esti-
mate on the size of the population in order to elect a leader in polylogarithmic
time, while our approximate counting protocol requires a unique leader who ini-
tiates the epidemic process and then gives an upper bound on the population
size. In this section, we combine our Approximate Counting and Leader Elec-
tion protocols in order to construct a size-oblivious protocol that elects a unique

leader in O(log2 n
logm) parallel time and can be executed in any uniform model of

population protocols.
To combine our protocols, in the our new Leader Election algorithm, the nodes
instead of using the c counter, as described in Section 4.1, they use two counters
cq and ca. The first counter is being used in order to count the non-followers and

10

the latter to count the followers. Initially, cq = 1 and ca = 0. Let l be a leader
with the tuple (r1, e1). As in Section 4, a tuple (r1, e1) is bigger that the tuple
(r2, e2) if r1 > r2 or if r1 = r2 and e1 > e2. We can group all the other nodes
that l can interact with into three independent sets.

– (r1, e1) > (r2, e2). l increases its cq counter by one.
– (r1, e1) = (r2, e2). l increases its ca counter by one.
– (r1, e1) < (r2, e2). l becomes follower and resets its counters to zero.

When cq = ca holds, l increases its round e1 by one and resets cq to one and ca to
zero. This process simulates the behavior of our Approximate Counting protocol,
meaning that when cq = ca holds, the epidemic of the dominant leaders will
have been spread throughout the whole population. Regarding the termination
condition, where log n is needed, the nodes store a variable s which contains
the average value of cq. To this end, whenever a leader enters from round e1 to
e1 + 1, it updates the value of s as follows:

s =
s(e1 − 1) + cq

e1
(1)

where s is initially zero. When e1 = d as
logme holds (a ≥ 1 is a small constant

number), the leader stops increasing it’s round and the population stabilizes in
a configuration with a unique leader. Finally, we show that the variable s of the
unique leader is a function of log n. Even though we do not provide any proof
of correctness of this protocol, in Section 5 we provide experiments that confirm
this behavior.

5 Experiments

We have also measured the stabilization time of all of our protocols for different
network sizes. We have executed them 100 times for each population size n,
where n = 2i and i = [4, 14]. Regarding the Leader Election algorithm which
assumes some knowledge on the population size, the results (Figure. 1) support
our analysis and confirm its logarithmic behavior. In these experiments, the
maximum number that the nodes could generate was m = 100. Finally, all

executions elected a unique leader in a log2 n
logm parallel time.

The stabilization time of our Approximate Counting with a unique leader pro-
tocol is shown in Figure 2a. The algorithm always gives a constant factor ap-
proximation of log n, as shown in Figure 2b. Moreover, in Figure 3, we show the
values of the counters cq and ca, when half of the population has been infected
by the epidemic. These experiments support our analysis, while the counter of
infected nodes reaches a constant number and the counter of non-infected nodes
reaches a value close to log n.
Regarding our protocol for leader election with no knowledge of log n, the results

are shown in Figure 4. All executions elected a unique leader after a log2 n
logm parallel

11

time, as shown in Figure 4a. Finally, as shown in Figure 4b, the unique leader

holds a constant factor upper bound on log n after a log2 n
logm parallel time.

Fig. 1: Leader Election with approximate knowledge of n. Both axes are loga-
rithmic. The dots represent the results of individual experiments and the line
represents the average values for each network size.

(a) Convergence time. (b) Estimations and actual sizes of the pop-
ulation.

Fig. 2: Approximate Counting with a unique leader.

12

Fig. 3: Approximate Counting with a unique leader. Counters cq and ca when
half of the population has been infected by the epidemic.

(a) Convergence time. (b) Upper bounds and actual sizes of logn

Fig. 4: Composition of our Approximate Counting and Leader Election protocols.

6 Open Problems

In our leader election protocol, when two nodes interact with each other, the
amount of data which is transfered is O(max{log log n, logm}) bits. In certain
applications of population protocols, the processes are not able to transfer ar-
bitrarily large amount of data during an interaction. Can we design a polyloga-
rithmic time population protocol for the problem of leader election that satisfies
this requirement?

13

Acknowledgments We would like to thank David Doty and Mahsa Eftekhari
for their valuable comments and suggestions during the development of this
research work.

References

1. Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Per-
alta. Computation in networks of passively mobile finite-state sensors. Distributed
Computing, 18(4):235–253, March 2006.

2. Othon Michail and Paul G. Spirakis. Simple and efficient local codes for distributed
stable network construction. Distributed Computing, 29(3):207–237, 2016.

3. Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by popula-
tion protocols with a leader. Distributed Computing, 21(3):183–199, 2008.

4. David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computa-
tion with finite stochastic chemical reaction networks. Nat. Comput. 7, 2008.

5. Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function compu-
tation with chemical reaction networks. Nat. Comput. 7, pages 517 – 534, 2014.

6. David Doty. Timing in chemical reaction networks. In Proc. of the 25th Annual
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 772–784, 2014.

7. Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computa-
tional power of population protocols. Distributed Computing, 20(4), 2007.

8. Ioannis Chatzigiannakis, Othon Michail, Stavros Nikolaou, Andreas Pavlogiannis,
and Paul G. Spirakis. Passively mobile communicating machines that use restricted
space. Theoretical Computer Science, 412(46):6469–6483, October 2011.

9. Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. New Models for
Population Protocols. N. A. Lynch (Ed), Synthesis Lectures on Distributed Com-
puting Theory. Morgan & Claypool, 2011.

10. Rachid Guerraoui and Eric Ruppert. Names trump malice: Tiny mobile agents
can tolerate byzantine failures. In ICALP. Springer, 2009.

11. James Aspnes and Eric Ruppert. An introduction to population protocols. In
Middleware for Network Eccentric and Mobile Applications. Springer-Verlag, 2009.

12. Othon Michail and Paul G Spirakis. Elements of the theory of dynamic networks.
Communications of the ACM, 61(2), 2018.

13. Dana Angluin. Local and global properties in networks of processors. In Proceedings
of the 12th annual ACM symposium on Theory of computing (STOC). ACM, 1980.

14. Chagit Attiya, Marc Snir, and Manfred Warmuth. Computing on an anonymous
ring. PODC ’85. ACM, 1985.

15. Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in popula-
tion protocols. In ICALP 2015, volume 9135 of Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg, 2015.

16. Leszek Gasieniec and Grzegorz Stachowiak. Fast space optimal leader election in
population protocols. In SODA 2018: ACM-SIAM Symposium on Discrete Algo-
rithms, 2018. to appear.

17. Michael Fischer and Hong Jiang. Self-stabilizing leader election in networks of
finite-state anonymous agents. OPODIS, vol 4305, 2006.

18. Giuseppe Antonio Di Luna, Paola Flocchini, Taisuke Izumi, Tomoko Izumi, Nicola
Santoro, and Giovanni Viglietta. Population protocols with faulty interactions: the
impact of a leader. In CIAC 2017. Springer, 2017.

19. Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates
are semilinear. In PODC 2006, New York, NY, USA, 2006. ACM Press.

14

20. David Doty and David Soloveichik. Stable leader election in population proto-
cols requires linear time. In International Symposium on Distributed Computing
(DISC), pages 602–616. Springer, 2015. Also in Distributed Computing, 2016.

21. Amanda Belleville, David Doty, and David Soloveichik. Hardness of Computing
and Approximating Predicates and Functions with Leaderless Population Proto-
cols. In ICALP 2017, volume 80 of Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

22. Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L
Rivest. Time-space trade-offs in population protocols. In Proceedings of the
28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2560–
2579. SIAM, 2017.

23. Ryu Mizoguchi, Hirotaka Ono, Shuji Kijima, and Masafumi Yamashita. On space
complexity of self-stabilizing leader election in mediated population protocol. Dis-
tributed Computing, 25(6):451–460, 2012.

24. Shantanu Das, Giuseppe Antonio Di Luna, Paola Flocchini, Nicola Santoro, and
Giovanni Viglietta. Mediated population protocols: Leader election and appli-
cations. In International Conference on Theory and Applications of Models of
Computation, pages 172–186. Springer, 2017.

25. Joffroy Beauquier, Julien Clement, Stephane Messika, Laurent Rosaz, and Brigitte
Rozoy. Self-stabilizing counting in mobile sensor networks with a base station. In
Distributed Computing, pages 63–76. Springer Berlin Heidelberg, 2007.

26. Joffroy Beauquier, Janna Burman, Simon Claviere, and Devan Sohier. Space-
optimal counting in population protocols. In DISC 2015: International Symposium
on Distributed Computing, pages 631–646. Springer, 2015.

27. James Aspnes, Joffroy Beauquier, Janna Burman, and Devan Sohier. Time and
Space Optimal Counting in Population Protocols. In OPODIS 2016, volume 70,
2017.

28. Othon Michail. Terminating distributed construction of shapes and patterns in a
fair solution of automata. In Proceedings of the 2015 ACM Symposium on Princi-
ples of Distributed Computing, pages 37–46, 2015. Also in Distributed Computing,
2017.

29. David Doty, Mahsa Eftekhari, Othon Michail, Paul G. Spirakis, and Michail The-
ofilatos. Exact size counting in uniform population protocols in nearly logarithmic
time. CoRR, abs/1805.04832, 2018.

30. Tomoko Izumi, Keigo Kinpara, Taisuke Izumi, and Koichi Wada. Space-efficient
self-stabilizing counting population protocols on mobile sensor networks. Theor.
Comput. Sci., 552:99–108, 2014.

31. Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in
dynamic networks. In Proceedings of the 42nd ACM symposium on Theory of
computing (STOC), pages 513–522. ACM, 2010.

32. Othon Michail, Ioannis Chatzigiannakis, and Paul G Spirakis. Naming and count-
ing in anonymous unknown dynamic networks. In 15th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS), pages 281–295.
Springer, 2013.

33. Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzi-
giannakis. Counting in anonymous dynamic networks under worst-case adversary.
IEEE 34th International Conference on Distributed Computing Systems (ICDCS),
2014.

34. Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro.
Time-varying graphs and dynamic networks. International Journal of Parallel,
Emergent and Distributed Systems, 27(5):387–408, 2012.

15

	Simple and Fast Approximate Counting and Leader Election in Populations

