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Abstract. In this work, we consider adversarial crash faults
of nodes in the network constructors model [Michail and Spi-
rakis, 2016]. We first show that, without further assumptions,
the class of graph languages that can be (stably) constructed
under crash faults is non-empty but small. When there is a
finite upper bound f on the number of faults, we show that
it is impossible to construct any non-hereditary graph lan-
guage and leave as an interesting open problem the hereditary
case. On the positive side, by relaxing our requirements we
prove that: (i) permitting linear waste enables to construct on
n/(2f)−f nodes, any graph language that is constructible in
the fault-free case, (ii) partial constructibility (i.e., not having
to generate all graphs in the language) allows the construction
of a large class of graph languages. We then extend the origi-
nal model with a minimal form of fault notifications, and our
main result here is a fault-tolerant universal constructor that
requires linear waste in the population. Finally, we show that
logarithmic local memories can be exploited for a no-waste
fault-tolerant simulation of any such protocol.
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1 Introduction and Related Work

In this work, we address the issue of the dynamic formation of graphs un-
der faults. We do this in a minimal setting, that is, a population of agents
running Population Protocols that can additionally activate/deactivate
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links when they meet. This model, called Network Constructors, was in-
troduced in [MS16], and is based on the Population Protocol (PP) model
[AAD+06, AAER07] and the Mediated Population Protocol (MPP) model
[MCS11]. We are interested in answering questions like the following: If
one or more faults can affect the formation process, can we always re-
stabilize to a correct graph, and if not, what is the class of graph languages
for which there exists a fault-tolerant protocol? What are the additional
minimal assumptions that we need to make in order to find fault-tolerant
protocols for a bigger class of languages?

Population Protocols run on networks that consist of computational
entities called agents (or nodes). One of the challenging characteristics
is that the agents have no control over the schedule of interactions with
each other. In a population of n agents, repeatedly a pair of agents is
chosen to interact. During an interaction their states are updated based
on their previous states. In general, the interactions are scheduled by a fair
scheduler. When the execution time of a protocol needs to be examined,
a typical fair scheduler is the one that selects interactions uniformly at
random.

Network Constructors (and its geometric variant [Mic18]) is a theoret-
ical model that may be viewed as a minimal model for programmable mat-
ter operating in a dynamic environment [MS17]. Programmable matter
refers to any type of matter that can algorithmically transform its physi-
cal properties, for example shape and connectivity. The transformation is
the result of executing an underlying program, which can be either a cen-
tralized algorithm or a distributed protocol stored in the material itself.
There is a wide range of applications, spanning from distributed robotic
systems [GKR10], to smart materials, and many theoretical models (see,
e.g., [DDG+14, DDG+18, MSS19, DLFS+19] and references therein), try
to capture some aspects of them.

The main difference between PPs and Network Constructors is that in
the PP (and the MPP) models, the focus is on computation of functions
of some input values, while Network Constructors are mostly concerned
with the stable formation of graphs that belong to some graph language.
Fault tolerance must deal with the graph topology, thus, previous results
on self-stabilizing PPs [AAFJ08, BBB13, DLFI+17, CLV+17] and MPPs
[MOKY12] do not apply here.

In [MS16], Michail and Spirakis gave protocols for several basic net-
work construction problems, and they proved several universality results
by presenting generic protocols that are capable of simulating a Turing
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Machine and exploiting it in order to stably construct a large class of
networks, in the absence of crash failures.

In this work, we examine the setting where adversarial crash faults
may occur, and we address the question of which families of graph lan-
guages can be stably formed. Here, adversarial crash faults mean that an
adversary knows the rules of the protocol and can select some node to be
removed from the population at any time. For simplicity, we assume that
the faults can only happen sequentially. This means that in every step at
most one fault may occur, as opposed to the case where many faults can
occur during each step. These cases are equivalent in the Network Con-
structors model w.l.o.g., but not in the extended version of this model
(which allows fault notifications) that we consider later.

A main difference between our work and traditional self-stabilization
approaches is that the nodes are supplied with constant local memory,
while in principle they can form linear (in the population size) number
of connections per node. Existing self-stabilization approaches that are
based on restarting techniques cannot be directly applied here [DIM93,
Dol00], as the nodes cannot distinguish whether they still have some ac-
tivated connections with the remaining nodes, after a fault has occurred.
This difficulty is the reason why it is not sufficient to just reset the state
of a node in case of a fault. In addition, in contrast to previous self-
stabilizing approaches [GK10, DT01] that are based on shared memory
models, two adjacent nodes can only store 1 bit of memory in the edge
joining them, which denotes the existence or not of a connection between
them.

Angluin et al. [AAFJ08] incorporated the notion of self-stabilization
into the population protocol model, giving self-stabilizing protocols for
some fundamental tasks such as token passing and leader election. They
focused on the goal of stably maintaining some property such as having
a unique leader or a legal coloring of the communication graph.

Delporte-Gallet et al. [DGFGR06] studied the issue of correctly com-
puting functions on the node inputs in the Population Protocol model
[AAD+06], in the presence of crash faults and transient faults that can
corrupt the states of the nodes. They construct a transformation which
makes any protocol that works in the failure-free setting, tolerant in the
presence of such failures, as long as modifying a small number of inputs
does not change the output. Guerraoui and Ruppert [GR09] introduced an
interesting model, called Community Protocol, which extends the Popula-
tion Protocol model with unique identifiers and enough memory to store
a constant number of other agents’ identifiers. They show that this model
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can solve any decision problem in NSPACE(n log n) while tolerating a
constant number of Byzantine failures.

Peleg [Pel09] studies logical structures, constructed over static graphs,
that need to satisfy the same property on the resulting structure after
node or edge failures. He distinguishes between the stronger type of fault-
tolerance obtained for geometric graphs (termed rigid fault-tolerance) and
the more flexible type required for handling general graphs (termed com-
petitive fault-tolerance). It differs from our work, as we address the prob-
lem of constructing such structures over dynamic graphs.

1.1 Our contribution

The goal of any Network Constructor (NET) protocol is to stabilize to a
graph that belongs to (or satisfies) some graph language L, starting from
an initial configuration where all nodes are in the same state and all con-
nections are disabled. In [MS16], only the fault-free case was considered.
In this work, we formally define the model that extends NETs allowing
crash failures, and we examine protocols in the presence of such faults.
Whenever a node crashes, it is removed from the population, along with
all its activated edges. This leaves the remaining population in a state
where some actions may need to be taken by the protocol in order to
eventually stabilize to a correct network.

We first study the constructive power of the original NET model in the
presence of crash faults. We show that the class of graph languages that
is in principle constructible is non-empty but very small: for a potentially
unbounded number of faults, we show that the only stably constructible
language is the Spanning Clique. We also prove a strong impossibility
result, which holds even if the size of graphs that the protocol outputs in
populations of size n need only grow with n (the remaining nodes being
waste). For a bounded number of faults, we show that any non-hereditary
graph language is impossible to be constructed. However, we show that by
relaxing our requirements we can extend the class of constructible graph
languages. In particular, permitting linear waste enables to construct on
n/(2f) − f nodes, where f is a finite upper bound on the number of
faults, any graph language that is constructible in a failure-free setting.
Alternatively, by allowing our protocols to generate only a subset of all
graphs in the language (called partial constructibility), a large class of
graph languages becomes constructible (see Section 3).

In light of the impossibilities in the Network Constructors model,
we introduce the minimal additional assumption of fault notifications. In
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particular, after a fault on some node u occurs, all nodes that maintain an
active edge with u at that time (if any) are notified. If there are no such
nodes, an arbitrary node in the population is notified. In that way, we
guarantee that at least one node in the population will sense the removal
of u. Nevertheless, some of our constructions work without notifications
in the case of a crash fault on an isolated node (Section 4).

We obtain two fault-tolerant universal constructors. One of the main
technical tools that we use in them, is a fault-tolerant construction of a
stable path topology (i.e., a line). We show that this topology is capable of
simulating a Turing Machine (abbreviated “TM” throughout this paper),
and, in the event of a fault, is capable of always reinitializing its state cor-
rectly (Section 4.1). Our protocols use a subset of the population (called
waste) in order to construct there a TM, while the graph which belongs
to the required language L is constructed in the rest of the population
(called useful space). Throughout this paper, we call waste all nodes that
do not belong to the constructed graph G ∈ L after stabilization, and
remain either isolated nodes or part of a component such as the TM.
The idea is based on [MS16], where they show several universality results
by constructing on k nodes of the population a network G1 capable of
simulating a TM, and then repeatedly drawing a random network G2 on
the remaining n − k nodes. The idea is to execute on G1 the TM which
decides the language L with input the network G2. If the TM accepts, it
outputs G2, otherwise the TM constructs a new random graph.

This allows a fault-tolerant construction of any graph accepted by a
TM in linear space, with waste min{n/2 + f(n), n}, where f(n) is the
number of faults in the execution. We finally prove that increasing the per-
missible waste to min{2n/3 + f(n), n} allows the construction of graphs
accepted by an O(n2)-space Turing Machine, which is asymptotically the
maximum simulation space that we can hope for in this model.

In the full version, we also provide a protocol Π ′ based on restarts
such that, given any network constructor Π with notifications, Π ′ is a
fault-tolerant version of Π without waste. However, the required memory
per node in this protocol is O(log n) bits.

Finally, in Section 5 we conclude and discuss further research direc-
tions opened by this work.

The following table summarizes all results proved in this paper.
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Constructible languages

Without notifications With notifications

Unbounded faults Bounded faults Unbounded faults

Only Spanning
Clique

Non-hereditary
impossibility

Fault-tolerant protocols:
Spanning Star, Cycle
Cover, Spanning Line

Strong impossibility
even with linear
waste

A representation of
any finite graph
(partial
constructibility)

Universal Fault-tolerant
Constructors (with waste)

Any constructible
graph language
with linear waste

Universal Fault-tolerant
Restart (without waste)

Table 1: Summary of our results.

Due to space constraints, several technical details are omitted from
this extended abstract. A full version with all proofs can be found at
[MST19].

2 Model and Definitions

A Network Constructor (NET) is a distributed protocol defined by a 4-
tuple (Q, q0, Qout, δ), where Q is a finite set of node-states, q0 ∈ Q is
the initial node-state, Qout ⊆ Q is the set of output node-states, and
δ : Q × Q × {0, 1} → Q × Q × {0, 1} is the transition function, where
{0, 1} is the set of edge states.

In the generic case, there is an underlying interaction graph GU =
(VU , EU ) specifying the permissible interactions between the nodes, and
on top of GU , there is a dynamic overlay graph GO = (VO, EO). A map-
ping function F maps every node in the overlay graph to a distinct un-
derlay node. In this work, GU is a complete undirected interaction graph,
i.e., EU = {uv : u, v ∈ VU and u 6= v}, while the overlay graph consists of
a population of n initially isolated nodes (also called agents).

The NET protocol is stored in each node of the overlay network,
thus, each node u ∈ GO is defined by a state q ∈ Q. Additionally, each
edge e ∈ EO is defined by a binary state (active/connected or inac-
tive/disconnected). Initially, all nodes are in the same state q0 and all
edges are inactive. The goal is for the nodes, after interacting and ac-
tivating/deactivating edges for a while, to end up with a desired stable
overlay graph, which belongs to some graph language L.
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During a (pairwise) interaction, the nodes are allowed to access the
state of their joining edge and either activate it (state = 1) or deactivate
it (state = 0). When the edge state between two nodes u, v ∈ GO is
activated, we say that u and v are connected, or adjacent at that time t,
and we write u ∼

t
v.

In this work, we present a version of this model that allows adversar-
ial crash failures. A crash (or halting) failure causes an agent to cease
functioning and play no further role in the execution. This means that all
the adjacent edges of F (u) ∈ GU are removed from EU , and, at the same
time, all the adjacent edges of u ∈ GO become inactive.

The execution of a protocol proceeds in discrete steps. In every step,
an edge e ∈ EU between two nodes F (u) and F (v) is selected by an ad-
versary scheduler, subject to some fairness guarantee. The corresponding
nodes u and v interact with each other and update their states and the
state of the edge uv ∈ GO between them, according to a joint transition
function δ. If two nodes in states qu and qv with the edge joining them in
state quv encounter each other, they can change into states q′u, q′v and q′uv,
where (q′u, q

′
v, q
′
uv) ∈ δ(qu, qv, quv). In the original model, GU is the com-

plete directed graph, which means that during an interaction, the inter-
acting nodes have distinct roles. In our protocols, we consider a more re-
stricted version, that is, symmetric transition functions, as we try to keep
the model as minimal as possible. In particular, δ(qu, qv, quv) = (a, b, c)
implies δ(qv, qu, qvu) = (b, a, c).

A configuration is a mapping C : VI ∪EI → Q ∪ {0, 1} specifying the
state of each node and each edge of the interaction graph. An execution
of the protocol on input I is a finite or infinite sequence of configurations,
C0, C1, C2, . . . , each of which is a set of states drawn from Q ∪ {0, 1}. In
the initial configuration C0, all nodes are in state q0 and all edges are
inactive. Let qu and qv be the states of the nodes u and v, and quv denote
the state of the edge joining them. A configuration Ck is obtained from
Ck−1 by one of the following types of transitions:

1. Ordinary transition: Ck = (Ck−1−{qu, qv, quv})∪{q′u, q′v, q′uv} where
{qu, qv, quv} ⊆ Ck−1 and (q′u, q

′
v, q
′
uv) ∈ δ(qu, qv, quv).

2. Crash failure: Ck = Ck−1−{qu}−{quv : uv ∈ EI} where {qu, quv} ⊆
Ck−1.

We say that C ′ is reachable from C and write C  C ′, if there is a
sequence of configurations C = C0, C1, . . . , Ct = C ′, such that Ci → Ci+1

for all i, 0 6 i < t. The fairness condition that we impose on the scheduler
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is quite simple to state. Essentially, we do not allow the scheduler to
avoid a possible step forever. More formally, if C is a configuration that
appears infinitely often in an execution, and C → C ′, then C ′ must also
appear infinitely often in the execution. Equivalently, we require that any
configuration that is always reachable is eventually reached.

We define the output of a configuration C as the graph G(C) = (V,E)
where V = {u ∈ VO : C(u) ∈ Qout} and E = {uv : u, v ∈ V, u 6=
v, and C(uv) = 1}. If there exists some step t ≥ 0 such that G(Ci) = G
for all i ≥ t, we say that the output of an execution C0, C1, . . . stabilizes
(or converges) to graph G, every configuration Ci, for i ≥ t, is called
output-stable, and t is called the running time under our scheduler. We
say that a protocol Π stabilizes eventually to a graph G of type L if and
only if after a finite number of pairwise interactions, the graph defined
by ‘on’ edges does not change and belongs to the graph language L.

Definition 1. We say that a protocol Π constructs a graph language L
if: (i) every execution of Π on n nodes stabilizes to a graph G ∈ L s.t.
|V (G)| = n and (ii) ∀G ∈ L there is an execution of Π on |V (G)| nodes
that stabilizes to G.

Definition 2. We say that a protocol Π partially constructs a graph
language L, if: (i) requirement (i) from Definition 1 holds and (ii) ∃G ∈ L
s.t. no execution of Π on |V (G)| nodes stabilizes to G.

Definition 3 (Fault-tolerant protocol). Let Π be a NET protocol
that, in a failure-free setting, constructs a graph G ∈ L. Π is called
f -fault-tolerant if for any population size n > f , any execution of Π
constructs a graph G ∈ L, where |V (G)| = n − f . We also call Π fault-
tolerant if the same holds for any number f ≤ n− 2 of faults.

Definition 4 (Constructible language). A graph language L is called
constructible ( partially constructible) if there is a protocol that constructs
(partially constructs) it. Similarly, we call L constructible under f faults,
if there is an f -fault-tolerant protocol that constructs L, where f is an
upper bound on the maximum number of faults during an execution.

Definition 5 (Critical node). Let G be a graph that belongs to a graph
language L. Call u a critical node of G if by removing u and all its edges,
the resulting graph G′ = G − {u} − {uv : v ∼ u}, does not belong to L.
In other words, if there are no critical nodes in G, then any (induced)
subgraph G′ of G that can be obtained by removing nodes and all their
edges, also belongs to L.
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Definition 6 (Hereditary Language). A graph language L is called
hereditary if for any graph G ∈ L, every induced subgraph of G also
belongs to L. In other words, there is no graph G ∈ L with critical nodes.

This notion is known in the literature as hereditary property of a graph
w.r.t. (with respect to) some graph language L. Observe that if there
exists a graph G s.t. for any induced subgraph G′ of G, G′ ∈ L, does
not imply that the same holds for any graph in L. Some examples of
hereditary languages are “Bipartite graph”, “Planar graph”, “Forest of
trees”, “Clique”, “Set of cliques”, and “Maximum node degree ≤ ∆”.

In this work, unless otherwise stated, a graph language L is an infinite
set of graphs satisfying the following properties:

1. (No gaps): For all n ≥ c, where c ≥ 2 is a finite integer, ∃G ∈ L of
order n.

2. (No Isolated Nodes): ∀G ∈ L and ∀u ∈ V (G), it holds that d(u) ≥ 1
(where d(u) is the degree of u).

Even though graph languages are not allowed to contain isolated nodes,
there are cases in which a protocol might be allowed to output one or more
isolated nodes. In particular, if a protocol Π constructing L is allowed a
waste of at most w, then whenever Π is executed on n nodes, it must
output a graph G ∈ L of order |V (G)| ≥ n−w, leaving at most w nodes
in one or more separate components (could be all isolated).

3 Network Constructors without Fault Notifications

In this section, we study the constructive power of the original NET model
in the presence of bounded and unbounded crash faults when no form of
notification is available to the nodes.

3.1 Unbounded Number of Faults

We here consider the setting where the number of faults can be any
number up to n−2. We prove that the only constructible graph language
is Spanning Clique = {G : G is a spanning clique}.

We first present a protocol which constructs the language Spanning
Clique and we show that it can tolerate any number of faults. Let Clique
be the following 2-state symmetric protocol.

Protocol Clique: Q = {b, r}, initial state b, and transition function
δ : (b, b, 0)→ (b, r, 0), (b, r, 0)→ (r, r, 0), (r, r, 0)→ (r, r, 1)
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Lemma 1. Clique is a fault-tolerant protocol for Spanning Clique.

In addition, we show that (due to the power of the adversary), no
other graph language is constructible under unbounded faults.

Lemma 2. Let Π be a protocol constructing a language L and G ∈ L
be a graph that Π outputs on |V (G)| nodes. If G has an independent set
S ⊆ V , s.t. |S| ≥ 2, then there is an execution of Π on n nodes which
stabilizes on |S| isolated nodes (where |S| = n− f and f is the number of
faults in that execution).

Theorem 1. Let L be any graph language such that L 6= Spanning Clique.
Then, there is no protocol that constructs L if an unbounded number of
crash failures may occur.

The proof following theorem is a direct application of Lemma 2.

Theorem 2. Let L be any graph language such that the graphs G ∈ L
have maximum independent sets whose size grows with |V (G)|. If the use-
ful space of protocols is required to grow with n, then there is no protocol
that constructs L in the unbounded-faults case.

3.2 Bounded Number of Faults

The exact characterization established above, shows that under unbounded
failures and without further assumptions, we cannot hope for non-trivial
constructions. We now relax the power of the faults adversary, so that
there is a finite upper bound f on the number of faults. In particular, fix-
ing any such 0 ≤ f ≤ n in advance, it is guaranteed that ∀n ≥ 0 and all
executions of a protocol on n nodes, at most f nodes may fail during the
execution. Then the class of constructible graph languages is naturally
parameterized in f .

We first show that non-hereditary languages are not constructible
under a single fault.

Theorem 3. If there exists a critical node in G, there is no 1-fault-
tolerant NET protocol that stabilizes to it.

By Definition 6 and Theorem 3 it follows that.

Corollary 1. If a graph language L is non-hereditary, it is impossible to
be constructed under a single fault.
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Note that this does not imply that any hereditary language is constructible
under a constant number of faults. We leave this as an interesting open
problem.

On the positive side we show that in the case of a bounded num-
ber of faults, there is a non-trivial class of languages that is partially
constructible. Consider the class of graph languages defined as follows.
Any such language LD,f in the family is uniquely specified by a graph
D = ([k], H) and the finite upper bound f < k on the number of faults. A
graph G = (V,E) belongs to LD,f iff there are k partitions V1, V2, . . . , Vk
of V s.t. for all 1 ≤ i, j ≤ k, ||Vi| − |Vj || ≤ f + 1. In addition, E is
constructed as follows. The graph D = ([k], H), possibly containing self-
loops, defines a neighboring relation between the k partitions. For every
(i, j) ∈ H (where possibly i = j), E contains all edges between partitions
Vi and Vj , i.e., a complete bipartite graph between them (or a clique in
case i = j). As no isolated nodes are allowed, every Vi must be fully
connected to at least one Vj (possibly itself).

We first consider the case where k = 2δ, for some constant δ ≥ 0,
and we provide a protocol that divides the population into k partitions.
The protocol works as follows: initially, all nodes are in state c0 (we call
this the partition 0). When two nodes in states ci, where i ≥ 0 interact
with each other, they update their states to c2i+1 and c2i+2, moving to
partitions 2i + 1 and 2i + 2 respectively. Interactions between nodes in
different c-states (ci, cj , where i 6= j) do not affect the configuration.
When j = 2i + 1 ≥ k − 1 (or j = 2i + 2 ≥ k − 1) for the first time, it
means that the node has reached its final partition. It updates its state to
Pm, where m = j−k+1, thus, the final partitions are {P0, P1, . . . , Pk−1}.

This process divides each partition into two partitions of equal size.
However, in the case where the number of nodes is odd, a single node
remains unmatched. For this reason, all nodes participate to the final for-
mation of H regardless of whether they have reached their final partitions
or not. There is a straightforward mapping of each internal partition to
a distinct leaf of the binary tree, that is, each partition ci behaves as if it
were in partition Pi. In order to avoid false connections between the parti-
tions, we also allow the nodes to disconnect from each other if they move
to a different partition. This process guarantees that eventually all nodes
end up in a single partition, and their connections are strictly described
by H.

Lemma 3. In the absence of faults, the above protocol divides the popu-
lation into k partitions of at least n/k − 1 nodes each.
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Lemma 4. In the case where up to f faults occur during the execution,
each final partition has at least n/k− f − 1 nodes, where k is the number
of partitions and f < k.

Corollary 2. ||Vi| − |Vj || ≤ f + 1, ∀1 ≤ i, j ≤ k.

Theorem 4. The language LD,f , where k is a constant number, is par-
tially constructible under f faults.

Finally, we show that if we permit a waste linear in n, any graph
language that is constructible in the fault-free NET model, becomes con-
structible under a bounded number of faults.

Theorem 5. Take any NET protocol Π of the original fault-free model.
There is a NET Π ′ such that when at most f faults may occur on any
population of size n, Π ′ successfully simulates an execution of Π on at
least n

2f − f nodes.

4 Notified Network Constructors

In light of the impossibility results of Section 3, we allow fault notifica-
tions when nodes crash, aiming at constructing a larger class of graph
languages. In particular, we introduce a fault flag in each node, which
is initially zero. When a node u crashes at time t, every node v which
was adjacent to u at time t is notified, that is, the fault flag of all v be-
comes 1. In the case where u is an isolated node (i.e., it has no active
edges), an arbitrary node w in the graph is notified, and its fault flag
becomes 2. Then, the fault flag becomes immediately zero after applying
a corresponding rule from the transition function.

More formally, the set of node-states is Q × {0, 1, 2}, and for clarity
in our descriptions and protocols, we define two types of transition func-
tions. The first one determines the node and connection state updates of
pairwise interactions (δ1 : Q × Q × {0, 1} → Q × Q × {0, 1}), while the
second transition function determines the node state updates due to fault
notifications (δ2 : Q × {0, 1, 2} → Q × {0}). This means that during a
step t that a node u crashes, all its adjacent nodes are allowed to update
their states based on δ2 at that same step. If there are no any adjacent
nodes to u, an arbitrary node is notified, thus, updating its state based
on δ2 at step t.

Proposition 1. We provide fault-tolerant protocols for spanning star
and cycle cover (see Protocol 3 and Protocol 4 in [MST19]).
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4.1 Universal Fault-Tolerant Constructors

In this section, we ask whether there is a generic fault-tolerant constructor
capable of constructing a large class of graphs. We first give a fault-
tolerant protocol that constructs a spanning line, and then we show that
we can simulate a given TM on that line, tolerating any number of crash
faults. The rules of the protocol and the proof of its correctness can
be found in [MST19]. Finally, we exploit that in order to construct any
graph language that can be decided by an O(n2)−space TM, paying at
most linear waste.

Lemma 5. FT Spanning Line (see Protocol 5 in [MST19]) is fault-tolerant.

Lemma 6. There is a NET Π (with notifications) such that when Π is
executed on n nodes and at most k faults can occur, where 0 ≤ k < n,
Π will eventually simulate a given TM M of space O(n − k) in a fault-
tolerant way.

Lemma 7. There is a fault-tolerant NET Π (with notifications) which
partitions the nodes into two groups U and D with waste at most 2f(n),
where f(n) is an upper bound on the number of faults that can occur. U is
a spanning line with a unique leader in one endpoint and can eventually
simulate a TM M . In addition, there is a perfect matching between U and
D.

Theorem 6. For any graph language L that can be decided by a linear
space TM, there is a fault-tolerant NET Π (with notifications) that con-
structs a graph in L with waste at most min{n/2 + f(n), n}, where f(n)
is an upper bound on the number of faults that can occur.

We now show that if the constructed network is required to occupy
1/3 instead of half of the nodes, then the available space of the TM-
constructor dramatically increases from O(n) to O(n2). We provide a
protocol which partitions the population into three sets U , D and M of
equal size k = n/3 (see Protocol 6 in [MST19]). The idea is to use the
set M as a Θ(n2) binary memory for the TM, where the information is
stored in the k(k − 1)/2 edges of M .

Theorem 7. For any graph language L that can be decided by an O(n2)−
space TM, there is a protocol that constructs L equiprobably with waste at
most min{2n/3 + f(n), n}, where f(n) is an upper bound on the number
of faults.
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5 Conclusions and Open Problems

A number of interesting problems are left open for future work. Our only
exact characterization was achieved in the case of unbounded faults and
no notifications. If faults are bounded, non-hereditary languages were
proved impossible to construct without notifications but we do not know
whether hereditary languages are constructible. Relaxations, such as per-
mitting waste or partial constructibility were shown to enable otherwise
impossible transformations, but there is still work to be done to com-
pletely characterize these cases. In case of notifications, we managed to
obtain fault-tolerant universal constructors, but it is not yet clear whether
the assumptions of waste and local coin tossing that we employed are
necessary and how they could be dropped. Apart from these immediate
technical open problems, some more general related directions are the
examination of different types of faults such as random, Byzantine, and
communication/edge faults. Finally, a major open front is the examina-
tion of fault-tolerant protocols for stable dynamic networks in models
stronger than NETs.
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