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Abstract

We survey here some recent computational models for networks of tiny atrifacts. In particular, we focus on networks
consisting of artifacts with sensing capabilities. We first imagine the artifacts moving passively, that is, being mobile
but unable to control their own movement. This leads us to the population protocol model of Angluin et al [1]. We
survey this model and some of its recent enhancements. In particular, we also present the mediated population protocol
model in which the interaction links are capable of storing states and the passively mobile machines model in which
the finite state nature of the agents is relaxed and the agents become multitape Turing machines that use restricted
space. We next survey the sensor field model, a general model capturing some identifying characteristics of many sensor
network’s settings. A sensor field is composed of a kind of devices that can communicate one to the other and also to
the environment through input/output data streams. We, finally, present simulation results between sensor fields and
population protocols and analyze the capability of their variants to decide graph properties.

Keywords: population protocols, mediated population protocols, sensor field, graph languages, sensing problems,
sensor networks

1. Introduction

The use of networks of tiny artifacts is becoming a key
ingredient in the technological development of XXI century
societies. An example of those networks are the networks
with sensors, where some of the artifacts have the ability of
sensing the environment and communicate among them-
selves. It is quite usual nowadays to hear about sensor net-
work applications. For instance, the use of sensor networks
to study the roaming of herds of endangered species or to
control flooding threats or to coordinate mobile communi-
cation networks or even to monitor vital signs in human
patients and perform highway traffic control.

All these applications and many more are possible due
to a wide range of artifacts that become smaller, low-cost,
available, extended and wireless interconnected to exist-
ing networks which are pervasive (they are embedded in
the environment and almost form part of it) and ubiquous
(they are everywhere, anytime).
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Such networks require several capabilities. Namely,
sense, communicate, move, evolve, interact, adapt, act,
among others. Therefore, the study of such systems in-
volves several and very different areas of computing: hy-
brid and distributed systems, communication systems and
protocols, circuit design, multi-agent systems, ad-hoc net-
works, algorithmic design, complexity theory or pervasive
and ubiquous computing. Consequently, one can assume
that this kind of systems are intrinsically complex. In fact,
there is no easy way to design a universal sensor network
that acts properly in all possible situations.

However, it is important to understand the computa-
tional process and behavior of the different types of ar-
tifact’s networks, which will help in taking the maximum
profit of those networks. In the particular case of networks
with sensors several proposals (taxonomies and surveys)
that elucidate their distinguishing features and their ap-
plications have been published ([2, 3, 4, 5, 6, 7, 8]). These
proposals state clearly the need of formal models that cap-
ture the clue characteristics of networks with sensors that
consist of massive amounts of tiny devices with limited
resources.

The general sensing setting can be described by two el-
ements: the observers or end users and the phenomenon,
the entity of interest to the observers that is monitored
and analyzed by a network with sensors. The correspond-
ing information is discretized in two ways: first the envi-
ronment is sampled on a discrete set of locations (sensor
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positions), and second the measures taken by the sensors
are digitalized to the corresponding precision. To analyze
the correctness and performance of the system we are faced
with a double task; on one side there is a computational
problem to be solved by a particular network; on the other
hand, it is necessary to assess whether a computed solution
is a valid observation of the phenomenon. Both tasks will
require different analysis tools and we concentrate here on
the first one. The distinctive peculiarities of the compu-
tational system define new parameters to be evaluated in
order to measure the performance or the stability of the
system. Metrics are needed to allow us to estimate the
suitability of a specific or generic network topology or the
possibility of emergent behavior with pre-specified require-
ments.

The computational system can be perceived and an-
alyzed in two complementary ways. The first one has as
goal to show the emergency of some designed behaviour. In
this scenario it is usual to assume that the system models
some kind of interaction among the participating devices
and the final goal is to achieve a configuration with the
pre-specified goals. The task has to be carried out by the
network based on the subjacent communication model and
the exchange of information among the devices.

For the first, we focus on models coming from the area
of population protocols [9, 10, 11]. They represent sensor
networks, supposing that the corresponding sensing de-
vices are extremely limited mobile agents, unable to con-
trol their own movement, that interact only in pairs by
means of an interaction graph. These models bear a strong
resemblance to models of interacting molecules in theoret-
ical chemistry [12, 13]. According to [14], the population
protocol model was inspired in part by work by Diamadi
and Fischer [15] on trust propagation in a social network.
The urn automata of [16] can be seen as a first draft of
the model that retained in vestigial form several features of
classical automata: instead of interacting with each other,
agents could interact only with a finite-state controller,
complete with input tape. The motivation given for the
population protocol model proposed in [1] was the study
of sensor networks in which passive agents were carried
along by other entities; the canonical example was sensors
attached to a flock of birds. The name of the model was
chosen by analogy to population processes [17] in proba-
bility theory.

The computational system arising from the ad-hoc com-
putation network point of view can be modeled by com-
bining the notion of graph automata [18] together with
distributed data streams [19], a combination inspired in
similar ideas developed in the context of concurrent pro-
gramming [20]. Existing models coming from distributed
systems [21], hybrid systems and ad-hoc networks [22, 23]
capture some of such networks. This approach has been
used also in many papers in which the communication
network is assumed to be formed by a random geomet-
ric graph [24, 25, 26, 27, 28] and follows classic distributed
approaches to solve problems on particular topologies [29].

Based on those ideas the Sensor Field model was proposed
in [30]. A sensor field captures some characteristic differ-
ences of sensor networks, it is composed of a kind of actu-
ator devices that can communicate one to the other and
also can measure and signal the environment. The initial
study has been concentrated in the case in which the de-
vices and the communication links do not appear and dis-
appear during the computation. The model assumes that
those devices synchronize at barriers marking rounds, in
a way similar to the BSP model [31]. During a computa-
tion round, a device access the received messages and data
provided by the environment, performs some computation,
and finally sends messages to its neighbors and to the envi-
ronment. Those are the fundamental features of the Static
and Synchronous Sensor Field (SSSF) model. The SSSF
model can be seen as a non-uniform computational model
in the sense that it is easy to introduce constraints to all
or some of the devices of the sensor field and relate it to
classic complexity classes.

In the remaining of this paper we survey recent re-
sults on computational models for networks of tiny arti-
facts. The survey is organized as follows: In Section 2 we
highlight the fundamental problems to be solved in such
networks. Section 3 is devoted to the population protocol
model and its variants. The sensor field model is reviewed
in Section 4. In Section 5 we provide the main ideas used to
simulate population protocols by a sensor field. Section 6
is devoted to analyze the graph languages that are decid-
able by an enhancement of population protocols and some
subfamilies of sensor fields with constant memory per de-
vice. The last section provides some conclusions and open
lines of research.

2. Problems of Interest

Before introducing in detail the models and the results
we want to highlight first some classes of problems that
are relevant in sensor networks application.

Sensor networks usually consist of massive amounts of
cheap, bulk-produced sensor nodes (also called agents) and
the resources available to each node are most of the time
severely limited. Such limitations can be surpassed if the
system designer has fine control over the interactions be-
tween the agents. In this case, even finite-state agents can
be regimented into cellular automata [32] with computa-
tional power equivalent to linear space Turing machines.
As Angluin et al. noticed in [9], if the system designer
cannot control these interactions, it is not clear what the
computational limits are.

Consider a wireless sensor network in which the sen-
sor nodes move according to some mobility pattern over
which they have totally no control. This kind of mobil-
ity is known as passive mobility [9]. For example, imag-
ine that millions of such nodes are thrown into a hurri-
cane in order to cooperatively study its various character-
istics. Some metrics of interest could be the average or
maximum barometric pressure, the highest temperature,
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or some collective data concerning the wind speed near
the eye of the hurricane. In this scenario, the movement
of the sensor nodes follows some collection of interchang-
ing probability distributions which, as a result of some
natural phenomenon, are in general totally unpredictable
(any other phenomenon offering an abundance of kinetic
energy could be representative). The nodes have to sense
their environment according to the underlying query and
then interact with the remaining population in order to
make some cooperative decision or cooperatively compute
a required function on the sensed inputs. An interaction
is established when two nodes come sufficiently close to
each other so that communication becomes feasible (one
within the range of the other). Communication is usually
assumed to be two-way though various modes of communi-
cation have been studied in the relevant literature [33, 14].
Additionally, the nodes are assumed to communicate in
ordered pairs (u, υ), where u plays the role of the initiator
and v that of the responder. The distinct roles of the two
participants constitutes a fundamental symmetry breaking
assumption.

The critical constraints of these systems are clearly
memory and the inability of protocols to control interac-
tions. These constraints render most classical distributed
algorithms useless under this setting. Even electing a
leader and exploiting it to execute a protocol that as-
sumes its existence is clearly non-trivial. The reason is
that we may easily elect a leader but, under no probabilis-
tic termination estimates, we will never be able to detect
termination of the leader election process. Recent devel-
opments [34, 11] relax the memory constraint to allow the
existence of unique identifiers (commonly abbreviated as
ids or uids) but no previously existing algorithm can per-
form the id assignment under this totally asynchronous
and pairwise communication setting.

Another set of computational problems of interest con-
sider the sensors as a source of data to be treated by the
system. Those sensing problems have been stated in a
generic way in terms of input/output data streams and
a relation that output data streams have to satisfy given
the input data streams, i.e. the property that defines the
problem [30]. Let us first introduce the notion of data
stream.

A data stream w is a sequence of data items w =
w1w2 . . . wi . . . that can be infinite. For any i ≥ 1, w[i]
denotes the i-th element of w, i.e. w[i] = wi. For any i, j,
1 ≤ i ≤ j, w[i, j] denotes the subsequence of w composed
by all data items between the i-th and j-th positions, i.e.
w[i, j] = wi . . . wj . For any n ≥ 1, an n-data stream w
is an n-tuple of data streams, w = (w1, . . . , wn). For any
i ≥ 1, w[i] denotes the n-tuple composed by all the i-th el-
ements of each data stream, w[i] = (w1[i], . . . , wn[i]). For
any i, j such that 1 ≤ i ≤ j, w[i, j] denotes the n-tuple
composed by the subsequences between the i-th and j-th
positions of each data stream, w[i, j] = (w1[i, j], . . . wn[i, j]).

Now we can define formally in an abstract way what a
sensing problem is.

Sensing Problem Π: Given an n-tuple of data streams
u = (uk)1≤k≤n for some n ≥ 1, compute an m-tuple of
data streams v = (vk)1≤k≤m for some m ≤ n such that
RΠ(u[1, t],v[1, t]) is satisfied for every t ≥ 1. RΠ is the
relation that output data streams have to satisfy given
the input data streams, i.e. the property that defines the
problem.

Sensing problems capture many classes of problems
that arise in a natural way in a distributed system. Con-
cerning the applications of sensor networks we consider
some sensing problem subfamilies. Those families are ob-
tained by posing additional requirements on the part of
the input data stream that is required for computing the
t-th element of the output data stream.

• Cumulative monitoring

v[t] depends on all the data measured by the network
up to time t

• Monitoring

v[t] depends only on the data measured at time t

• One step measure

v[t] depends only on the data measured at a partic-
ular time step, usually the first.

When the computational model per node is a finite
state machine, the output data stream can contain the
internal state. Thus conditions on the internal state can
be transfered to conditions on the output data stream.

Let us post some examples of sensing problems of the
three types. First we consider a problem in which it is
needed to monitor continuously a wide area. This implies
“sensing locally” and “informing locally” about a global
environmental phenomena.
Average Monitoring: Given n data streams (uk)1≤k≤n for
some n ≥ 1, compute n data streams (vk)1≤k≤n such that
vk[t] = (u1[t] + · · · + uk[t])/n.

The second example we consider is related to “fire de-
tection alarm”. In this case it is desired to detect the
situation in which there is a high risk of fire. One element
to be measured is the level of smoke in the air of such area
and if this level is higher than a certain value then the
alert has to be activated. A specific device (number 1 for
instance) acts as a master and outputs the result.
Alerting: Given n data streams (uk)1≤k≤n for some n ≥ 1,
and threshold value A, device 1 has to compute a data
stream v1 such that

v1[t] =
{

1 if ∃k : 1 ≤ k ≤ n : uk[t] ≥ A
⊥ otherwise

This is a continuous monitoring type of problem as the
t-th output data stream is computed from all the previ-
ous segment of input data streams. The third example
uses artificially the input data stream. The final goal is
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to analyze a first step property, therefore only the initial
measurement is of relevance.
Initially even?: Given n data streams (uk)1≤k≤n for some
n ≥ 1, such that for uk[t] ∈ {0, 1} , for any 1 ≤ k ≤ n
and any t > 0, compute n data streams (vk)1≤k≤n such
that vk[t] = [(u1[1] + · · ·+ un[1]) mod 2 = 0]. Usually for
this class of problems we speak rather of an input to the
network than of an input data stream for the network.

Observe that in the definition of the problems we have
stated properties in which, in general, the t-th output data
is related up to the t-th input data. Of course when solving
the problem we have to allow some delay in the computa-
tion of the system. As we will see this will be one of the
relevant parameters when solving the problem with time
restrictions (as in the sensor field model). In other models
we do not care about the time as the interest is in show-
ing that eventually the required output data stream will
be attained (as in the population protocol models). Note
that sensing problems are defined in terms of input and
output data streams and their definition is independent of
the topology of the network.

The second family of problems, the graph decision prob-
lems, are related to the network topology. In this case we
face the problem of deciding whether the actual subjacent
topology (interaction or communication) satisfies some re-
quired property. This notion has been formalized as graph
languages which will be formally described in Section 6.

The goal of deciding graph languages is to determine
properties of the subjacent unknown, interaction or com-
munication, graph. Observe, that in this case the general
definition of the problem must consider also the subjacent
(interaction/communication) graph that is used to solve
the problem. As an example lets consider the following
problem.
2-cycle?: Compute n data streams (vk)1≤k≤n such that,
for ant t > 0, vk[t] = 1 iff the subjacent graph contains a
two cycle.

In this case, the output data streams have to agree
on a repeated symbol that depends on whether the net-
work property is or is not verified by the network. Besides
solving information problem about the subjacent topology
decidability of graph languages can be used to compare the
computational power of different computational models for
networks formed by constant memory devices.

So, there was a clear need for some new theoretical
framework in order to study the computational power of
the population protocol model and its enhancements and
to devise protocols for practical problems that need to be
solved.

3. Population Protocols & Enhancements

Let us start by defining formally a population protocol
(PP) [1, 9].

Population Protocol A (PP A): Formally, we define a popu-
lation protocol A by a 6-tuple A = (X, Y, Q, I, O, δ), where
X, Y , and Q are all finite sets and

1. X is the input alphabet,
2. Y is the output alphabet,
3. Q is the set of states,
4. I : X → Q is the input function,
5. O : Q → Y is the output function, and
6. δ : Q × Q → Q × Q is the transition function.

If δ(a, b) = (a′, b′) then (a, b) → (a′, b′) is called a transi-
tion and δ1(a, b) = a′ and δ2(a, b) = b′ are defined.

A simplification is that all agents concurrently sense
their environment, as a response to a global start signal,
and each one of them receives some input symbol from
X. For example, X could contain all possible baromet-
ric pressures that the agent’s sensors can detect. Then
all agents concurrently apply the input function I to their
input symbols to obtain their initial state. In this man-
ner, the initial configuration of the system is formed. A
configuration in general, given a population of n agents, is
any string from Qn, in which the i-th symbol is the state
of agent i, 1 ≤ i ≤ n (by assuming an ordering on the
agents).

Now the crucial part is that any interaction between
the agents is possible and this is interpreted as some inher-
ent nondeterminism of the system. Formally, the agents
are organized in an interaction graph G = (V, E), which
is a directed graph without self-loops and multiple edges,
and where V is a population of |V | = n agents and E de-
scribes the permissible interactions. Angluin et al. in [1]
and [9] modeled mobility via an adversary scheduler that
is a black-box to the protocol and simply selects mem-
bers of E to interact according to δ (all agents apply the
same global transition function). The only, but necessary,
restriction imposed on the scheduler is that it has to be
fair so that it does not forever partition the network into
non-communicating clusters and, as Aspnes and Ruppert
cleverly observe in [14], to prevent the possibility of hav-
ing agents interacting only at “inconvenient” times. An
execution (which is any sequence of configurations) is said
to be fair if there exists no configuration in the execution
that appears infinitely often while some successor of it does
not. A computation is an infinite fair execution.

Computations by definition do not halt. In fact, the
definition itself captures the inherent inability of such sys-
tems to detect termination, which is mainly due to the
uniformity and anonymity properties of population proto-
cols. Uniformity requires protocol descriptions to be inde-
pendent of n and anonymity that the set of agent states
is enough small so that there is no room in it for unique
identifiers. Instead, computations are required to stabi-
lize to a correct common or distributed value. Angluin
et al. used functions on input assignments in order to
formalize the specifications of protocols. For example, a
natural question in our example could be whether at least

4



one agent detects barometric pressure over some constant
pressure c (which possibly partitions the pressures in low
and increased). What we do expect from a protocol that
solves this problem is to always stabilize (converge) in a
finite number of steps to the correct answer. Since such a
query has a binary range, making it a predicate, we want
all agents to output 1 when the predicate is made true
and 0 otherwise, which is a convention that we make for
gathering the protocol’ s output. Since our main aim here
is to survey the computational power of the models under
consideration, we can w.l.o.g. focus on predicates [14], al-
though [1, 9] provided general definitions for functions and
also proposed many other natural output conventions.

Formally, the input (also called an input assignment)
to a PP A may be any x ∈ X∗, where X∗ denotes the set of
all strings that can be made by concatenating zero or more
symbols from X. In fact, any such x = σ1σ2 . . . σn can be
the input to A when it runs on a population of size n. This
is done by assuming an arbitrary ordering on the set of
agents, which is hidded from the agents themselves. Then
we can simply make the convention that agent i, 1 ≤ i ≤ n,
senses the input symbol σi. A specification for A is any
predicate p : X∗ → {0, 1} which can also be thought as its
corresponding language Lp = {x ∈ X∗ | p(x) = 1}.

The transition graph T (A, G) of a protocol A that is
executed on an interaction graph G [9] is a directed graph
whose nodes are all possible configurations and whose edges
are all possible one-step transitions between those config-
urations.

Not all interaction graphs are allowed in most practi-
cal scenarios. For example, if no obstacles are present we
can assume that the interaction graph is always complete,
which is the most commonly studied case. On the other ex-
treme, we could also consider only line graphs or even more
complicated collections of restricted graphs. This network
selection is captured by graph universes (also called fam-
ilies) which are sets of graphs. The set of all complete di-
rected interaction graphs, that has been extensively stud-
ied, is such an example of graph universe. One simple way
to think of graph universes is that they capture the in-
teraction graphs on which our protocols are about to be
executed.

A predicate p over X∗ is said to be stably computable
by the PP model in the graph universe U , if there ex-
ists a PP A such that for any input assignment x ∈ X∗,
any computation of A, on any interaction graph from the
set {G ∈ U | |V (G)| = |x|}, beginning from the initial
configuration corresponding to x reaches an output stable
configuration in which all agents output p(x).

Research first focused on complete interaction graphs.
Note that the completeness of the graph implies that sta-
bly computable predicates have to be symmetric. A pred-
icate p is called symmetric if for every x ∈ X∗ and any
x′ which is a permutation of x’s symbols, it holds that
p(x) = p(x′) (in words, permuting the input symbols does
not affect the predicate’s outcome). In [1, 9] the authors,
among other results, established that any semilinear pred-

icate or, equivalently [35], any predicate definable by first-
order logical formulas in Presburger arithmetic [36], is sta-
bly computable by the PP model. Moreover, in [37, 33]
it was proven that this inclusion is tight, thus, arriving
to the following exact characterization for the computable
predicates in complete graphs: A predicate is stably com-
putable iff it is semilinear. This is a fairly small class, not
including multiplication of variables, exponentiations, and
many other important operations on input variables. In
particular (according to [1]), each term in these predicates
is a constant (nonnegative integer), a variable, or the sum
of two terms, or the product of a constant and a term,
or the integer quotient of a term and a nonzero constant,
or the remainder of a term modulo a nonzero constant.
Atomic expressions are formed from two terms and one of
the predicates: =, ≤, <, ≥, >. For example, the predicate
((17N1 ≥ 3N0) ∧ (4N1 ≤ N0)) expresses that the input
assignments to be accepted are those in which the num-
ber of 1s is between 15% and 20% of the total population.
Moreover, Delporte-Gallet et al. [38] showed that PPs
can tolerate only O(1) crash failures and not even a sin-
gle Byzantine agent 1. These weaknesses were inevitable
given that the PP model was on purpose designed to be
minimalistic. We do not attempt a complete survey of the
results concerning population protocols since there is al-
ready an excellent one [14]. Finally, for a step by step (less
technical than the current article) introduction to popula-
tion protocols and related models, including examples and
exercises, the interested reader is referred to [40].

Another possibility is to allow the inputs to the popu-
lation oscillate and only require that this oscillation ceases
after some finite time. This is the stabilizing inputs variant
of population protocols [41]. Here all agents are assumed
to be initially in some initial state q0 (i.e. no input func-
tion is defined) and the transition function is now of the
form δ : (Q×X)×(Q×X) → Q×Q. Each agent is like hav-
ing two components in its state, where the first one is its
actual state from Q and the second one plays the role of an
input port whose symbol may change arbitrarily between
any two interactions but it will eventually stabilize. The
output function is applied to the state components of the
agents. In [41] it was shown that all semilinear predicates
can be computed with stabilizing inputs, which, together
with the above exact characterization for population pro-
tocols, implies that any population protocol for fixed inputs
can be adapted to work with stabilizing inputs. Moreover,
[37] also established that nothing more than semilinear
predicates can be computed by the stabilizing inputs vari-
ant.

For some other relevant previous work, [1, 9] also pro-
posed the probabilistic population protocol model, in which
the scheduler selects randomly and uniformly the next pair

1A Byzantine agent is an agent that has a Byzantine failure, that
is, during any interaction it may pretend to be in any state (see e.g.
[39] for a lot more on Byzantine failures and how they are handled
in classical distributed systems).
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to interact. Some recent work has concentrated on perfor-
mance, supported by this random scheduling assumption
(see e.g. [42]). [43, 44] considered a huge population hy-
pothesis (population going to infinity), and studied the dy-
namics, stability and computational power of probabilistic
population protocols by exploiting the tools of continu-
ous nonlinear dynamics. Moreover, several extensions of
the basic model have been proposed in order to more ac-
curately reflect the requirements of practical systems. In
[41], Angluin et al. also studied what properties of re-
stricted interaction graphs are stably computable by the
population protocol model and gave protocols for some of
them. Recently, Bournez et al. [45] investigated the possi-
bility of studying population protocols via game-theoretic
approaches.

3.1. Mediated Population Protocols
In [10] (see also [46] for an extensive presentation of the

results discussed in this section) the authors considered
the following enhancement. They made the assumption
that each interaction link is also a finite-state agent that
only communicates with the agents it joins. In particular,
whenever any two agents u and v interact via the edge
e = (u, v), u and v read the state of e and their own
states and update all of them according, again, to some
global transition function. Now, it is like the agents are
capable of leaving small pieces of pairwise information that
will be available during their subsequent interactions. The
authors named their model Mediated Population Protocol
(MPP) model.
Mediated Population Protocol A (MPP A): A mediated
population protocol A is a 7-tuple A = (X, Y, Q, S, I,O, δ),
where X, Y , Q (it is now called set of agent states), I,
and O are as in the PP model, S is a finite set of edge
states, and the transition function is now of the form δ :
Q × Q × S → Q × Q × S.

As you may have noticed, there is no input to the edges
(although such an input function was defined in [10]). We
follow here the simplified definition given in [47] and con-
sequently make the assumption that there exists some edge
initialization function ι : E → S, that specifies the initial
state of each edge. Note that ι is not part of the proto-
col but generally models some preprocessing on the net-
work that has taken place before the protocol’s execution.
We focus on complete communication graphs and initially
identical edges, that is, ι(e) = s0 for all e ∈ E. MPS is
the class of all predicates that are stably computable by
the so called “Symmetric” MPP model (SMPP).

Theorem 1 ([10]). The class of semilinear predicates is
a proper subset of MPS.

Proof Idea. The PP model is a special case of the MPP
model and, thus, any semilinear predicate is stably com-
putable by the SMPP model. Consider now the non-
semilinear predicate (Nc = Na · Nb) which is true iff the
number of cs in the input is the product of the number

of as and the number of bs. By exploiting the fact that
in complete graphs the number of edges leading from a-
agents to b-agents is equal to the product, it is easy to de-
vise a SMPP protocol A with stabilizing states (i.e. whose
states eventually stop changing) that provides the follow-
ing semilinear guarantee: If Nc 6= Na · Nb then at least
one agent remains in some state from some Q′ ⊂ Q, oth-
erwise no such state remains. Finally, compose A with a
SMPP B that stably computes with stabilizing inputs the
above guarantee to obtain a SMPP that stably computes
the non-semilinear predicate (Nc = Na · Nb).

The above result of [10] was a first indication that
MPP protocols in general can exploit the extra informa-
tion stored on the edges in order to compute more com-
plicated predicates. The following theorem shows that
this information increases the computational power to the
maximum possible degree, which was hardly expected at
the beginning. Generally, by NSPACE(f(n)) we denote
the class of all languages decided by some O(n2) space
nondeterministic Turing machine (a deterministic Turing
machine is abbreviated TM, while a nondeterministic one
is abbreviated NTM, according e.g. to Sipser [48]), where
n here denotes the size of the input to the machine.

Theorem 2 ([10, 47]). A predicate is in MPS iff it is
symmetric and is in NSPACE(n2).

Proof Idea. The “only if” part is easy. Any predicate
in MPS is obviously symmetric and additionally we can
perform in O(n2) space a nondeterministic search on the
transition graph of the SMPP that stably computes the
predicate.

The sufficiency of the conditions is somewhat more
complicated. We have to show that for all symmetric lan-
guages L ∈ NSPACE(n2) there exists a SMPP that sta-
bly computes pL, defined as pL(x) = 1 iff x ∈ L. It is easy
to see that pL is symmetric iff L is symmetric. The idea is
to organize the agents into a spanning line subgraph of the
interaction graph. To do that, the agents begin to form
small line graphs that in the sequel are merged together
and are expanded to isolated nodes. When this process
ends, the edges of the spanning line graph will be active
and all other O(n2) edges will be inactive. Now the net-
work can operate as a Turing machine of O(n2) space by
using the agents as the control units and the inactive edges
as the cells (see Figure 1). Whenever the inactive edges of
some agent are exhausted it passes control (via some active
edge) to its neighbor on the spanning line graph. By also
exploiting the nondeterminism inherent in the interaction
pattern the agents can simulate the nondeterministic TM
that decides L. Note that, since the agents cannot detect
termination of the spanning line graph construction pro-
cess, any time that the structure changes they reinitialize
their computation in a systematic manner, so that reini-
tialized agents do not communicate with non-reinitialized
ones, and by exploiting a backup of their input that is
maintained throughout the computation. The final reini-
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tialization happens when the spanning line graph is formed
an then the simulation is executed correctly.

(a) The agent in k∗ controls now the simulation.

(b) A step of the simulation is executed on the inactive
edge. The TM says “right” so k∗ must next run the simu-
lation on the first inactive edge to the right.

(c) Mark r travels to the right until it meets the first agent
that has an incoming inactive edge from k∗.

(d) The mark still travels.

(e) The correct agent was found. The special dot mark
will make the simulation run on the next inactive edge.

(f) A step of the simulation is executed. The TM says now
“left” so the simulation must next use again the previous
inactive edge.

Figure 1: An example of simulating a O(n2)-space TM. The simu-
lation is performed on the second component of the inactive edges.
The bold edge indicates the pair that has just interacted. The black
agent is the initiator and the grey the responder.

3.2. Communicating Machines
Another natural enhancement of the population proto-

col model is to equip the agents with more memory and

to enable them operate as Turing machines instead of be-
ing automata. For example, a natural question could be:
“What can such a model compute when each agent’s mem-
ory is logarithmic in the population size?”. First of all,
the communicating machines assumption is perfectly con-
sistent with current technology (cellphones, iPods, PDAs,
and so on). Moreover, logarithmic is, in fact, extremely
small. For a convincing example, it suffices to mention
that for a population consisting of 2266 agents, which is a
number greater than the number of atoms in the observ-
able universe, it is only required for each agent to have
266 cells of memory (while small-sized flash memory cards
nowadays exceed 16GB of storage capacity)! This kind of
questions engaged the author’s attention in [11] who pro-
vided a general model independent of space bounds, called
the PM model (standing for Passively mobile Machines).
Passively mobile Machines protocol A (PM A): Formally, a
PM protocol A is a 6-tuple A = (X, Γ, Q, δ, γ, q0) where
X, Γ and Q are all finite sets and

1. X is the input alphabet, where t /∈ X (t is the blank
symbol),

2. Γ is the tape alphabet, where t ∈ Γ and X ⊂ Γ,
3. Q is the set of states,
4. δ : Q×Γ4 → Q×Γ4×{L,R}4×{0, 1} is the internal

transition function,
5. γ : Q×Q → Q×Q is the external transition function

(or interaction transition function), and
6. q0 ∈ Q is the initial state.

Each agent is equipped with the following:

• A sensor in order to sense its environment and re-
ceive a piece of the input (which is an input symbol
from X).

• Four read/write tapes: the working tape, the output
tape, the incoming message tape and the outgoing
message tape. We assume that all tapes are bounded
to the left and unbounded to the right.

• A control unit that contains the state of the agent
and applies the transition functions.

• Four heads (one for each tape) that read from and
write to the cells of the corresponding tapes and can
move one step at a time, either to the left or to the
right.

• A binary working flag either set to 1 meaning that
the agent is working internally or to 0 meaning that
the agent is ready for interaction.

Initially, each agent receives an input symbol from X
which is written on the leftmost cell of its working tape.
The working flag of all agents is initially set to 1 and their
initial state is q0. Each agent may perform some internal
computation by using the global (common for all agents)
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internal transition function δ. This computation may in-
clude modifications on the tapes, state changes, and, fi-
nally, altering the working flag. When the working flag
becomes 0, the agent does no longer modify it and is wait-
ing for an interaction. Interactions that take place while
the agent is working internally, have no effect. When two
agents that are both waiting for interaction interact the
external transition function γ is applied, the states of the
agents are updated accordingly, and the outgoing message
of each agent is copied to the incoming message tape of
the other (from the leftmost cell and leaving all remaining
cells blank). This operation is called the message swap.
Moreover, interactions are assumed to be atomic opera-
tions.

Note that the PM model preserves uniformity, because
X, Γ, and Q are all finite sets whose cardinality is indepen-
dent of the population size. Thus, protocol descriptions
have also no dependence on the population size. More-
over, PM protocols are anonymous, since there is no room
in the state of the agents for unique identifiers (though
here there is plenty of room on the tapes to create such
ids).

The authors in [11] focused again on complete inter-
action graphs and defined the complexity class PMSPA-
CE(f(n)) consisting of all predicates that are stably com-
putable by a PM protocol that uses O(f(n)) space in ev-
ery agent (and in all of its tapes). Again, an immediate
observation is that only symmetric predicates can be sta-
bly computable by the PM model on complete graphs.
Since they were mainly interested in computations space-
bounded by a logarithm on the population size, they dis-
tinguished the class PLM ≡ PMSPACE(log n) and de-
fined a PALOMA protocol (standing for PAssively mobile
LOgarithmic space MAchines) as a PM protocol that al-
ways uses O(log n) space. Then the authors gave an exact
characterization for PLM by proving the following more
general theorem.

Theorem 3 ([11]). For every function f(n) = Ω(log n), a
predicate is in PMSPACE(f(n)) iff it is symmetric and
is in NSPACE(nf(n)).

Proof Idea. Again the “only if” part is not hard. In fact,
this part holds for any function and not only those that
are at least log n. p ∈ PMSPACE(f(n)) means that
there exists a PM protocol A using O(f(n)) space in every
agent that stably computes p. Thus, each agent configura-
tion can be represented in O(f(n)) space and each popu-
lation configuration (consisting of the agent configurations
of all agents) in O(nf(n)) space. Then the NTM simply
performs, as in Theorem 2, a nondeterministic search on
the transition graph of protocol A by always storing at
most one population configuration and decides the lan-
guage Lp = {x ∈ X∗ | p(x) = 1}.

For the other part, take any symmetric language L ∈
NSPACE( nf(n)). The predicate pL defined as pL(x) = 1
iff x ∈ L is also symmetric. Obviously, we must present
a PM protocol that stably computes pL by using O(f(n))

space in every agent. Assume that the PM model was
equipped with the unique consecutive ids {0, 1, . . . , n−1}.
In this case, we could line up all agents and make them sim-
ulate the NTM N that decides L. In order to ensure that
no agent exceeds the desired space bound, we could run the
simulation in a modular way, that is, the first n cells of N
correspond to the first cells of the n agents, and generally,
the cells kn+1, . . . , (k+1)n of N , k ≥ 0, correspond to the
(k + 1)th cells of all agents. In this manner, the O(nf(n))
space of N is evenly divided between n agents and this
ensures that each agent uses O(f(n)) space. Moreover,
note that the unique ids consume O(log n) space and since
f(n) = Ω(log n) there will always be enough space to store
them. To simulate the nondeterminism of N the idea is to
make a nondeterministic search on N ’s computation tree.
The nondeterminism of the search stems from the inher-
ent nondeterminism of the interaction pattern. Whenever
the simulation must take a nondeterministic transition, the
corresponding agent takes an ineffective interaction only to
read the id of the other agent and this id is used to deter-
mine the nondeterministic choice to be made. Whenever
the search reaches a rejecting node it is being restarted,
beginning another nondeterministic search from the root.
Obviously, the fairness of the execution guarantees that if
there exists an accepting node it will be eventually found,
otherwise the simulation will forever reject. Call the de-
scribed protocol B.

One important point remains: PM protocols do not
have unique ids. However, at the space cost of O(log n)
PM protocols can create those ids. Initially, all agents
have the same id 0. Whenever two of them meet, one of
them increases its id by one. It is not so hard to see that
this process eventually ends with a correct assignment of
the unique ids {0, 1, . . . , n − 1}. A difficulty is that the
agents cannot detect termination of this process, because,
otherwise, it is easy to show that termination could have
been erroneously detected in a subset of the population.
So, we actually do not know when to start executing the
protocol B that makes use of these ids. Only one option
remains: whenever some id is modified all agents get in-
formed of this event and start simulating B from the be-
ginning. This iterative reinitiation technique (used also in
[34]) guarantees that when the last id-modification takes
place, when the agents have just obtained the correct ids,
all agents will restart B’s execution for the last time and
B will be executed without further interruptions and as if
the ids were provided to it from the beginning. Thus, it
will correctly simulate N and will stably compute pL.

As PLM is by definition PMSPACE(log n), we can
conclude that:

Corollary 1 ([11]). PLM is equal to the class of all sym-
metric predicates in NSPACE(n log n).

8



4. The Sensor Field Model

In [30] the authors propose a general model captur-
ing some characteristic differences of sensor networks. A
sensor field is composed of a kind of devices that can com-
municate one to the other and also to the environment.
In this study the authors assume that the devices and the
communication links do not appear and disappear during
the computation. Furthermore, those devices synchronize
at barriers marking rounds, in a way similar to the BSP
model [31]. During a computation round, a device access
the received messages and data provided by the environ-
ment, performs some computation, and finally sends mes-
sages to its neighbors and to the environment. Those are
the fundamental features of the Static and Synchronous
Sensor Field (SSSF) model. The model allows the defini-
tion of complexity measures like latency, round duration,
message number or message length among others. In this
setting it is possible to formulate a general and natural
definition of sensing problems by means of input/output
data streams. The model can be seen as a non-uniform
computational model in the sense that it is easy to intro-
duce constraints to all or some of the devices of the sensor
field and relate it to classic complexity classes.

As described before, the general sensing setting consid-
ered in this model is described by the following elements:
the observers and the the phenomenon. The phenomenon
is the entity of interest to the observers that is being sensed
and potentially analyzed by the sensor network. Multiple
phenomena may be concurrently under consideration in
the same network.

Depending on the information required by the observers
from the environment, different kind of problems of inter-
est can be formulated as sensing problems. Those prob-
lems have to be solved on a decentralized network com-
posed of sensing units and other elements. We have to
re-examine not only the meaning of succesful computation
but also to examine different performance metrics to mea-
sure the efficiency of the computational solutions given in
this new model. The vision of the cycle of problem solv-
ing by networked sensors correspond to the schema given
in Figure 2. This schema discretizes information in two
ways. First the environment is sampled only on a discrete
set of locations and second the measures taken by the sen-
sor are digitalized to the corresponding precision. We face
a dual problem in analyzing correctness and performance.
On one side we have a computational problem to be solved
on a particular network (or a family of networks). On the
other hand we have to asses whether the observation of
the phenomenon is valid. It is clear that both tasks will
require different analysis tools. The computational mod-
els focus on the first problem. Now we describe the main
components of a sensor field.

A communication graph is a directed graph G = (N, E)
where N is the set of nodes and E is the set of edges, E ⊆
N × N . Unless explicitly stated we assume that N has n
nodes that are enumerated from 1 to n and m edges. Each

Region Sensor Field

Phenomena

Output data streamsObservation

PROBLEM

SOLUTION

Figure 2: Problem solving with sensor fields.

node k is associated to a device, let us say to device k, that
has access to the k-th data stream. Each edge (i, j) ∈ E
specifies that device i can send messages to device j or
what is the same, device j can receive messages from device
i. Given a device k let us denote by I(k) = {i | (i, k) ∈ E}
the set of neighbors from which device k can receive data
items and by O(k) = {j | (k, j) ∈ E} the set of neighbors
to which device k can send data. Let ink = |I(k)| and
outk = |O(k)| be the in and out degrees of node k. Set
inG = maxk∈N ink and outG = maxk∈N outk. We use dG

to denote the diameter of the graph G.
A Static Synchronous Sensor Field consists of a set of

devices and a communication graph. The communication
graph specifies how the devices communicate one to the
other. For the moment and without loose of generality,
we assume that all devices are sensing devices that can
receive information from the environment and send infor-
mation to the environment. Since the model we consider is
static we assume that the edges are the same during all the
computation time. Moreover each device executes its own
process, communicates with their neighbors (devices asso-
ciated to adjacent nodes) and also with the environment.
All the devices work in a synchronous way, at the begining
of each round they receive data from their neighbors and
from the environment, then they apply their own transi-
tion function changing in this way their actual configura-
tion and finish the round sending data to their neighbors
and to the environment. Let us describe in detail the main
components of the Static Synchronous Sensor Field.
Static Synchronous Sensor Field F (SSSF F): Formally we
define a Static Synchronous Sensor Field F by a tuple
F = (N, E, U, V, X, (Qk, δk)k∈N ) where

- GF = (N, E) is the communication graph.

- U is the alphabet of data items used to represent
the input data streams that can be received from
the environment.

- V is the alphabet of items used to represent the out-
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put data streams that can be send to the environ-
ment.

- X is the alphabet of items used to communicate each
device to the other devices. Each m ∈ X∗ is called
message or packet. U, V ⊆ X. We denote by data
items the elements of alphabets U and V and by
communication items (or items) the elements of X.

- (Qk, δk) defines for each device associated to a node
k ∈ N (device k) its set of local states and its tran-
sition function, respectively.

The local computation of each device k in F is defined
by (Qk, δk) and depends on the communication with its
neighbors and with the environment. Qk is a (potentially
infinite) set of local states and δk is a transition function.
A state codifies the values of some local set of variables (or-
dinary program variables, message buffers, program coun-
ters ...) and all what is needed to describe completely
the instantaneous configuration of the local computation.
The transition function δk that depends on its local state
qk ∈ Qk as well as on:

- the communication items received by device k from
devices i ∈ I(k),

- the data item that device k receives as input from
the environment,

- the communication items sent by device k to devices
j ∈ O(k),

- and the data item that device k sends to the envi-
ronment.

The transition function is defined as

δk : Qk × (X∗)ink × U −→ Qk × (X∗)outk × V.

The meaning of

δk(qk, (xik)i∈I(k), uk) = (q′k, (ykj)j∈O(k), vk)

is that if device k of F is in its local state qk ∈ Qk, receives
xik ∈ X∗ from each of its neighbors i ∈ I(k), and receives
the input data item uk ∈ U from the environment, then
in one computation step device k changes its local state to
q′k ∈ Qk, sends ykj ∈ X∗ to each of its neighbors j ∈ O(k)
and outputs vk ∈ V to the environment. In the case that
device k does not send any value, we denote this ’no value’
or ’does not care’ by the special symbol ⊥. For any device
k, let q0

k be the initial local state. For any t ≥ 1, the t-th
computation round of device k is described as follows: If
the local state of device k is qt−1

k , and it receives (xt
ik)i∈I(k)

from its input neighbors, ut
k from the environment and

δk(qt−1
k , (xt

ik)i∈I(k), u
t
k) = (qt

k, (yt
kj)j∈O(k), v

t
k) then device

k changes its local state from qt−1
k to qt

k, sends (yt
kj)j∈O(k)

to its output neighbors and vt
k to the environment.

A computation of F is a sequence

c0,d1, c1,d2, . . . , ct−1,dt, ct, . . . ,

eventually infinite, where c0 = (q0
k)k∈N is the n-tuple of

the initial local states of the n devices, and for each t ≥
1, ct = (qt

k)k∈N is the n-tuple of the local states after t
computation rounds. The tuple dt = (dt

k)k∈N represents
the input/output data of the t-th computation round (i.e.
the transition from round t− 1 to round t). In particular,
for device k the input/output data of the t-th round is
represented by dt

k = ((xt
ik)i∈I(k), u

t
k, (yt

kj)j∈O(k), v
t
k). Note

that device k receives (xt
ik)i∈I(k) from its neighbors, xt

ik =
yt−1

ki receives ut
k from the environment, changes its state

from qt−1
k to qt

k, sends (yt
kj)j∈O(k) to its neighbors and

sends vt
k to the environment.

The stream behavior of a computation

c0,d1, c1,d2, . . . , ct−1,dt, ct, . . .

of F is defined as (u,v) where u = (uk)k∈N is the tuple
composed by the input data streams of each device k, uk =
u1

ku2
k . . . ut

k . . . and v = (vk)k∈N is the tuple composed by
the output data stream of each device vk = v1

kv2
k . . . vt

k . . .
Notice that this information can be extracted from the
computation c0,d1, . . . , ct−1,dt, ct, . . .. Thus the sensor
field F outputs the tuple of output data streams v =
(vk)k∈N given the tuple of input data streams u = (uk)k∈N

or what is the same, v[1, t] given u[1, t] for each t ≥ 1.
We define the function fF associated to the stream

behavior of F as follows: Given any pair of tuples of data
streams u and v and any t ≥ 1, fF (u[1, t]) = v[1, t] if and
only if the sensor field F computes v[1, t] given u[1, t].
Function computed by F : A function f (defined on data
streams) is computed by a sensor field F with latency d if
for all (appropriate) tuple of data streams u, and for all
t ≥ 1, fF (u[1, t+d])[t+d] = f(u[1, t])[t]. That is the SSSF
outputs at time t+ d the t-th element of f . We say that f
is computed by a sensor field F if there exists d for which
f is computed by F with latency at most d.

Note that u and v have in general infinite length. In
order to express formally the behavior of a SSSF we con-
sider all the finite prefixes of the input stream (u[1, t]) and
those of the output stream (v[1, t]). However, take into
account that each sensor will output only one data item
(v[t]) per round.

The computational resources used by a sensor to com-
pute a function of this kind are the following. For each
device and computation round we can measure

- Time. The number of operations performed in the
given round of the device. This is a rough estimation
of the “physical time” needed to input data, receive
information from other sensor, compute, send infor-
mation and output data.

- Space. The space used by the device in such compu-
tation round.
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- Message Length. The maximum number of data
items of a message sent by the device in such com-
putation round.

- Number of messages. The maximum number of mes-
sages sent by the device in such round.

We consider the following worst case complexity measures
taken over any device and computation round of a sensor
field F :

• Size: The number of nodes or devices of the commu-
nication graph G.

• Time (T ): The maximum time used by any device
in any of its rounds.

• Space (S): The maximum space used by any device
of in any of its rounds.

• MessageLength (L): The maximum message length
of any device of in any of its rounds.

• MessageNumber (M): The maximum number of mes-
sages sent by any device in any of its rounds.

In general we analyze these complexity measures with re-
spect to the Size of the communication graph which usu-
ally will coincide with the number n of data streams, we
denote by T (n) the Time, by S(n) the Space, by L(n) the
MessageLength and by M(n) the MessageNumber .

Computational problems that are susceptible of being
solved by a sensor field are any of the family of problems
defined in Section 2. Recall that all those problems can be
stated as a sensing problem.
Sensing Problem Π: Given an n-tuple of data streams
u = (uk)1≤k≤n for some n ≥ 1, compute an m-tuple of
data streams v = (vk)1≤k≤m for some m ≤ n such that
RΠ(u[1, t],v[1, t]) is satisfied for every t ≥ 1.

Therefore it remains to formalize the notion of solved
problem.
Problem Solved by F : A sensor field F solves problem Π
with latency d if for every pair of data streams u and v, and
every t ≥ 1, if fF (u[1, t]) = v[1, t] then RΠ(u[1, t],v[1 +
d, t + d]). A sensor field F solves the problem Π if there
is a d such that F solves problem Π with latency d.

This definition introduces an additional parameter the
latency. This latency specifies the number of time steps
that we have to wait before the output data stream coin-
cides with the problem’s output data stream.

To compare formally the computational power of sen-
sor fields with some classical language clases we need to
define the decisional version of fF .
Language associated to F : Let F be a SSSF and let fF be
the function associated to the behavior of F . We define
the language associated to the behavior of F , denoted by
L(F), is the set

{〈u[1],v[1], . . . ,u[t],v[t]〉 | t ≥ 1 and fF (u[1, t]) = v[1, t]}.

4.1. Solving sensing problems
We report here some results on the Average Monitoring

problem and the Alerting problem introduced in Section 2
together with some additional results reported in [30].

4.1.1. Average Monitoring
The study of the requirements of a SSSF for solving

the Average Monitoring problem can be divided in two
parts. The first one provides lower bounds on some param-
eters and the second providing sensor fields giving upper
bounds. Those algorithms provide matching upper bounds
for some particular topologies.

Lower Bounds. In order to be able to state lower bounds,
we make an additional assumption: all the sent messages
are formed only by tuples of input data items (without
compression). An easy argument shows the following lower
bound.

Lemma 1 ([30]). A SSSF F with communication graph
G solving the Average Monitoring problem requires at least
latency dG.

In the following results we assume, in addition, that
along the whole computation the flow of packets from node
i to node j, for any i, j ∈ N , follows a fixed path pi,j .
Thus the algorithm uses a fixed communication pattern
P = (pi,j)i,j∈N . Let βP (k) be the out-degree of node k in
the subgraph G′ of G formed by the paths in P that start
at k and have length dG. Set β(G,P ) = maxk∈N βP (k).
Observe that those subgraphs are critical in terms of the
delivery of packets in dG rounds. It is easy to show the
following lower bound on MessageNumber .

Lemma 2 ([30]). Let F be a SSSF, with communication
graph G and communication pattern P , solving the Aver-
age Monitoring problem with latency dG. It holds that for
any round t > dG, there is a device sending at least β(G)
packets simultaneously.

Taking into account that the different communication
flows must be pipelined along paths with critical length
the following lower bound on MessageLength can be es-
tablished.

Lemma 3 ([30]). Let F be a SSSF, with communica-
tion graph G and communication pattern P , solving the
Average Monitoring problem with latency dG. Then, if
k1, . . . , kdG+1 is the fixed communication path used by de-
vices k1, . . . , kdG

to send their data to kdG+1 in P , there
is a round t0 > dG such that for any round t > t0, there is
a device receiving a message composed of at least dG data
items.

Algorithms. We first sketch a generic SSSF with op-
timal latency provided that the communication graph is
strongly connected. In general, this algorithm is not opti-
mal in Space, MessageLength and MessageNumber , how-
ever when the topology of the communication graph is
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known in advance, it is possible to obtain SSSF s with
specific topologies that optimize such parameters. In what
follows, we assume that every device in the SSSF is aware
of the total number of devices n and the diameter d of the
communication graph.

The algorithm is based on simple flooding. Each de-
vice keeps a table M of size d × n of data items. That
is forwarded at each time step to the neighbors. At each
time step the information is updated, taking into account
the actual measurement at the node and the data received
from the neighbors. This simple algorithm provides the
following upper bounds.

Lemma 4 ([30]). Let G be a strongly connected communi-
cation graph with n nodes. There is a SSSF F with com-
munication graph G solving the Average Monitoring prob-
lem with latency dG, T (n) = O(n dG(inG+outG)), L(n) =
O(n dG log n), S(n) = O(n dG log n) and M(n) = outG.

Algorithms with optimal latency. When the topology
of the communication graph is known it is possible to im-
prove the generic algorithm to obtain optimal algorithms
provided latency is kept at its minimum. The lower bounds
follow from Lemmas 1, 2, and 3 taking into account the
considered topologies.

Theorem 4 ([30]). The Average Monitoring problem can
be solved with latency dG and optimal MessageNumber
and MessageLength by SSSFs whose communication graph
are bidirectional cliques, oriented rings or balanced binary
trees, respectively.

Improving the message length. By data aggregation
and allowing a larger latency, it has been possible to im-
prove the MessageLength. In this case, messages are no
longer tuples of data items but sums of data items. The
synchronization needed to compute the right sums forces
an increment on the latency.

Theorem 5 ([30]). The Average Monitoring problem can
be solved with latency 2n − 1, T (n) = Θ(n), S(n) =
Θ(n log n), L(n) = Θ(log n) and M(n) = Θ(1) by a SSSF
in which the communication network is an oriented ring.

4.1.2. Alerting
The Alerting problem can be solved in constant memory

SSSF by the following algorithm. Initially all the nodes are
in a non-alert state. At any round, if an unalerted device
receives an alert message or reads a data that provokes an
alert changes it state to alert and sends an alert message.
An alerted device, different from device 1 does nothing.
Device one upon achieving the alert state outputs 1 at
each round. This gives the following bounds.

Lemma 5 ([30]). Let G be a communication graph in
which there is a path from any node to node 1. There is
a SSSF F with communication graph G solving the Alert-
ing problem with latency bounded by dG, T (n) = Θ(1),
S(n) = Θ(1), L(n) = Θ(1) and M(n) = O(outG).

4.1.3. Trading space/time for size
In general, we can say that by restricting the mem-

ory capacity of each device to be a constant w.r.t. the
total number of devices then the kind of problems solved
by these SSSFs are not more difficult than the ones in
DSPACE(O(n + m)).

Theorem 6 ([30]). Let F be a constant space SSSF. Then,
the language L(F) ∈ DSPACE(O(n + m)).

It is natural to ask whether an additional amount of
nodes in the communication graph in which the attached
devices participate in the computation but do not play
any active role in sensing. In such a network we have a
communication graph with S nodes and we want to solve
a problem that involves only n < S input data streams.

On particular topologies the additional nodes together
with pipeline allows to obtain constant time sensor fields
for solving the Average Monitoring. The particular topol-
ogy is a balanced communication tree in which it is as-
sumed that there are n sensing devices placed on the leaves
of the tree, edges to leaves are replaced by paths in such a
way that all the leaves are at the same distance to the root.
Thus, the tree has depth O(log n) and n leaves. In such
a network an algorithm with two flows can be considered.
In the bottom-up flow each node receives from its children
the average of the data at the subtree leaves, together with
the number of leaves, and computes its corresponding val-
ues to be sent to its parent. The top-down computation
is initiated by the root that computes the average value
which flows to the leaves. The analysis is summarized as
follows.

Theorem 7 ([30]). Let G be a balanced communication
tree whose n leaves are sensing devices with constant space
and whose internal nodes are non-sensing devices with space
O(log n). There is a SSSF F with communication graph
G solving the Average Monitoring problem with latency dG,
S(n) = L(n) = O(log n) and T (n) = M(n) = O(1).

In the algorithm described above the nodes in the com-
munication tree require different levels of internal memory,
ranging from constant at the leaves to log n in the upper
levels. The following result shows that by increasing the
number of auxiliary nodes we can solve sensing problems
with constant memory components in an adequate topol-
ogy within constant time.

Let P be a property defined on Un. We consider the
following sensing problem:
Monitoring Problem for property P: Given an n-tuple of
data streams u = (uk)1≤k≤n for some n ≥ 1, compute an
n-tuple of data streams v = (vk)1≤k≤m such that v[t] =
P(u[t]) for every t ≥ 1.

Any polynomially computable property can be decide
by a uniform family of circuits with polynomial size. Fur-
thermore those circuits can be assumed to be layered and
to have bounded fan in and fan out by adding propaga-
tor gates. The communication network is formed by the
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circuit with sensors attached to the corresponding inputs
together with a communication tree that flows the result to
the inputs. As the circuit is layered we can guarantee the
pipelined flow of partial computations with constant time
and memory within latency equal to the circuit’s depth
plus the tree depth. Thus, we have polynomial in n.

Theorem 8 ([30]). Let P be a property defined on Un

computable in polynomial time. There is a constant space
SSSF that solves the associated sensing problem in poly-
nomial size and latency (with respect to n) with S(n) =
T (n) = L(n) = M(n) = O(1).

5. Sensor fields with constant memory per device

The study of sensor fields has been enlarged by con-
sidering a submodel, the Constant Memory Static Syn-
chronous Sensor Field (CMSF) [49]. In this variation it
is assumed that the nodes in the network have constant
available space. In particular this property forces to do
not have node ids. To keep open the possibility of a high
degree per node, we consider a realistic communication
model in which sending a message correspond to a broad-
cast to all the neighbors. This is a normal hypothesis in
wireless networks. For the reception of messages we as-
sume that the nodes can receive only a constant amount
of messages. The received data is selected according to
some rule from the colliding messages.

A Constant Memory static synchronous Sensor Field
(CMSF) consists of a set of devices and a communication
graph. The communication graph specifies how the de-
vices communicate one to the other. We assume that all
devices are sensing devices that can receive information
from the environment and send information to the envi-
ronment. Since the model we consider is static we assume
that the edges are the same during all the computation
time. All the devices have the same local program. They
work in a synchronous way, at each time step they receive
data from their neighbors and from the environment, apply
the transition function changing in this way their actual
configuration and send data to their neighbors and to the
environment. To keep memory constant inside the node
rather than forcing that all nodes have bounded degree we
assume the following communication assumptions:

• When a node sends a message it can potentially reach
any of its neighbors, that is they use a broadcast to
neighbors primitive.

• When only one neighbor is sending a message, the
node receives it.

• When more that one neighbor is sending a message,
the node receives one of the sent messages selected
arbitrarily (the arbitrary model).

Observe that the last rule could be replaced by other rules
for example, the one with highest value (the priority model)

or not receiving any message (collision model). So far there
only generic results are in the arbitrary model.

Let us define formally the constant memory static syn-
chronous sensor field as a tuple F = (N,E, U, V,W,Q, δ, q0)
where

- GF = (N, E) is the communication graph.

- U is the alphabet of data items used to represent
the input data streams that can be received from
the environment.

- V is the alphabet of items used to represent the out-
put data streams that can be send to the environ-
ment.

- W is the alphabet of items used to communicate each
device to the other devices. U, V ⊆ W . We denote
by data items the elements of alphabets U and V and
by communication items (or items) the elements of
W . We assume that there is a special symbol ⊥∈ W
that represents the fact that no message has been
sent/received.

- Q is a finite set of states.

- δ : Q × U × W → Q × V × W a transition function.

- q0 ∈ Q is the initial state.

The local computation of any device in F is defined by
(Q, δ) and depends on the items received from its neigh-
bors and the data items read from the environment. The
transition specifies a new state, the communication item
to be sent, and the output data item. Observe than in
contraposition with the SSSF model Q is now finite.

An interesting question is to analyze under which con-
ditions CMSF can simulate population protocols [9] or me-
diated population protocols (mpp) [10]. For doing so it is
required to understand the communication process that
takes part during an interaction of the population proto-
col. This interaction results in a definition of an adequate
communication graph that allows the information inter-
change required. Moreoever, the simulation needs a way
to map any fair adversary for a population protocol into
a fair input data stream for a sensor field that keeps the
same set, as well as, the same order of interactions alive.

The simulation is shown by construction, for any given
population protocol a corresponding sensor field is defined.
Additionally, any potential scheduler will be mapped to a
tuple of input data streams. Those input data streams will
guarantee that in the simulation of an interaction that in-
volves a node a as actuator and a node r as respondant,
two nodes of the communication graph will be awaken by
the environment reciving a symbol a or r during the du-
ration of the information exachange.
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δ(q, q′) = (p, p′)
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Figure 3: The two communication steps involved in a PP interaction

5.1. Population Protocols
In the case of population protocols, an interaction of

two nodes involves the interchange of their states. From
the communication point of view this requires two steps of
communication (see Figure 3). In the first step two nodes
will be awaken by the environment receiving the signal a
or r during the simulation of an interaction that involving
a as actuator and r as respondent. The remaining nodes
do not receive any signal. In the second this two nodes
interchange their state.

Observe that the interchange of information requires
bidirectional communication even if the interaction is di-
rected. The formal definition of the sensor field is the
following.

Given a PP P = (X, Y,Q, I, O, δ) that runs on in-
teraction graph G = (N, E), we define the SSSF F =
F(P, G) = (N, E ∪ E′, U, V, W,Q′, δ′, q0) as follows:

• E′ = {(u, v) | (v, u) ∈ E}.

• U = X ∪ {a, r,⊥}, V = Y , and W = Q ∪ {⊥}

• Q′ = Q ∪ Q × {a, r}

• The transition function δ′ is defined as follows:

– δ′(q0, x,⊥) = (I(x),⊥,⊥), for any x.
– δ′(q,⊥, z) = (q,O(q),⊥), for any q ∈ Q, z ∈ U .
– δ′(q, a,⊥) = ((q, a), O(q), q, ), for any q ∈ Q.
– δ′(q, r,⊥) = ((q, r), O(q), q), for any q ∈ Q.
– δ′((q, a), a, q′) = (δ1(q, q′), O(q),⊥), for q ∈ Q.
– δ′((q, r), r, q′) = (δ2(q′, q), O(q),⊥), for q ∈ Q.

Where we use the projections of the transition func-
tion of the pp, that is δ(q, q′) = (δ1(q, q′), δ2(q, q′)). Ob-
serve that the transition function δ′ implements the two
communication rounds required by the interaction. The
output is set to be the output corresponding to the last
state in the population protocol to keep compatibility be-
tween the output data stream in the sensor field and the
output of the population protocol.

The second step is to define a way to transform an
input x and a scheduler S for P to a set of input data
streams u(x, S) to be used as input data stream by the
sensor field. In this case the transformation is uniform to
be able to expand one interaction two two timw steps.

The input data stream u = u(x, S) is the following:

• For any node k, uk[1] = xk

• If the t-th interaction of the scheduler is (i, j) then

– ui[2t, 2t + 1] = aa

– uj [2t, 2t + 1] = rr

– u`[2t, 2t + 1] =⊥⊥, for ` 6= i, j.

Observe that a symbol a on the input data stream codes
the fact that the node participates in an interaction as ac-
tuator, r as a respondent, and ⊥ indicates that the node
does not participate in any interaction at step t. The rep-
etition corresponds to the fact that an interaction requires
two communication steps.

Theorem 9 ([49]). Given a graph G and a population pro-
tocol P consider the CMSF f(P, G) defined above. For any
scheduler S and input x consider the data stream u(x, S)
defined above. The t-th configuration of P on input x and
scheduler S is identical to the 2t− 1-configuration of f(P)
on input data stream u(x, S).

5.2. Mediated Population Protocols
The simulation of a mediated population protocol by a

sensor field can be done in two different ways. In the first
one the network has no additional devices. The state of
the edge participating in the interaction is assumed to be
kept by the environment, and it is revealed to the agents
during the interaction. As before the simulations consists
of a construction of a sensor field and of a transformation
of input and mediated scheduler to a tuple of input data
streams.

Given a MPP P = (X, Y, Q, S, I, O, δ) that runs on
interaction graph G = (N, E), define the following SSSF
f(P, G) = (N, E′, U, V,W,Q′, δ′, q0) as follows:

• E′ = E ∪ {(u, v) | (v, u) ∈ E}.

• U = X ∪ Y ∪ {a, r,⊥}

• V = Y and W = {Q ∪ {⊥}}

• Q′ = {q0} ∪ Q ∪ (Q × {a, r})

The transition function δ′ is defined as in the case of
population protocols to keep the communication steps re-
quired by the interaction as depicted in figure (see Fig-
ure 4). For mediated population protocols an interaction
requires two communication steps. Observe that in the
first step the environment provides the role of the nodes in
the interaction and in the second step the state of the edge
participating in the interaction to the interested nodes. As
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δ(q, q′, s) = (p, p′, t)
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Figure 4: The two communication steps involved in a MPP interac-
tion

before, the output data item is set to the output of the pou-
lation protocol corresponding to the last seen state, and
in the second step to the new state of the edge.

Next step is to define a way to transform a scheduler
for the population protocol to a set of input data streams
for the sensor field.

The input data stream u = u(x, S) is the following:

• For any node k, uk[1] = xk

• If the t-th interaction of the scheduler is (i, j) and
the actual state of the link (i, j) is s ∈ S then

– ui[2t, 2t + 1] = as

– uj [2t, 2t + 1] = rs

– uk[2t, 2t + 1] =⊥⊥, for any k 6= i, j.

Observe that in this simulation, we are assuming that the
consistency of the edge states is preserved by the environ-
ment and that the edge state do not use network resources.

Theorem 10 ([49]). Given a communication graph G
and a mediated population protocol P consider the CMSF
f(P, G) defined above. For any input x and mediated
scheduler S, the t-th configuration of P on communication
graph G, input x, and scheduler S is identical to the 2t−1-
configuration of f(P, G) on input data stream u(G, x, S).

There is another way to perform the simulation by in-
cluding additional nodes that simulate edges and keep the
edge state. This simulation seems more realistic as it al-
lows to consider, as part of the complexity of the protocols,
the increase in space due to maintaining information on ev-
ery edge. Although nodes are not allowed to keep it as part
of their internal state, which might require non constant
space per node. In the following we define a simulation
of a population protocol by a sensor field with additional
nodes, those nodes represent the edges (links) in the com-
munication graph. Observe that although in the commu-
nication graph directed arcs are possible, the way in which

q’q
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q’rqa

ses s se
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q’rsqas
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q’rsqas

q’ seq’

q’rsqasq’

seq’

q

q

Figure 5: The four sending phases involved in a MPP interaction
when edge nodes are added

the transition function of the mediated population proto-
cols is defined, makes that information is updated in both
directions, independently on whether the edge is directed
or undirected. To keep this property we add an additional
node per link, this new node is connected through bidirec-
tional links to both of its endpoints. As before, we define
define the states and the transition function of the sensor
field, then the mapping of input and scheduler to a tuple
of input data streams. Observe that in mediated popula-
tion protocols the nodes and the edge have distinguished
roles. In our simulation we will assume that the first input
on a data stream indicates the role of the node during the
computation, and that the assignment is correct. Alter-
natively, we can assume that all the nodes are initially in
state qv and all the edges are initially in state qe.

Given a MPP P = (X,Y,Q, S, I, O, δ) running on in-
teraction graph G = (N,E), we define a CMSF f(P, G) =
(N ′, E′, U, V, W,Q′, δ′, q0, qv, qe) as follows:

• The communication graph is the graph (N ′, E′) where
N ′ = N ∪ E. The edge set is defined as follows

E′ ={(u, v) | u, v ∈ Nand(u, v) ∈ E}
∪ {((u, v), u)((u, v), v) | (u, v) ∈ E}.

• U = X ∪ Y ∪ {a, r, e,⊥}

• V = Y and W = {Q ∪ S ∪ {⊥}}

• Q′ = {q0, qv, qe} ∪ Q ∪ S ∪ (Q × {a, r}) ∪ (Q × S ×
{a, r, e, w}) ∪ (Q × Q × S ∪ S × {w, e})

The transition function δ′ is again degined to keep track of
the different communication rounds required in an inter-
action. In this case a total of 5 communications steps are
required. The sending phases are depicted in Figure 5 and
involve the three nodes participating in an interaction.

The input data stream u(x, S) is the following:

• For any node k ∈ V uk[1] = a, for any node edge
(i, j) ∈ E u(i,j)[1] = e.
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• For any node k, uk[2] = xk. For any edge u(i,j)[2] =
s0, were s0 is the initial state.

• If the t-th interaction of the scheduler is (i, j), then

– ui[5t − 2, 5t + 2] = aaaaa

– uj [5t − 2, 5t + 2] = rrrrr

– u(i,j)[5t − 2, 5t + 2] = eeeee

– uk[5t−2, 5t+2] =⊥⊥⊥⊥⊥, for any k 6= i, j, (i, j).

Theorem 11 ([49]). Given a mediated population protocol
P consider the CMSF f(P) defined above. For any inter-
action graph G, mediated scheduler S, and input x con-
sider the data stream u(G, S, x) defined above. The t-th
configuration of P on input x and scheduler S is identical
to the 5t−2-th configuration of f(P) on input data stream
u(G, x, S).

6. Deciding graph Languages

In [50] and in its more recent full version [51], the au-
thors went one step further and studied what graph prop-
erties are stably computable by the MPP model. To un-
derstand properties of the interaction or communication
graph is an important step in almost any distributed sys-
tem. In particular, they temporarily disregarded the in-
put notion and made the assumption that all agents simply
start from a common initial state q0. Also, as in the SMPP
model, they made a similar assumption for the edges, that
is, ι(e) = s0 for all e ∈ E (recall that ι denotes the edge
initialization function). Here the interest is in protocols
that when executed on any communication graph G of a
given graph universe, after a finite number of steps stabi-
lize to configurations where all agents give 1 as output if
G belongs to a graph language L, and 0 otherwise. This is
motivated by the idea of having protocols that eventually
accept all communication graphs (on which they run) that
satisfy a specific property, and reject all remaining graphs.

A graph universe (family) U is closed under disjoint
union if for any pair of graphs G1, G2 ∈ U , the graph G
obtained as the disjoint union of G1 and G2 belongs to
U .We consider the following graph families:

• W formed by all weakly connected digraphs without
loops, and multiple edges.

• S formed by all strongly connected digraphs without
loops, and multiple edges.

• H formed by all the directed graphs without isolated
vertices, loops, and multiple edges.

• G formed by all possible directed graphs of any finite
number of nodes greater or equal to 2.

To be able to perform some computation/communication,
we have made the natural assumption, for the general case,
that there are no isolated vertices on the communication
graphs.

All the following definitions hold w.r.t. some fixed
graph universe U . A graph language L is a subset of U con-
taining communication graphs that possibly share some
common property. Some examples of graph languages are:

• The graph language consisting of all strongly con-
nected members of U .

• L = {G ∈ U | G contains a directed hamiltonian
path}.

• L = {G ∈ U | G has an even number of edges}.

• L = {G ∈ U | |V (G)| = |E(G)|}.

A graph language is said to be trivial if L = ∅ or L = U .
A protocol A in model M is said to stably decide a

graph language L ⊆ U (or equivalently a predicate pL :
U → {0, 1} defined as pL(G) = 1 iff G ∈ L) if for any G ∈
U and any computation of A on G, all agents eventually
output 1 if G ∈ L and all agents eventually output 0 if
G /∈ L. A graph language is said to be stably decidable by
model M (also called M-decidable) if some protocol A of
M stably decides it.

A protocol A in model M is said to stably recognize
a graph language L ⊆ U (or equivalently a predicate pL :
U → {0, 1} defined as pL(G) = 1 iff G ∈ L) if for any G ∈
U and any computation of A on G, all agents eventually
output 1 if G ∈ L and at least one agent outputs 0 if
G /∈ L. A graph language is said to be stably recognizable
by model M (also called M-recognizable) if some protocol
A of M stably recognizes it.

6.1. Deciding graph Languages in the MPP model
To formally summarize, here the output alphabet is

always binary, that is, Y = {0, 1}, ι(e) = s0 for all e ∈
E, and I(σ) = q0, for all σ ∈ X (due to this, an input
alphabet is not specified neither is an input function and
the assumption is that the initial configuration is C0(u) =
q0 for all u ∈ V ). This special case is called Graph Decision
Mediated Population Protocol (GDMPP) model.

Theorem 12 ([51]). The class of stably decidable graph
languages by the GDMPP model is closed under comple-
ment, union, and intersection operations.

Node and edge parity, bounded out-degree by a con-
stant, existence of a node with more incoming than out-
going neighbors, and existence of some directed path of
length at least k = O(1) are some examples of stably de-
cidable graph languages by the GDMPP model, in the case
where the graph universe is W. Also, given the same graph
universe, the following impossibility result holds.

Theorem 13 ([51]). There exists no GDMPP with stabi-
lizing states to stably decide the graph language

2C = {G ∈ W | ∃u, υ ∈ V (G) | (u, υ), (υ, u) ∈ E(G)}

(in words, G has at least one 2-cycle).
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Proof Idea. We give the main idea of the proof with the
help of Figure 6. Note that graph G (Figure 6(a)) has a
2-cycle, thus, belongs to 2C, while G′ (Figure 6(b)) does
not. Assume that a GDMPP with stabilizing states stably
decides 2C and take any computation of the protocol on G.
Eventually, in such a computation, both agents output 1.
Now, apply the same computation on G′ in the following
manner. Whenever e1 is chosen in G choose first t1 and
then t3 in G′, and whenever e2 is chosen in G choose t2
and then t4 in G′. It is not so hard to see that, due to
symmetry, when the protocol state-stabilizes on G it also
state-stabilizes with precisely the same states on G′ (thus,
also with the same output). Consequently, the protocol
also accepts G′ which is a contradiction and we reach the
conclusion that no such protocol can exist.

(a) Graph G (b) Graph G′

Figure 6: G ∈ 2C and G′ /∈ 2C.

In the case where the graph universe is G, containing
all possible directed communication graphs (i.e. also the
disconnected ones), it is possible to obtain a very strong
impossibility result.

Lemma 6 ([51]). For any non-trivial graph language L
(L is non-trivial if L 6= ∅ and L 6= G), there exists some
disconnected graph G in L where at least one component of
G does not belong to L or there exists some disconnected
graph G′ in L where at least one component of G′ does not
belong to L (or both).

Theorem 14 ([51]). Any non-trivial graph language L ⊂
G is not stably decidable by the GDMPP model.

Proof Idea. The proof of the result is based on the very
simple observation that in disconnected graphs, the var-
ious components cannot communicate with each other.
Then Lemma 6 can be used to argue that a language (or its
complement) must contain at least one disconnected graph
with a component not in the language, so any protocol
making some decision on the whole graph would make the
opposite decision on the component (since this component
does not belong to the language and is isolated from the
other components), which is contradictory.

Now, since the connectivity property is a non-trivial
property, the following corollary comes as an immediate
application of Theorem 14.

Corollary 2 ([51]). The graph language

C = {G ∈ G | G is (weakly) connected}

is not stably decidable by the GDMPP model.

6.2. Graph languages decided by constant memory sensor
fields

Following the proposal in [51] the decidability of graph
languages in the CMSF model has been analyzed in [49].
When the sensor field does not have access to any input
data stream the set of decidable languages is too small.
To have more significative results we allow only access to
a particular input data stream. The input data stream
will contain the information required to break the node
symmetry, this information can be used to drive the com-
putation in different ways. In this section we survey the
results on graph language decidability for three variations
of the CMSF model. The aim of the submodels is to ex-
plore different ways in which the input data stream can be
used to guide the computation of a sensor field and com-
pare the computational power of the resulting models by
ways of the sets of graph languages that are decidable in
the model.

6.2.1. The simplistic CMSF
This basic submodel assumes that we have a CMSF

in which all the nodes have the same initial state and no
input data stream is accessible. We call this model the
simplistic CMSF.

In the case that we consider digraphs in a class that
is closed under disjoint union, we have the same undecid-
ability as in [51] concerning non-trivial properties. Ob-
serve that in this case, as communication between dis-
connected components cannot be established, a commu-
nication graph formed by several connected components
in which there are components with positive answer and
components with a negative answer cannot agree on a com-
mon answer.

Theorem 15 ([49]). Let U be a graph family closed under
disjoint union, then any non-trivial graph language in U
is undecidable by simplistic CMSF.

When the universe is the set of all strongly connected
graphs non-trivial graph languages are undecidable. The
proof is based on the fact that all the devices receive and
send messages, because the graph is strongly connected. In
such a case as all of them have the same initial state the
computation is equivalent to a local computation in which
the sent messages are the input messages for the following
steps. Thus any decidable property must be independent
of the communication graph.

Theorem 16 ([49]). Any non-trivial graph language in S
is undecidable by simplistic CMSF with topology in S.
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When the graph universe is restricted to be W it is
easy to find constructions in which information can be
computed but not forwarded to all the nodes. Using this
arguments it has been shown the following generic result.

Theorem 17 ([49]). Any non-trivial graph property in S
is undecidable by simplistic CMSF on W.

However in the simplistic CMSF model there are non-
trivial decidable and undecidable properties when the com-
munication graph belongs to W. In decidable languages
node symmetry is broken by some property that can be
checked locally. Furthermore, the distinguished nodes must
be able to broadcast this information to the rest of the net-
work. The undecidable property obey to properties that
can not be checked locally.

Theorem 18 ([49]). In the simplistic CMSF, the graph
language

{G ∈ W | G has a node with no ingoing edges}

is decidable but the graph language

{G ∈ W | G has a node with no outgoing edges}

is undecidable

6.2.2. Node driven CMSF computation
The computational power of the simplistic CMSF has

been enhanced by adding an input data stream that at
any time step selects a node that can act as a leader for a
local computation. This is equivalent to the scheduler in
population protocols, but now the environment is selecting
a node rather than an edge. On a valid computation it is
required in addition fairness for the input data stream.

For most of the results a extension of the notion of fair-
ness is required. A node scheduler S is an infinite sequence
of nodes v1, v2, . . . . For a constant k we say that a node
scheduler is k-fair if the subsequence (vi)i mod k=1 is fair.
Therefore, we require that all the nodes appear infinitely
often at the beginning of some periods of fixed length. All
the definitions of decidability for this model will require
stabilization on k-fair scheduler, for some constant k, that
depends on the protocol. Observe that any fair scheduler
can be padded to devise a k-fair scheduler, but that a fair
scheduler might not be k-fair.

Theorem 19 ([49]). Let U be a graph family closed under
disjoint union, then any non-trivial graph language in U
is undecidable by node driven CMSF.

When the graph universe is restricted to be W we have
the following generic results.

Theorem 20 ([49]). Any non-trivial graph property in S
is undecidable by node driven CMSF on W.

But not taking into account the input data stream we
have the following result.

Theorem 21 ([49]). Any graph property decidable by sim-
plistic CMSF on W is decidable by node driven CMSF on
W.

However when restricted to strongly connected graphs
some non-trivial graph languages become decidable in the
node driven model. The main idea is to use a controlled
broadcast, consisting of a fixed number of steps, that al-
lows to check the property on the local neighborhood of
the activated node. This results on a scheduler that sta-
bilizes on any k-fair scheduler for some adequate constant
k that depends on the designed protocol.

Theorem 22 ([49]). The following properties are decid-
able by node driven CMSF with communication topology
in S.

• kC = {G ∈ S | G contains a k-cycle}, for any con-
stant k.

• Directed simple path of constant length.

Observe that kC is a non-trivial graph property (even
on strongly and weakly connected graphs) and therefore
the language is not decidable in the simplistic CMSF nei-
ther in the node driven CMSF on W.

6.2.3. Edge driven CMSF computation
Another extension is to consider the CMSF that has

been used to simulate the computation of a mediated pop-
ulation protocol. Here the communication graph has addi-
tional nodes that keep the state of the edge. In addition it
is assumed that all the nodes corresponding to vertices in
the communication graph have the same initial state and
all the nodes corresponding to edges also have the same
initial state. However, the initial state of edges can be
different to the initial state of vertices. The data stream
will select one edge per time step, thus activating the three
participants on the interaction, the actuator, the respon-
dent, and the edge. On a valid computation we assume in
addition k-fairness, for some fixed constant k.

This computational model has more computational po-
wer than the GDMPP model. The result follows from
using a variation of the simulation MPP in which the rep-
etition of the values on the data stream is replaced by local
states in order to guarantee that the protocol stabilizes on
5-fair edge schedulers.

Theorem 23 ([49]). Any graph property that is decidable
by GDMPP is decidable by edge driven CMSF.

Furthermore, the edge driven CMSF has also more
computational power than the node driven CMSF model.
Here in any activation of an edge (u, v), the simulation
simulates first the steps taken by a node scheduler that
activates u and continues simulating the activation of v.
This leads to the construction of a k-fair node scheduler
from a 2k-fair edge scheduler.

Theorem 24 ([49]). Any graph property that is decidable
by node driven CMSF is decidable by edge driven CMSF.
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7. Conclusions - Open Problems

We surveyed some very recently proposed computa-
tional models for networks of tiny artifacts. For the case of
interaction based models we focused on the area of popu-
lation protocols. We discussed some recent enhancements,
namely, the MPP model and the PM model. Both models
are the result of adding some extra feature to the popu-
lation protocol model. The former assumes that the com-
munication links can store limited information and the
latter that each agent is a multitape TM. We discussed
some very recent research proving that both models are
extremely powerful in terms of their computational power.
In complete graphs, the MPP model and the PM model
for every f(n) = Ω(log n) space bound are equivalent to
nondeterministic TMs of O(n2) and O(nf(n)) space, re-
spectively, that compute symmetric predicates. In particu-
lar, we presented Static Synchronous Sensor Field (SSSF)
which consists of a set of devices and a communication
graph. The computation of a SSSF depends on the com-
munication between the devices and the environment. We
reviewed the computational problems that are suscepti-
ble of being solved by sensor fields and we analyzed the
computational resources used to solve them. We discussed
several memory restrictions of the tiny devices involved in
a SSSF allowing only devices with constant or bounded
memory capacity. We analyzed the computational power
of sensor fields in the particular case in which the memory
per device is constant, the CMSF model, in relation with
the Population Protocol models, showing adequate simu-
lations of population protocols by sensor fields. We also
analyzed the decidability of properties of the communica-
tion or interaction graph under different variants of PP
and CMSF.

Many interesting problems remain open in the area of
population protocols:

• Are the MPP and PM models fault-tolerant? What
preconditions are needed in order to achieve satisfac-
tory fault-tolerance?

• In order to apply our protocols in real and critical
application scenarios some sort of code verification
seems necessary. A first attempt for the basic popu-
lation protocol model can be found in [52]. Verifica-
tion methods for MPPs, Community Protocols, and
PM protocols are still totally unknown, although the
ideas of [52] may also be applicable to these models.

• [53] revealed the need for population protocols to
have adaptation capabilities in order to keep work-
ing correctly and/or fast when natural modifications
of the mobility pattern occur. However, we do not
know yet how to achieve adaptivity.

• Is there an exact characterization of the class of sta-
bly decidable graph languages by GDMPP in the
weakly-connected case?

• O(log n) memory per agent seems to behave as a
threshold. Is there some sort of impossibility result
showing that with O(f(n)) memory, where f(n) is
asymptotically smaller than log n, the class of sta-
bly computable predicates is strictly smaller than
SNSPACE(nf(n))? At a first glance, it seems that
the agents are unable to store uids and get informed
of the population size.

• Study the stable decidability of graph languages by
the PM model for various space bounds (the most
prominent being the logarithmic bound).

In the area of sensor fields, among many others, we can
post the following open directions:

• Is there a characterization of the sensing problems
that can be solved in logarithmic or constant space?

• Allow the incorporation of a dynamic communica-
tion graph. This requires a slight modifcation of the
definition of the sensor field, just allowing that the
sets of neighbors change dynamically at any time
step. The dynamicity in the communication graph
can come from faults (either nodes or links) or from
mobility, or both. Finding the paradigmatic fam-
ily of problems for such networks and the adequeate
complexity measures will require an additional mod-
eling effort.

• Consider and incorporate energy models to the com-
munication graph. For analyzing the energy con-
sumption the performance measures proposed so far
proportionate the basic ingredients for the case that
sending/receiving a message has uniform cost for all
the nodes. Further basic complexity measures can
be required for more complex energy models. The
aim should be in the design of optimal (efficient) al-
gorithms under different energy models.

• In the CMSF model all the results are obtained for
the arbitrary model of communication. To some ex-
tent most of the results can be extended to the pri-
ority model. A good understanding of the collision
model will be of interest as losing information due to
collisions is a problem that naturally arises in wire-
less networks.
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der arithmetik ganzer zahlen, in welchem die addition als einzige
operation hervortritt, in: Comptes-Rendus du I Congrès de
Mathématiciens des Pays Slaves, pp. 92–101.

[37] D. Angluin, J. Aspnes, D. Eisenstat, Stably computable pred-
icates are semilinear, in: PODC ’06: Proceedings of the 25th
annual ACM Symposium on Principles of Distributed Comput-
ing, ACM Press, New York, NY, USA, 2006, pp. 292–299.

[38] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, E. Ruppert,
When birds die: Making population protocols fault-tolerant, in:
DCOSS, pp. 51–66.

[39] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann; 1st
edition, 1996.

[40] P. G. Spirakis, Population protocols and related models, in:
S. Nikoletseas, J. Rolim (Eds.), Theoretical Aspects of Dis-
tributed Computing in Sensor Networks, Springer-Verlag, 2010.
To appear.

[41] D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, R. Per-
alta, Stably computable properties of network graphs, in: V. K.
Prasanna, S. Iyengar, P. Spirakis, M. Welsh (Eds.), Distributed
Computing in Sensor Systems: First IEEE International Con-
ference, DCOSS 2005, Marina del Rey, CA, USE, June/July,
2005, Proceedings, volume 3560 of Lecture Notes in Computer
Science, Springer-Verlag, 2005, pp. 63–74.

[42] D. Angluin, J. Aspnes, D. Eisenstat, Fast computation by popu-
lation protocols with a leader, Distributed Computing 21 (2008)
183–199.

[43] O. Bournez, P. Chassaing, J. Cohen, L. Gerin, X. Koegler, On
the convergence of population protocols when population goes
to infinity, Applied Mathematics and Computation (2009). To
appear.

[44] I. Chatzigiannakis, P. G. Spirakis, The dynamics of probabilistic
population protocols, in: DISC ’08: Proceedings of the 22nd
international symposium on Distributed Computing, Springer-
Verlag, Berlin, Heidelberg, 2008, pp. 498–499.

[45] O. Bournez, J. Chalopin, J. Cohen, X. Koegler, Playing with
population protocols, in: CSP, pp. 3–15.

[46] I. Chatzigiannakis, O. Michail, P. G. Spirakis, Recent advances
in population protocols, in: MFCS ’09: Proceedings of the
34th International Symposium on Mathematical Foundations

20



of Computer Science 2009, Springer-Verlag, Berlin, Heidelberg,
2009, pp. 56–76.

[47] I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis,
P. G. Spirakis, All symmetric predicates in NSPACE(n2) are
stably computable by the mediated population protocol model,
in: MFCS ’10: Proceedings of the 35th International Sympo-
sium on Mathematical Foundations of Computer Science 2010.
To appear.

[48] M. Sipser, Introduction to the Theory of Computation, Sec-
ond Edition, International Edition, Thomson Course Technol-
ogy, 2006.

[49] C. Àlvarez, M. Serna, P. G. Spirakis, On the computational
power of constant memory sensor fields, Technical Report
FRONTS-TR-2010-10, 2010.

[50] I. Chatzigiannakis, O. Michail, P. G. Spirakis, Brief announce-
ment: Decidable graph languages by mediated population pro-
tocols, in: DISC, pp. 239–240.

[51] I. Chatzigiannakis, O. Michail, P. G. Spirakis, Stably decidable
graph languages by mediated population protocols, in: 12th
International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS 2010), LNCS. To appear.

[52] I. Chatzigiannakis, O. Michail, P. G. Spirakis, Algorithmic ver-
ification of population protocols, in: 12th International Sympo-
sium on Stabilization, Safety, and Security of Distributed Sys-
tems (SSS 2010), LNCS. To appear.

[53] I. Chatzigiannakis, S. Dolev, S. P. Fekete, O. Michail, P. G.
Spirakis, Not all fair probabilistic schedulers are equivalent, in:
OPODIS ’09: Proceedings of the 13th International Conference
on Principles of Distributed Systems, Springer-Verlag, Berlin,
Heidelberg, 2009, pp. 33–47.
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