
Passively Mobile Communicating Machines that Use
Restricted SpaceI,II

Ioannis Chatzigiannakisa,b, Othon Michaila, Stavros Nikolaoua,b,∗, Andreas
Pavlogiannisc, Paul G. Spirakisa,b

aResearch Academic Computer Technology Institute (CTI), Patras, Greece
bComputer Engineering and Informatics Department (CEID), University of Patras

cDepartment of Computer Science, University of California, Davis (UCDavis)

Abstract

We propose a new theoretical model for passively mobile Wireless Sensor Net-
works, called PM , standing for Passively mobile Machines. The main modifi-
cation w.r.t. the Population Protocol model [Angluin et al. 2006] is that agents
now, instead of being automata, are Turing Machines. We provide general defi-
nitions for unbounded memories, but we are mainly interested in computations
upper-bounded by plausible space limitations. However, we prove that our re-
sults hold for more general cases. We focus on complete interaction graphs
and define the complexity classes PMSPACE(f(n)) parametrically, consisting
of all predicates that are stably computable by some PM protocol that uses
O(f(n)) memory in each agent. We provide a protocol that generates unique
identifiers from scratch only by using O(logn) memory, and use it to provide an
exact characterization of the classes PMSPACE(f(n)) when f(n) = Ω(log n):
they are precisely the classes of all symmetric predicates in NSPACE(nf(n)).
As a consequence, we obtain a space hierarchy of the PM model when the
memory bounds are Ω(logn). We next explore the computability of the PM
model when the protocols use o(log log n) space per machine and prove that
SEM = PMSPACE(f(n)) when f(n) = o(log log n), where SEM denotes the
class of the semilinear predicates. Finally, we establish that the minimal space
requirement for the computation of non-semilinear predicates is O(log log n).

Keywords:
distributed computing, pervasive environments, diffuse computation, passive

IThis work has been partially supported by the ICT Programme of the European Union
under contract number ICT-2008-215270 (FRONTS).

IISome preliminary versions of the results in this paper have also appeared in [1] and [2].
∗Corresponding author (Telephone number: +30 2610 960200, Fax number: +30 2610

960490, Postal Address: Research Academic Computer Technology Institute (CTI), N.
Kazantzaki Str., Patras University Campus, Rio, P.O. Box 1382, 26500, Greece).

Email addresses: ichatz@cti.gr (Ioannis Chatzigiannakis), michailo@cti.gr (Othon
Michail), nikolaou@cti.gr (Stavros Nikolaou), apavlogiannis@ucdavis.edu (Andreas
Pavlogiannis), spirakis@cti.gr (Paul G. Spirakis)

Preprint submitted to TCS June 15, 2011

mobility

1. Introduction - Population Protocols

Theoretical models for Wireless Sensor Networks (WSNs) have received great
attention over the past few years. Recently, Angluin et al. [3] proposed the Pop-
ulation Protocol (PP) model. Their aim was to model sensor networks consist-
ing of tiny computational devices (called agents) with sensing capabilities that
follow some unpredictable and uncontrollable mobility pattern. Due to the min-
imalistic nature of their model, the class of computable predicates was proven
to be fairly small: it is the class of semilinear predicates [4], which does not e.g.
support multiplications, exponentiations, and many other important operations
on input variables. Additionally, according to the work of Delporte-Gallet et
al. [5], we only know how to transform any protocol that computes a function
in the failure-free model into a protocol that can tolerate O(1) crash failures.1

Moreover, Guerraoui and Ruppert [6] showed that any function computable by
a population protocol tolerating one Byzantine agent is trivial. On the other
hand, Angluin, Aspnes, and Eisenstat [7] described a population protocol that
computes majority tolerating O(

√
n) Byzantine failures. However, that protocol

was designed for a much more restricted setting, where the scheduler chooses
the next interaction randomly and uniformly (see the probabilistic population
protocols briefly discussed in Subsection 1.1).

The work of Angluin et al. shed light and opened the way towards a brand
new and very promising direction. The lack of control over the interaction
pattern, as well as its inherent nondeterminism, gave rise to a variety of new
theoretical models for WSNs. These models draw most of their beauty precisely
from their inability to organize interactions in a convenient and predetermined
way. In fact, the PP model was the minimalistic starting-point of this area of
research. Most efforts are now towards strengthening the model of Angluin et
al. with extra realistic and implementable assumptions, in order to gain more
computational power and/or speed-up the time to convergence and/or improve
fault-tolerance [8, 6].

In this work, we want to allow the agents to use f(n) space for various f ,
where n is the population size (i.e. the number of agents), while preserving the
uniformity and anonymity properties of PPs. We think of each agent as being a
Turing Machine2. This leads us to propose a new theoretical model for passively
mobile sensor networks, called the PM model. It is a model of Passively mobile
Machines (that we have been calling agents) with sensing capabilities, equipped
with two-way communication. We initially focus on PM protocols that use

1Although the letter ‘O’ is usually used in the Complexity Theory literature for the Big-Oh
notation, we have chosen here to use its calligraphic version ‘O’ in order to avoid confusion
with the output function of protocols.

2As common in the CS literature, we abbreviate a “Turing Machine” by “TM” and by
“NTM” when we want to emphasize that the TM is Nondeterministic.

2

O(logn) memory, which is an interesting space bound since (as we shall prove)
it allows the assignment of unique identifiers3 to the agents of the population
and plays a major role on establishing the computational power of the model.
In addition, we explore the computability of the PM model on different space
bounds in order to get an insight of the trade-off between computational power
and resource (memory) availability. For example, does more available memory
to the agents imply increased computational power? How are the computa-
tional capabilities affected under modifications of the available memory? As
we shall see, in PM protocols that use f(n) = Ω(logn) space, agents can be
organized into a distributed NTM that makes use of all the available space. In
the case, where f(n) = o(log log n) however, we show that the PM protocols are
computationally equal to Population Protocols. Thus, we provide exact charac-
terizations for the input symmetric computations performed by communicating
TMs using the above space bounds.

1.1. Other Previous Work

In [3], the Probabilistic Population Protocol model was proposed, in which
the scheduler selects randomly and uniformly the next pair to interact. Some re-
cent work has concentrated on performance, supported by this random schedul-
ing assumption (see e.g. [9]). [10] proposed a generic definition of probabilistic
schedulers and a collection of new fair schedulers, and revealed the need for the
protocols to adapt when natural modifications of the mobility pattern occur.
[11, 12] considered a huge population hypothesis (population going to infinity),
and studied the dynamics, stability and computational power of probabilistic
population protocols by exploiting the tools of continuous nonlinear dynamics.

In addition, several extensions of the basic model have been proposed in or-
der to more accurately reflect the requirements of practical and more powerful
systems. The Mediated Population Protocol (MPP) model of [8] was based on
the additional assumption that each edge of the interaction graph is a finite
storage. It has been recently proven [13] that in the case of complete graphs the
corresponding class of stably computable predicates is the symmetric subclass of
NSPACE(n2), rendering the MPP model extremely powerful (for a thorough
presentation of the MPP model see [14]). Guerraoui and Ruppert [6] made an-
other natural assumption: each agent has its own unique id and can store up to
a constant number of other agents’ ids. In this model, which they named the
Community Protocol model, the only permitted operation on ids is comparison.
It was proven that the corresponding class consists of all symmetric predicates in
NSPACE(n log n). In [15], Angluin et al. studied what properties of restricted
interaction graphs are stably computable, gave protocols for some of them, and
proposed an extension of the model with stabilizing inputs in order to resolve
the resistance of population protocols to composability. In [16], MPP’s ability
to decide graph properties was studied and it was proven that connectivity is

3Throughout the text we abbreviate the word “identifier” by “id” and we use “uid” when
we want to emphasize the fact that the identifier is “unique”.

3

undecidable. Another direction is to allow some heterogeneity in the model,
so that some agents have more computational power or additional capabilities
than others. For example, a base station can be an additional part of the net-
work with which the agents are allowed to communicate [17]. Such an addition
allowed for self-stabilizing algorithms that count the number of agents in the
network [17]. Recently, Bournez et al. [18] investigated the possibility of study-
ing population protocols via game-theoretic approaches. For some introductory
texts to the subject of PPs see [19, 20, 21] and for a survey on mediated popu-
lation protocols see [22]. Finally, the Static Synchronous Sensor Field (SSSF)
[23, 24] is a very promising recently proposed model that addresses networks
of tiny heterogeneous computational devices and additionally allows processing
over constant flows (streams) of data originating from the environment. The lat-
ter feature is totally absent from the models discussed so far and is required by
various sensing problems. See [25] for a joint survey on population-protocol-like
models and static synchronous sensor fields.

2. Our Results - Roadmap

In Section 3, we begin with a formal definition of the PM model. The
section proceeds with a thorough description of the functionality of the sys-
tems under consideration and then provides definitions of configurations and
fair executions. In Section 4, first stable computation and the family of classes
PMSPACE(f(n)) (stably computable predicates by the PMmodel usingO(f(n))
space in each agent) are defined. In section 5, we give two examples of PM
protocols where O(logn) space is used in each agent; since those compute
non-semilinear predicates, it is established that PM protocols using O(log n)
space are strictly stronger than population protocols. In Section 6, we show
that the PM model using O(f(n)) space can simulate a NTM (Theorem 4)
of space O(nf(n)) for any f(n) = Ω(log n). This along with Theorem 5,
where we prove that PMSPACE(f(n)) is a subset of the symmetric subclass
of NSPACE(nf(n)), SNSPACE(nf(n)), provide the following exact charac-
terizations: PMSPACE(f(n)) = SNSPACE(nf(n)) for all f(n) = Ω(log n).
Based on the results of this section, we establish a space hierarchy theorem for
the PM model, when the corresponding protocols use Ω(logn) space (Theorem
9). In section 7, we examine the interesting case of the o(log logn) space bounded
protocols, showing that this particular bound acts as a computability thresh-
old. In fact, we show that PMSPACE(f(n)) is equal to the class of semilinear
predicates when f(n) = o(log log n) and a proper superset of the semilinear
predicates when f(n) = Ω(log log n). Finally, in Section 8 we conclude and
discuss some interesting open problems.

3. The Model

In this section, we formally define the PM model and describe its functional-
ity. In what follows, we denote by G = (V,E) the (directed) interaction graph:

4

V is the set of agents, or population, and E is the set of permissible ordered
pairwise interactions between these agents. We provide definitions for general
interaction graphs and unbounded memories, although in this work we deal with
complete interaction graphs only and we are mainly interested in computations
that are space-bounded by a logarithm of the population size. We generally
denote by n the population size (i.e. n = |V |).

Definition 1. A PM protocol is a 6-tuple (X,Γ, Q, δ, γ, q0) where X, Γ and Q
are all finite sets and

1. X is the input alphabet, where t /∈ X,

2. Γ is the tape alphabet, where t ∈ Γ and X ⊂ Γ,

3. Q is the set of states,

4. δ : Q×Γ4 → Q×Γ4×{L,R, S}4×{0, 1} is the internal transition function,

5. γ : Q × Q → Q × Q is the external transition function (or interaction
transition function), and

6. q0 ∈ Q is the initial state.

Each agent is equipped with the following:

• A sensor in order to sense its environment and receive a piece of the input.

• Four read/write tapes: the working tape, the output tape, the incoming
message tape and the outgoing message tape. We assume that all tapes
are bounded to the left and unbounded to the right.

• A control unit that contains the state of the agent and applies the transi-
tion functions.

• Four heads (one for each tape) that read from and write to the cells of the
corresponding tapes and can move one step at a time, either to the left or
to the right, or remain stationary.

• A binary working flag either set to 1 meaning that the agent is working
internally or to 0 meaning that the agent is ready for interaction.

Initially, all agents are in state q0, their working flag is set to 1, and all their
cells contain the blank symbol t. We assume that all agents concurrently receive
their sensed input (different agents may sense different data) as a response to a
global start signal. The input to each agent is a symbol from X and is written
on the leftmost cell of its working tape. We call an input assignment to the
population, any string x = σ1σ2 . . . σn ∈ X∗, with n being the size of the
population. If we assume an ordering on V , the input to agent i is the symbol
σi, 1 ≤ i ≤ n.

When its working flag is set to 1 we can think of an agent working as a
usual multitape TM (with the additional step of writing the working flag). In
particular, while the working flag is set to 1 the internal transition function δ is
applied, the control unit reads the symbols under the heads and its own state,

5

updates all of them, moves each head one step to the left or to the right or keeps
it stationary, and sets the working flag to 0 or 1, according to δ.

As it is common in the PP literature, an adversary selects ordered pairs
of agents (edges from E) to interact. Assume now that two agents u and υ
are about to interact with u being the initiator of the interaction and υ being
the responder, i.e. the interacting pair is (u, v). Let f : V → {0, 1} be a
function returning the current value of each agent’s working flag. If at least
one of f(u) and f(υ) is equal to 1, then nothing happens, because at least
one agent is still working internally. Otherwise, both agents are ready and an
interaction is established. In the latter case, the external transition function γ is
applied, the states of the agents are updated accordingly, the outgoing message
of the initiator is copied to the leftmost cells of the incoming message tape
of the responder (replacing its contents and writting t to all other previously
non-blank cells) and vice versa (we call this the message swap), and finally
the working flags of both agents are again set to 1.4 These operations are also
considered as atomic, which intuitively means that the interacting agents cannot
take part in another interaction before the completion of these operations.

Since each agent is a TM, we use the notion of a configuration to capture its
“state”. An agent configuration is a tuple (q, lw, rw, lo, ro, lim, rim, lom, rom, f),
where q ∈ Q, lj , rj ∈ Γ∗ for j ∈ {w, o, im, om}, and f ∈ {0, 1}. We denote by q
the state of the control unit, by lw (lo, lim, lom) the string of the working (output,
incoming message, outgoing message) tape to the left of the head (including
the symbol scanned), by rw (ro, rim, rom) the string of the working (output,
incoming message, outgoing message) tape to the right of the head (excluding
the blank cells), and by f the working flag which indicates whether the agent
is ready to interact (f = 0) or carrying out some internal computation (f = 1).
We call an agent configuration initial if the agent is in state q0, all its tape cells
contain the blank symbol except for the leftmost cell of the working tape that
contains its input symbol and the flag bit is 0. Let B be the set of all agent
configurations. Given two agent configurations A,A′ ∈ B, we say that A yields
A′ if A′ follows A by a single application of δ.

A population configuration is a mapping C : V → B, specifying the agent
configuration of each agent in the population. A population configuration spec-
ifying the initial agent configuration of each of the population’s agents is called
initial population configuration. Note that every input assignment corresponds
to an initial configuration of the population in which each agent is in state q0
and has a symbol of the input assignment written in its working tape. Let C,
C ′ be population configurations and let u ∈ V . We say that C yields C ′ via
agent transition u, denoted C

u→ C ′, if C(u) yields C ′(u) and C ′(w) = C(w),
∀w ∈ V − {u}.

Denote by q(A) the state component of an agent configuration A and sim-

4These operations could be handled by the protocols themselves, but then protocol descrip-
tions would become awkward. So, we simply think of them as automatic operations performed
by the hardware.

6

ilarly for the other components (e.g. lw(A), rim(A), f(A), and so on). Let
stp(A) = ltp(A)rtp(A), that is, we obtain by concatenation the whole con-
tents of tape tp ∈ {w, o, im, om}. Given a string s and 1 ≤ i, j ≤ |s| de-
note by s[. . . i] its prefix s1s2 . . . si and by s[j . . .] its suffix sjsj+1 . . . s|s|. If

i, j > |s| then s[. . . i] = sti−|s| (i.e. i − |s| blank symbols appended to s) and
s[j . . .] = ε. For any external transition γ(q1, q2) = (q′1, q

′
2) define γ1(q1, q2) = q′1

and γ2(q1, q2) = q′2. Given two population configurations C and C ′, we say

that C yields C ′ via encounter e = (u, υ) ∈ E, denoted C
e→ C ′, if one of the

following two cases holds:

Case 1 (only for this case, we define Cu ≡ C(u) to avoid excessive number of
parentheses):

• f(C(u)) = f(C(υ)) = 0, which guarantees that both agents u and υ are
ready for interaction under the population configuration C.

• C ′(u) = (γ1(q(C
u), q(Cυ)), lw(C

u), rw(C
u), lo(C

u), ro(C
u),

som(Cυ)[. . . |lim(Cu)|], som(Cυ)[|lim(Cu)|+ 1 . . .],
lom(Cu), rom(Cu), 1),

• C ′(υ) = (γ2(q(C
u), q(Cυ)), lw(C

υ), rw(C
υ), lo(C

υ), ro(C
υ),

som(Cu)[. . . |lim(Cυ)|], som(Cu)[|lim(Cυ)|+ 1 . . .],
lom(Cυ), rom(Cυ), 1), and

• C ′(w) = C(w), ∀w ∈ V − {u, υ}.

Case 2:

• f(C(u)) = 1 or f(C(υ)) = 1, which means that at least one agent between
u and υ is working internally under the population configuration C, and

• C ′(w) = C(w), ∀w ∈ V . In this case no effective interaction takes place,
thus the population configuration remains the same.

Generally, we say that C yields (or can go in one step to) C ′, and write

C → C ′, if C
e→ C ′ for some e ∈ E (via encounter) or C

u→ C ′ for some u ∈ V

(via agent transition). We say that C ′ is reachable from C, and write C
∗→ C ′ if

there is a sequence of population configurations C = C0, C1, . . . , Ct = C ′ such
that Ci → Ci+1 holds for all i ∈ {0, 1, . . . , t − 1}. An execution is a finite or
infinite sequence of population configurations C0, C1 . . . , where C0 is an initial
configuration and Ci → Ci+1. An infinite execution is fair if for all population
configurations C, C ′ such that C → C ′, if C appears infinitely often in an
execution then so does C ′. This global fairness condition is a restriction imposed
on the adversary to ensure that the protocol makes progress. A computation is
an infinite fair execution.

The space used by an agent running any protocol A is the number of tape
cells used to store its configuration, that is the sum of the number of tape
cells for the contents of its four tapes. In addition, we say that a PM protocol

7

A uses f(n) space if the maximum space used by any agent for storing any
configuration over all computations is f(n). A (N)TM is called f(n) space
bounded if for every input of size n (and in any of its computation paths in the
case of a NTM) it scans at most f(n) tape cells on any of its (working) tapes.
Note that in our simulations throughout Section 6, we use the TM model with
one tape, which includes input and working tapes. We do this because the space
bounds discussed in that section are all in Ω(n), thus the Ω(n) complexity for
scanning the input is included. We call a protocol A, f(n) space bounded if it
uses f(n) space.

We assume that the input alphabet X, the tape alphabet Γ, and the set of
states Q are all sets whose cardinality is fixed and independent of the population
size. Thus, protocol descriptions have also no dependence on the population size
and the PM model preserves uniformity. Moreover, PM protocols are anony-
mous, they do not have any id. Uniformity and anonymity are two outstanding
properties of the basic population protocol model [3].

4. Stably Computable Predicates

Any mapping p : X∗ → {0, 1} is a predicate on input assignments.

Definition 2. A predicate on input assignments p is called symmetric if for
every x ∈ X∗ and any x′ which is a permutation of x’s symbols, it holds that
p(x) = p(x′).

In words, permuting the input symbols does not affect the symmetric pred-
icate’s outcome. From each predicate p a language Lp is derived that is the set
of all strings that make p true or equivalently, Lp = {x ∈ X∗ | p(x) = 1}. In
other words, Lp is equal to the support of p, that is p−1(1). A language Lp

is symmetric iff predicate p is symmetric, that is, for each input string x ∈ Lp

any permutation of x’s symbols x′ also belongs in Lp. Note that symmetric
languages are also known as commutative languages [26].

A population configuration C is called output stable if for every configuration
C ′ that is reachable from C it holds that O(C ′) = O(C), where O(C) ∈ {0, 1}
according to the output value that all agents agree to. In other words, the
system does not change its overall output in any subsequent step and no matter
how the computation proceeds. A predicate on input assignments p is said to
be stably computable by a PM protocol A in a graph family U if, for any input
assignment x ∈ X∗, any computation of A, on any interaction graph from U of
order |x|, contains an output stable configuration in which all agents have p(x)
written on their output tape. In what follows, we always assume that the graph
family under consideration contains only complete interaction graphs.

We say that a predicate p over X∗ belongs to SPACE(f(n)) (NSPA-
CE(f(n))) if there exists some deterministic (nondeterministic, resp.) TM that
decides Lp using O(f(n)) space, [27]. A computation path of a NTM accepts
if it halts in the accept state and rejects if it halts in the reject state. A non-
deterministic TM, M , decides a language Lp if for every input x of size n,

8

there is at least one computation path that accepts (i.e. M accepts) if x ∈ Lp

whereas if x /∈ Lp, all computation paths of M reject (i.e. M rejects). A
NTM decides a language Lp using f(n) space if the maximum number of tape
cells scanned/used for any input of size n and in any branch of its computa-
tion is f(n). These definitions are similar for deterministic TMs; the differ-
ence is that there is only one computation path. Throughout this work, we
use SSPACE(f(n)) and SNSPACE(f(n)) to denote the SPACE(f(n))’s and
NSPACE(f(n))’s restrictions to symmetric languages, respectively. In addi-
tion, we denote by SEM, the class of the semilinear predicates, consisting of
all predicates definable by first-order logical formulas of Presburger arithmetic
(see, e.g., [4]).

Definition 3. Let PMSPACE(f(n)) be the class of all predicates that are
stably computable by some PM protocol that uses O(f(n)) space.

Note that all agents are initially identical (they do not have unique ids) and
since the interaction graph is complete and the executions are fair, all predicates
in PMSPACE(f(n)) are symmetric for any function f(n).

5. Two Examples

5.1. Multiplication of Variables

We present now a PM protocol that stably computes the predicate (Nc =
Na ·Nb, Nc > 0) using O(logn) space (on the complete interaction graph of n
nodes) that is, all agents eventually decide whether the number of cs (Nc) in
the input assignment is the product of the number of as (Na) and the number
of bs (Nb). We give a high-level description of the protocol.

Initially, all agents have one of a, b and c written on the first cell of their
working memory (according to their sensed value). That is, the set of input
symbols is X = Σ = {a, b, c}. Each agent that receives input σ ∈ {a, b, c} goes
to state σ, writes 0 to its output tape and becomes ready for interaction (sets
its working flag to 0). Agents in state a and b both do nothing when interacting
with agents in state a and agents in state b. An agent in c initially creates in its
working memory three binary counters, the a-counter that counts the number
of as, the b-counter, and the c-counter, initializes the a and b counters to 0, the
c-counter to 1, and becomes ready. When an agent in state a interacts with an
agent in state c, a becomes ā to indicate that the agent is now sleeping, and c
does the following (in fact, we assume that c goes to a special state ca in which
it knows that it has seen an a, and that all the following are done internally,
after the interaction; finally the agent restores its state to c and becomes again
ready for interaction): it increases its a-counter by one (in binary), multiplies
its a and b counters, which can be done in binary in logarithmic space (binary
multiplication is in LOGSPACE), compares the result with the c-counter,
copies the result of the comparison to its output tape, that is, 1 if they are equal
and 0 otherwise, and finally it copies the comparison result and its three counters
to the outgoing message tape and becomes ready for interaction. Similar things

9

happen when a b meets a c (interchange the roles of a and b in the above
discussion). When a c meets a c, the responder becomes c̄ and copies to its
output tape the output bit contained in the initiator’s message. The initiator
remains to c, adds the a-counter contained in the responder’s message to its a-
counter, the b and c counters of the message to its b and c counters, respectively,
multiplies again the updated a and b counters, compares the result to its updated
c counter, stores the comparison result to its output and outgoing message tapes,
copies its counters to its outgoing message tape and becomes ready again. When
a ā, b̄ or c̄ meets a c they only copy to their output tape the output bit contained
in c’s message and become ready again (e.g. ā remains ā), while c does nothing.

Note that the number of cs is at most n which means that the c-counter will
become at most dlog ne bits long, and the same holds for the a and b counters,
so O(logn) memory is required in each tape.

Theorem 1. The above PM protocol stably computes the predicate (Nc = Na ·
Nb) using O(logn) space.

Proof. Given a fair execution, eventually all as and bs become ās and b̄s and
only one agent in state c will remain, its a-counter containing the total number
of as, its b-counter the total number of bs, and its c-counter the total number of
cs. By executing the multiplication of the a and b counters and comparing the
result to its c-counter it will correctly determine whether (Nc = Na ·Nb) holds
and it will store the correct result (0 or 1) to its output and outgoing message
tapes. At that point all other agents will be in one of the states ā, b̄, and c̄. All
these, again due to fairness, will eventually meet the unique agent in state c and
copy its correct output bit (which they will find in the message they get from c)
to their output tapes. Thus, eventually all agents will output the correct value
of the predicate, having used O(logn) memory.

Corollary 1. SEM (PMSPACE(log n)

Proof. PM protocols using O(log n) space can simulate population protocols
and (Nc = Na ·Nb) ∈ PMSPACE(log n), which is non-semilinear.

Note that the previously described protocol can be easily extended to also
take into account the case Nc = 0 by running in parallel (in different state
components within their working tape) a population protocol that check the
following cases: (a) Nc = Na = 0 and (b) Nc = Nb = 0. These two cases are
the only ones that Nc = 0 and the protocol should accept. Otherwise, due to
the fact that all agents have their outputs initialized to 0 and that there are
no effective interactions (interactions that change the state of the participating
agents) between agents in a and/or b, the protocol will correctly reject. The
predicates described in the previous two cases can be computed by population
protocols and thus can be simulated in constant space by the agents. If any of
the previous predicates hold then the output tapes are set to 1. In any other
case, the output tape is written by the agents in state c. We omit the technical
details of the previous construction to avoid further confusion.

10

In the following subsection, we present another PM protocol using O(log n)
space that computes the non-semilinear predicate (N1 = 2t), which provides an
alternative route to the previous corollary.

5.2. Power of 2

Here, we present a PM protocol that, using O(logn) memory, stably com-
putes the non-semilinear predicate (N1 = 2t), where t ∈ Z≥0, on the complete
interaction graph of n nodes, that is, all agents eventually decide whether the
number of 1s in the input assignment is a power of 2.

The idea is similar to the one presented in the previous section. The set of
input symbols is binary. The protocol counts in binary the number of 1s in the
input. The sum of 1s is eventually aggregated in one awake agent and all other
sleeping agents copy the former’s output value (see e.g. the parity protocol in
[3]). The awake agent can easily recognize whether its counter holds a power of
2 and performs this check every time the counter is incremented. Eventually,
the awake agent will know the correct answer to the predicate and the rest of
population will obtain it.

Note that the counter of 1s can be at most n. Thus, it requires at most
dlog ne bits of memory. In addition, the check of whether the counter is a power
of 2 can be easily computed by an agent in O(log n) space.

6. Space Hierarchy of the PM Model

In this section, we study the behaviour of the PM model for various space
bounds. Such a study is of particular interest since it is always important to
know what computations is a model capable of dispatching according to the
capabilities of the available hardware.

6.1. A lower bound

We prove here that, for space functions f(n) = Ω(log n), the PM model can
simulate a NTM of space O(nf(n)) using O(f(n)) space in each agent.

The intuition behind the proof is that with at least logn memory per agent
we can assign unique ids and propagate the size of the population to all agents.
The assignment process is presented in Subsection 6.1.1. Since the agents do not
know when the process terminates, the simulation is reinitialized in a fashion
similar to the one described in [13]. The agents line up according to their ids
and the simulation accesses their tapes in a modular way. The nondeterministic
choices are made by exploiting the inherent nondeterminism of the interaction
pattern. The full proof is presented in Subsection 6.1.2.

6.1.1. Assigning Unique IDs by Reinitializing Computation

In this subsection, we prove that PM protocols can assume the existence
of unique consecutive ids and knowledge of the population size at the space
cost of O(logn) (Theorem 2). In particular, we present a PM protocol that
correctly assigns unique consecutive ids to the agents and informs them of the

11

correct population size using only O(log n) memory, without assuming any ini-
tial knowledge of none of them. We show that this protocol can simulate any
PM protocol that assumes the existence of these ids and knows the population
size.

Definition 4. Let PLM ≡ PMSPACE(logn). In words it is the class of all
predicates that are stably computable by some PM protocol that uses O(log n)
space in each agent (and in all of its tapes, excluding the space used for the
read-only tape).

Definition 5. Let IPM (‘I’ standing for “Ids”) be the extension of the PM
model in which the agents have additionally the unique ids {0, 1, . . . , n− 1} and
in which each agent knows the population size (these are read-only information
stored in a separate read-only tape).

Definition 6. Let IPMSPACE(f(n)) be the class of all predicates that are
stably computable by some IPM protocol that uses O(f(n)) space in every agent
(and in all of its tapes, excluding the space used for the read-only tape) and de-
note by SIPMSPACE(f(n)) its symmetric subclass. Similarly to PLM define
IPLM ≡ IPMSPACE(log n) and SIPLM ≡ SIPMSPACE(log n).

Pick any p ∈ SIPLM. Let A be the IPM protocol that stably computes it
in O(logn) space. We now present a PM protocol I, containing protocol A as
a subroutine (see Protocol 1), that stably computes p, by also using O(log n)
space. I is always executed by every agent and its job is to assign unique ids
to the agents, to inform them of the correct population size and to control A’s
execution (e.g. restarts its execution if needed). A, when I allows its execution,
simply reads the unique ids and the population size provided by I and executes
itself normally. We first present I and then prove that it eventually correctly
assigns unique ids and correctly informs the agents of the population size, and
that when this process comes to a successful end, it restarts A’s execution in
all agents without allowing non-reinitialized agents to communicate with the
reinitialized ones. Therefore, at some point, A will begin its execution reading
the correct unique ids and the correct population size (provided by I), thus, it
will get correctly executed and will stably compute p.

12

Protocol 1 I

1: if rid == id then // when interacting with an agent of the same id
2: if initiator == 1 then // if the agent is the initiator of the interaction
3: // it increases its id by one and stores it in the outgoing message
4: id← id+ 1, sid← id
5: // it sets the population size equal to its updated id + 1
6: ps← id+ 1, sps← ps
7: else // if it is the responder
8: // it updates the population size to the same value as the initiator
9: ps← id+ 2, sps← ps

10: end if
11: // in either case it clears its working block and copies its
12: // input symbol into it; it also clears its output tape
13: working ← binput, output← ∅
14: else // if the other participant in the interaction has different id
15: if rps > ps then // in case the agent has an outdated population size
16: working ← binput, output← ∅ // it gets reinitialized
17: // and updates its population size to the greater value
18: ps← rps, sps← ps
19: else if rps == ps then // in case the other agent knows the same

population size
20: // it must have also been reinitialized and thus
21: // the agent can proceed executing A
22: execute A for 1 step
23: end if
24: end if

We begin by describing I’s variables. The variable id is for storing the id
of the agent (from which A reads the agents’ ids), sid the variable for storing
the id that an agent writes in its outgoing message tape in order to send it,
and rid the variable for storing the id that an agent receives via interaction.
The model’s definition implies that all variables used for sending information,
like sid, preserve their value in future interactions unless altered by the agent.
Initially, id = sid = 0 for all agents. All agents have an input backup variable
binput which they initially set to their input symbol and make it read-only.
Thus, each agent has always available its input via binput even if the compu-
tation has proceeded. working represents the block of the working tape that
A uses for its computation and output represents the contents of the output
tape. initiator is a binary flag that becomes true after every interaction if the
agent was the initiator of the interaction and false otherwise (this is easily im-
plemented by exploiting the external transition function). We denote by ps, the
variable storing the population size, by sps, the one used to put it in a outgoing
message, and by rps, the received one. Initially, ps = sps = 1.

We now describe I’s functionality. Whenever a pair of agents with the same
id interact, the initiator increases its id by one and both update their population

13

size value to the greater id plus one. Whenever two agents with different ids and
population size values interact, they update their population size variables to
the greater size. Thus the correct size (greatest id plus one) is propagated to all
agents. Both interactions described above reinitialize the participating agents
(restore their input and erase all data produced by the subroutine A, without
altering their ids and population sizes). Whenever two agents of different ids
and same population sizes interact, A runs as a subroutine using those data
provided by I.

The following lemmas provide some important properties of Protocol 1.
Lemma 1 shows that I correctly assigns unique consecutive ids and propagates
the correct population size to the agents of the population in a finite number of
steps, whereas Lemma 3 guarantees the fairness of A’s execution.

Lemma 1. (i) No agent id becomes greater than n − 1, and no ps variable
becomes greater than n. (ii) I assigns the ids {0, 1, . . . , n−1} in a finite number
of interactions. (iii) I sets the ps variable of each agent to the correct population
size in a finite number of interactions.

Proof. (i) By an easy induction, in order for an id to reach the value v, there
have to be at least v + 1 agents present in the population. Thus, whenever an
id becomes greater than n − 1, there have to be more than n agents present,
which creates a contradiction. Similar arguments hold for the ps variables
(ii) Assume on the contrary that it does not. Because of (i), at each point of
the computation there will exist at least two agents, u, v such that idu = idv.
Due to fairness, an interaction between such agents shall take place infinitely
many times, creating an arbitrarily large id which contradicts (i).
(iii) The correctness of the id assignment ((i),(ii)) guarantees that after a finite
number of steps two agents, u, v will set their ps variables to the correct pop-
ulation size (upon interaction in which idu = idv = n − 2). It follows from (i)
that no agent will have its ps variable greater than n. Fairness guarantees that
each other agent will interact with u or v, updating its ps to n.

Note that once a agent learns the correct population size this value does not
change and thus no further reinitialization can take place. The following lemma
show that only agents that know the correct population size can have effective
interactions w.r.t. A’s execution.

Lemma 2. After the unique consecutive ids {0, 1, . . . , n−1} have been assigned,
only agents that know the correct population size have effective interactions with
each other w.r.t. to A’s execution.

Proof. After the unique ids have been successfully assigned, it is like the pop-
ulation is partitioned in two classes, the class FR of finally reinitialized agents
which know the correct population size and NFR of the non finally reinitial-
ized ones (which do not know the correct population size). Initially (just af-
ter the unique ids have been successfully assigned), FR = {n − 2, n − 1} and
NFR = {0, 1, . . . , n−3}, that is, all agents except n−1 and n−2, who know the
correct population size n, are considered as non finally reinitialized. An agent

14

i ∈ NFR moves to FR iff it interacts with an agent in FR. This interaction
reinitializes i for the last time since its ps value is updated with the correct
population size and by Lemma 1 (i, iii) cannot change any further. Therefore,
no interaction between agents in different classes can be effective. Similarly, by
inspecting Protocol 1 it is easy to see that only agents in FR, that is agents
with proper ids and population size values, have effective interactions with each
other.

Lemma 3. Given that I’s execution is fair, A’s execution is fair as well.

Proof. Due to the fact that the id-assignment process and the population size
propagation are completed in a finite number of steps, it suffices to study fairness
of A’s execution after their completion. The state of each agent may be thought
of as containing an I-subcomponent and an A-subcomponent, with obvious
contents. Denote by CA the unique subconfiguration of C consisting only of
the A-subcomponents of all agents and note that some CA may correspond to
many superconfigurations C. Assume that CA → C ′

A and that CA appears
infinitely often (since here we consider A’s configurations, this ‘→’ refers to a
step of A’s execution). CA → C ′

A implies that there exist superconfigurations
C, C ′ of CA, C

′
A, respectively, such that C → C ′ (via some step of A in the

case that CA 6= C ′
A). Due to I’s fairness, if C appears infinitely often, then so

does C ′ and so does C ′
A since it is a subconfiguration of C ′. Thus, it remains to

show that C appears infinitely often. Since CA appears infinitely often, then the
same must hold for all of its superconfigurations. The reasoning is as follows.
All those superconfigurations differ only in the I-subcomponents, that is, they
only differ in some variable checks performed by I (after the id-assignment
process and the population size propagation have come to an end, nothing else
is performed by I). But all of them are reachable from and can reach a common
superconfiguration of CA in which no variable checking is performed by I, thus,
they only depend on which pair of agents is selected for interaction and they
are all reachable from one another. Since at least one of them appears infinitely
often then, due to the fairness of I’s execution, all of them must also appear
infinitely often and this completes the proof.

By combining the above lemmas we can prove the following:

Theorem 2. PLM = SIPLM.

Proof. PLM ⊆ SIPLM holds trivially, so it suffices to show that SIPLM ⊆
PLM. We have presented a PLM protocol (protocol 1) that assigns the agents
unique consecutive ids after a finite number of interactions and informs them
of the population size (Lemma 1). It follows directly from the protocol that
after that point, further fair execution of I will result in execution of protocol
A which can take into account the existence of unique ids. Moreover, execution
of A is guaranteed to be fair (Lemma 3).

15

6.1.2. SNSPACE(nf(n)) ⊆ PMSPACE(f(n)) for any f(n) = Ω(log n)

We now show that for space functions f(n) = Ω(log n), the PM model can
simulate a deterministic TM of space O(nf(n)) using O(f(n)) in each agent.
This is formally stated by the following theorem:

Theorem 3. SSPACE(nf(n)) ⊆ PMSPACE(f(n)) for any f(n) = Ω(log n).

Proof. Let p : X∗ → {0, 1} be any predicate in SSPACE(nf(n)) andM be the
deterministic TM that decides p by using O(nf(n)) space. We can construct a
PM protocol A that uses f(n) = Ω(log n) space on each agent and that stably
computes p by exploiting its knowledge of unique ids and the population size.
Such knowledge can be obtained by the protocol I of Theorem 2 (see Subsection
6.1.1). Note that protocol I can be executed by any PM protocol whose agents
use Ω(log n) space. Let x be any input assignment in X∗. Each agent receives
its input symbol according to x (e.g. u receives symbol x(u)). We assume
for the sake of simplicity that the agents are equipped with an extra tape, the
simulation tape that is used during the simulation. The agent that has obtained
the unique id 0 starts simulatingM.

In the general case, assume that currently the simulation is carried out by
an agent u having the id iu. Agent u uses its simulation tape to write symbols
according to the transition function of M. Any time the head of M moves
to the right, u moves the head of the simulation tape to the right, pauses the
simulation, writes the current state of M to its outgoing message tape, and
passes the simulation to the agent v having id iv = (iu + 1) mod n. Any time
the head of M moves to the left, u pauses the simulation, writes the current
state ofM to its outgoing message tape, and passes the simulation to the agent
v having id iv = (iu − 1) mod n. From agent v’s perspective, in the first
case it just receives the state of M, copies it to its working tape and starts
the simulation, while in the second case it additionally moves the head of the
simulation tape one cell to the left before it starts the simulation.

It remains to cover the boundary case in which the head of the simulation
tape is over the special symbol that indicates the beginning of the tape. In that
case, the agent moves the head to the right and continues the simulation himself
(notice that this can only happen to the agent that begins the simulation, that
is, the one having the id 0).

Whenever, during the simulation, M accepts, then A also accepts; that is,
the agent that detectsM’s acceptance, writes 1 to its output tape and informs
all agents to accept. IfM rejects, it also rejects. Finally, note that A simulates
M not necessarily on input x = (σ0, σ1, . . . , σn−1) but on some x′ which is a
permutation of x. The reason is that agent with id i does not necessarily obtain
σi as its input. The crucial remark that completes the proof is thatM accepts
x if and only if it accepts x′, because p is symmetric.

Because of the above process, it is easy to verify that the k−th cell of the
simulation tape of any agent u having the id iu corresponds to the (n(k − 1) +
iu + 1)−th cell of M. Thus, whenever M alters l = O(nf(n)) tape cells, any
agent u will alter l′ = l−iu−1

n + 1 = O(f(n)) cells of its simulation tape.

16

The next theorem shows how the above approach can be generalized to
include NTMs.

Theorem 4. For any f(n) = Ω(log n) it holds that SNSPACE(nf(n)) ⊆
PMSPACE(f(n)).

Proof. We have already shown that the PM model can simulate a determinis-
tic TMM of O(nf(n)) space, where f(n) = Ω(log n), by using O(f(n)) space
(Theorem 3). We now present some modifications that will allow us to sim-
ulate a NTM N of the same memory size. Keep in mind that N halts for
every input, that is it decides any language corresponding to some predicate in
SNSPACE(nf(n)). Upon initialization, each agent enters a reject state (writes
0 to its output tape) and the simulation is carried out as in the case ofM.

Whenever a nondeterministic choice has to be made, the corresponding agent
gets ready and waits to participate in an interaction. The id of the other par-
ticipant will provide the nondeterministic choice to be made. One possible
implementation of this idea is the following. Since there is a fixed upper bound
on the number of nondeterministic choices (independent of the population size),
the agents can store them in their memories. Any time a nondeterministic choice
has to be made between k candidates the agent assigns the numbers 0, 1, . . . , k−1
to those candidates and becomes ready for interaction. Assume that the next
interaction is with an agent whose id is i. Then the nondeterministic choice
selected by the agent is the one that has been assigned the number i mod k.
It follows directly from the fairness constraint that if the computation reaches
any state S infinitely many times, all the possible nondeterministic choices from
S will be followed. In what follows, we will see that this is sufficient for the
population to simulate the behaviour of N .

Any time the simulation reaches an accept state, all agents change their
output to 1 and the simulation halts. Moreover, any time the simulation reaches
a reject state, it is being reinitiated. The correctness of the above procedure is
captured by the following two cases.

1. If N rejects then every agent’s output stabilizes to 0. Upon initialization,
each agent’s output is 0 and can only change if N reaches an accept state.
But all branches of N ’s computation reject, thus, no accept state is ever
reached, and every agent’s output forever remains to 0.

2. If N accepts then every agent’s output stabilizes to 1. Since N accepts,
there is a sequence of configurations S, starting from the initial configura-
tion C that leads to a configuration C ′ in which each agent’s output is set
to 1 (by simulating directly the branch of N that accepts). Notice that
when an agent sets its output to 1 it never alters its output tape again, so
it suffices to show that the simulation will eventually reach C ′. Assume
on the contrary that it does not. Since N always halts the simulation will
be at the initial configuration C infinitely many times. Due to fairness,
by an easy induction on the configurations of S, C ′ will also appear in-
finitely many times, which leads to a contradiction. Thus the simulation
will eventually reach C ′ and the output will stabilize to 1.

17

6.2. Upper Bounds

We first prove that PMSPACE(f(n)) ⊆ SNSPACE(nf(n)).

Theorem 5. For any function f(n) it holds that PMSPACE(f(n)) ⊆ SNSPA-
CE(nf(n)).

Proof. We will now present a NTM M of space O(nf(n)) that can decide a
language Lp corresponding to any predicate p ∈ PMSPACE(f(n)). To accept
the input (assignment) x,MA must verify two conditions: That there exists a
configuration C reachable from the initial configuration corresponding to x in
which the output tape of each agent indicates that p holds, and that there is no
configuration C ′ reachable from C under which p is violated for some agent.

The first condition is verified by guessing and checking a sequence of config-
urations. Starting from the initial configuration, each timeMA guesses config-
uration Ci+1 and verifies that Ci yields Ci+1. This can be caused either by an
agent transition u, or an encounter (u, v). In the first case, the verification can
be carried out as follows: MA guesses an agent u so that Ci and Ci+1 differ
in the configuration of u, and that Ci(u) yields Ci+1(u). It then verifies that
Ci and Ci+1 differ in no other agent configurations. Similarly, in the second
case MA nondeterministically chooses agents u, v and verifies that encounter
(u, v) leads to C ′ by ensuring that: (a) both agents have their working flags
cleared in C, (b) the tape exchange takes place in C ′, (c) both agents update
their states according to γ and set their working flags to 1 in C ′ and (d) that Ci

and Ci+1 differ in no other agent configurations. In each case, the space needed
is O(nf(n)) for storing Ci, Ci+1, plus O(f(n)) extra capacity for ensuring the
validity of each agent configuration in Ci+1.

If the above hold,MA replaces Ci with Ci+1 and repeats this step. Other-
wise,MA drops Ci+1. Any time a configuration C is reached in which p holds,
MA computes the complement of a similar reachability problem: it verifies
that there exists no configuration reachable from C in which p is violated. Since
NSPACE is closed under complement for all space functions g(n) = Ω(log n)
(see the Immerman-Szelepcsényi theorem [28]), this condition can also be veri-
fied in O(n log n) space. Thus, Lp can be decided in O(nf(n)) space by some
NTM, which implies that Lp ∈ SNSPACE(nf(n)).

Using a different representation of population configurations we can improve
the above upper bound to SNSPACE(2f(n)(f(n) + log n)) for f(n) = o(log n).

Theorem 6. For any function f : N→ N, any predicate in PMSPACE(f(n))
is also in SNSPACE(2f(n)(f(n) + log n)).

Proof. Take any p ∈ PMSPACE(f(n)). Let A be the PM protocol that stably
computes predicate p in space O(f(n)). Lp = {(σ1σ2 . . . σn) | σi ∈ X for all i ∈
{1, . . . , n} and p(σ1σ2 . . . σn) = 1} is the language corresponding to p (X ⊂ Σ∗

is the set of input strings). We describe a NTM N that decides Lp in g(n) =
O(2f(n)(f(n) + log n)) space.

18

Note that each agent uses memory of size O(f(n)). So, by assuming a
binary tape alphabet Γ = {0, 1} (the alphabet of the agents’ tapes), an assump-
tion which is w.l.o.g., there are 2O(f(n)) different agent configurations (internal
configurations) each of size O(f(n)). N stores a population configuration by
storing all these agent configurations, consuming for this purpose O(f(n)2f(n))
space, together with a number per agent configuration representing the number
of agents in that agent configuration under the current population configuration.
These numbers sum up to n and each one of them requires O(logn) tape cells,
thus, O(2f(n) log n) extra space is needed, giving a total of O(2f(n)(f(n)+logn))
space needed to store a population configuration. The reason that such a repre-
sentation of population configurations suffices is that when k agents are in the
same internal configuration there is no reason to store it k times. The complete-
ness of the interaction graph allows us to store it once and simply indicate the
number of agents that are in this common internal configuration, that is, k.

Now N does the same as the NTM of Theorem 5 does. The main differ-
ence is that it now stores the population configurations according to the new
representation we discussed above.

The upper bounds shown in Theorem 5 are obviously better for functions
f(n) = Ω(log n) than those established by Theorem 6. Note however, that for
f(n) = o(logn) the upper bounds of Theorem 5 are worse than those of Theo-
rem 6. In order to realize this, consider the function f(n) = c (the memory of
each agent is independent of the population size, thus this corresponds to the PP
model). According to Theorem 5 the upper bound is the trivial SNSPACE(n),
whereas the Theorem 6 decreases the upper bound to SNSPACE(logn). This
behavior is expected due to the configuration representation of the population
used by those theorems. When the configuration is stored as n-vector where
each element of the vector holds the internal configuration of an agent (rep-
resentation used in Theorem 5) then as the memory size grows the additional
space needed is a factor n of that growth. On the other hand, when a configura-
tion is represented as a vector of size equal to the number of all possible internal
configurations where each element is the number of agents that are in the cor-
responding internal configuration (as in Theorem 6) then the size of the vector
grows exponentially to the memory growth. Therefore tighter upper bounds are
obtained by Theorem 5 for functions f(n) = Ω(log n) and by Theorem 6 for
f(n) = o(log n). Note that for f(n) = log n the bounds by both theorems are
the same.

6.3. An Exact Characterization and a Space Hierarchy

In this section we use the previously shown lower and upper bounds to
provide exact characterizations for PMSPACE(f(n)), when f(n) = Ω(log n)
and to formally state the Space Hierarchy Theorem of the PM model.

From Theorems 5 and 4 we get exact characterizations for all PMSPA-
CE(f(n)), when f(n) = Ω(log n). It is formally stated as:

Theorem 7. For any f(n) = Ω(logn) it holds that PMSPACE(f(n)) = SN-
SPACE(nf(n)).

19

The following theorem states a space hierarchy for classes of symmetric lan-
guages.

Theorem 8 (Symmetric Space Hierarchy Theorem). For each h(n) and each
recursive l(n), separated by a nondeterministically fully space constructible func-
tion f(n), with h(n) ∈ Ω(f(n)) but l(n) /∈ Ω(f(n)), ∃ a language L that is in
SNSPACE(h(n))− SNSPACE(l(n)).

Proof. Follows immediately from the unary (tally) separation language pre-
sented in [29] and the fact that any unary language is symmetric.

The previous theorem is used next for establishing a similar hierarchy on the
classes of symmetric predicates that we discuss in this work.

Theorem 9 (PM Space Hierarchy). For each h(n) ∈ Ω(log n) and each re-
cursive l(n), separated by a nondeterministically fully space constructible func-
tion g(n), with h(n) ∈ Ω(g(n)) but l(n) /∈ Ω(g(n)), there is a language in
PMSPACE(h(n))−PMSPACE(l(n)).

Proof. Since l(n) is recursive so is nl(n) and since g(n) is nondeterministically
fully space constructible so is ng(n). Moreover, h(n) ∈ Ω(g(n)) and l(n) /∈
Ω(g(n)) imply nh(n) ∈ Ω(ng(n)) and nl(n) /∈ Ω(ng(n)), respectively. Now
we may apply Theorem 8 to the functions nh(n), nl(n), and ng(n) to obtain
a language L in SNSPACE(nh(n)) − SNSPACE(nl(n)). Note that h(n) ∈
Ω(log n) implies (Theorem 7) SNSPACE(nh(n)) = PMSPACE(h(n)). Thus,
L ∈ PMSPACE(h(n)). Moreover, L /∈ SNSPACE(nl(n)) implies L /∈ PM-
SPACE(l(n)), otherwise we could apply Theorem 5 to obtain a contradiction.
Thus, L is in PMSPACE(h(n))−PMSPACE(l(n)).

In simple words, Theorem 9 says that for the space bounds discussed in this
section, protocols using more memory can compute more things.

7. A Threshold in the Computability of the PM Model

In this section, we explore the computability of the PM model when the
protocols use o(log log n) space. We show that log logn acts as a threshold under
which PM protocols become computationally equivalent to PPs. In particular,
we prove that PMSPACE(f(n)) = SEM when f(n) = o(log log n). Moreover,
we prove that SEM (PMSPACE(f(n)) when f(n) = Ω(log log n) by showing
that O(log log n) space suffices for computing a non-semilinear predicate.

7.1. log logn Threshold

Here, we prove an interesting limitation on the computability of the PM
model when the memory bounds are too restrictive.

Theorem 10. PM protocols using f(n) = o(log log n) space can only compute
semilinear predicates.

20

Proof Idea. The result lies on the fact that populations of different size
share common executions at the beginning of their computation. Indeed, the set
of initial states is identical for any two populations A, B, |A| = n < |B|. In the
first step of the execution, any non-initial state can occur by an interaction of
agents being in the initial states. Thus, the sets of states that occur by such
interactions are also the same in the two populations (for non-trivial values of
n). Proceeding inductively this way, we can see that in order for a new state w
to occur in B, but not in A, there has to be an interaction between two states
u, v, which can be present in both populations. But since w appears only in B,
u and v cannot exist in A at the same time, otherwise w would occur in A too.
Based on this observation, one can establish that protocols that use o(log log n)
memory restrict the state space so much, that any two states u, v can occur
concurrently in any population A, so that any state that appears in such a B
has to be present in A too.

In the following, we formalize this proof idea, showing that Theorem 10
holds.

Definition 7. Let A be a PM protocol executed in a population V of size n. De-
fine an agent configuration graph, RA,V = {U,W,F} with components described
as follows:

• U is the set of the agent configurations that can occur in any execution of
A such that the working flag is set to 0.

• W is the set of edges (u, v), u, v ∈ U so that there exists an edge (u, v)
when there exists an agent configuration w so that an interaction between
two agents with configurations u, w will lead the first one to configuration
v.

• F : W → {u1, u2, . . . }, ui ∈ U × {i, r} is an edge labeling function so
that when an agent k being in configuration u enters configuration v via
a single interaction with an agent being in configuration w, and k acts as
x ∈ {i, r} (initiator-responder) in the interaction, then {w, x} ∈ F ((u, v)).

In other words, U contains the configurations that an agent may enter in
any possible execution, when we do not take into consideration the ones that
correspond to internal computation, while W defines the transitions between
those configurations through interactions defined by F . Note that the model’s
description excludes infinite sequences of blank cells from the agent configura-
tions. Also, notice that in general, RA,V depends not only on the protocol A,
but also on the population V . We call a u ∈ U initial node iff it corresponds to
an initial agent configuration.

Because of the uniformity property, we can deduce the following theorem:

Lemma 4. Let RA,V , RA,V ′ be two agent configuration graphs corresponding to
a protocol A for any two different populations V , V ′ of size n and n′ respectively,
where n < n′. Then, there exists a subgraph R∗ of RA,V ′ such that R∗ = RA,V ,
and whose initial nodes contains all the initial nodes of RA,V ′ .

21

Proof. Indeed, let V ′
1 , V

′
2 be a partitioning of V ′ such that V ′

1 = V , and observe
the agent configuration graph that is yielded by the execution of A in V ′

1 . Since
both populations execute the same protocol A the transitions are the same, thus
all edges in RA,V will be present in RA,V ′

1
between the common pairs of nodes

and their F labels will be equal as well since V ′
1 = V . Therefore RA,V = RA,V ′

1
.

Moreover, since the initial nodes are the same for both populations, they must
be in RA,V ′

1
. Finally, RA,V ′

1
is a subgraph of RA,V ′ , as V ′

1 ⊂ V ′, and the proof
is complete.

The above lemma states that while we explore populations of greater size,
the corresponding agent configuration graphs are only enhanced with new nodes
and edges, while the old ones are preserved.

Given an agent configuration graph, we associate each node a with a value
r(a) inductively, as follows:

Base Case For any initial node a, r(a) = rinit = 1.

Inductive Step For any other node a, r(a) = min(r(b) + r(c)) such that a is
reachable from b through an edge that contains c in its label, and b, c have
already been assigned an r value.

Lemma 5. Let RA,V = {U,W,F} be an agent configuration graph. Every node
in RA,V gets associated with an r value.

Proof. Assume for the sake of the contradiction that there is a maximum, non
empty set of nodes U ′ ⊂ U such that ∀v ∈ U ′, v does not get associated with
an r value. Then B = U −U ′, and C = (B,U ′) defines a cut, with all the initial
nodes being in B. We examine any edge (u, v) with label L that crosses the cut,
having an arbitrary (w, x) ∈ L. Since no initial node can be in U ′ (initial nodes
are assigned the r-value 1) and each node of the non empty U ′ is reachable from
some initial configuration (by the definition of RA,V) there must be at least
one such edge. Obviously u ∈ B and v ∈ U ′, and u is associated with a value
r(u). Since v is not associated with any r value, the same must hold for node w
(otherwise r(v) = r(u)+ r(w)). We now examine the first agent c that enters in
some execution a configuration corresponding to some v ∈ U ′. Because of the
above observation, this could only happen through an interaction with an agent
being in a configuration that is also in U ′ which creates the contradiction.

Note that for any given protocol and population size, the r values are unique
since the agent configuration graph is unique. The following lemma captures a
bound in the r values when the corresponding protocol uses f(n) = o(log log n)
space.

Lemma 6. Let rmax−i be the i−th greatest r value associated with any node in
an agent configuration graph. For any protocol A that uses f(n) = o(log log n),
there exists a n0 such that for any population of size n > n0, rmax < n

2 .

22

Proof. Since f(n) = o(log log n), limn→∞
f(n)

log log n = 0, so limn→∞
log log n
f(n) = ∞

and limn→∞
log n
2f(n) = ∞. It follows from the last equation that there exists a

fixed n0 such that logn
2f(n) > 2 for any n > n0.

Fix any such n and let k = |U | ≤ 2f(n) in the corresponding agent configu-
ration graph. Since any node is associated with an r value, there can be at most
k different such values. Now observe that rmax ≤ 2 · rmax−1 ≤ · · · ≤ 2k · rinit ≤
22

f(n)

< 2
log n

2 ≤ 2
√
n ≤ n

2 for n > max(n0, 2).

Note that these r-values are a part of our theoretical analysis and are not
stored on the population (there is not enough space on the agents to store them).

Lemma 7. Let a be a node in the agent configuration graph RAV . Then for
every subpopulation of V of size r(a) there is an input and an execution of the
protocol A that leads to the configuration a.

Proof. We prove the above lemma by generalized induction in the r values.

Base Case The lemma holds for any initial node u, since rinit = 1.

Inductive Step We examine any non-initial node u that has been associated
with a value r(u) = r(a) + r(b), for some a, b. The inductive hypothesis
guarantees that a and b can be reached in two separate subpopulations of
size r(a) and r(b). Then an interaction between those agents will take one
of them to the configuration u, so the lemma holds for u too.

Lemmas 6 and 7 lead to the following:

Lemma 8. For any protocol A that uses f(n) = o(log log n) there exists a
fixed n0 such that for any population of size n > n0 and any pair of agent
configurations u, v, there exists an execution in which the interaction (u, v)
takes place.

Proof. Indeed, because of the Lemma 6, there exists a n0 such that for any
n > n0, r(a) < n

2 for any a. With that in mind, Lemma 7 guarantees that
in any such population, any interaction (u, v) can occur since any of the agent
configurations u, v can occur independently, by partitioning the population in
two subpopulations of size n

2 each.

We can now complete our proof of Theorem 10:

Proof. Because of the uniformity constraint, A can be executed in any pop-
ulation of arbitrary size. We choose a fixed n0 as defined in Lemma 6 and
examine the population L of size n = n0. Let RA,L be the corresponding agent
configuration graph. Let L′ be any population of size n′ > n and RA,L′ the
corresponding agent configuration graph. Because of Lemma 4, RA,L′ contains
a subgraph K, such that K = RA,L, and the initial nodes of RA,L′ are in K. Let
U∗ = U ′ − U , and k the first agent configuration that appears in L′ such that

23

k ∈ U∗ through an interaction (u, v)(k can’t be an initial configuration, thus
it occurs through some interaction). Then u, v ∈ U , and the interaction (u, v)
can occur in the population L too (Lemma 8), so that k ∈ U , which refutes our
choice of k creating a contradiction. So, U∗ = ∅, and the set of agent configura-
tions does not change as we examine populations of greater size. Since the set
of agent configurations remains described by the fixed RA,L, the corresponding
predicate can be computed by the PP model, thus it is semilinear.

Theorem 10 guarantees that for any protocol that uses only f(n) = o(log log n)
space in each agent, there exists a population of size n0 in which it stops using
extra space. Since n0 is fixed, we can construct a protocol based on the agent
configuration graph which uses constant space5, and thus can be executed in
the PP model.

So far, we have established that PMSPACE(f(n)) ⊆ SEM when f(n) =
o(log log n). Since the inverse direction holds trivially, we can conclude that
PMSPACE(f(n)) = SEM.

Theorem 10 practically states that when the memories available to the proto-
cols are strictly smaller than log log n (asymptotically) then these PM protocols
are nothing more than PPs, and although their memory is still dependent on
the population size, they cannot exploit it as such; instead they have to use it
as a constant memory much like PPs do.

7.2. The Power of 2 Predicate

We will now present the non-semilinear power of 2 predicate, and devise a
PM protocol that computes it using O(log log n) space in each agent.

The predicate’s definition is slightly different to the one described in Section
5.2. We here define the power of 2 as follows: During the initialization, each
agent receives an input symbol from X = {a, 0}, and let Na denote the num-
ber of agents that have received the symbol a. We want to compute whether
logNa = t for some natural t. We give a high level protocol that computes this
predicate, and prove that it can be correctly executed using O(log log n) space.

Each agent u maintains a variable xu, and let outu be the variable that u
uses to write its output. Initially, any agent u that receives a as his input symbol
sets xu = 1 and outu = 1, while any other agent v sets xv = 0 and outv = 1.

The main protocol consists of two subprotocols, A and B, that are executed
concurrently. Protocol A does the following: whenever an interaction occurs
between two agents, u, v, with u being the initiator, if xu = xv > 0, then
xu = xu + 1 and xv = 0. Otherwise, nothing happens. Protocol B runs in
parallel, and computes the semilinear predicate of determining whether there
exist 0, two or more agents having x > 0. If so, it outputs 0, otherwise it outputs
1. Observe that B is executed on stabilizing inputs, as the x-variables fluctuate
before they stabilize to their final value. However, it is well known that the
semilinear predicates are also computable under this constraint [30].

5Notice that this fixed agent configuration graph can be viewed as a deterministic finite
automaton.

24

Lemma 9. The main protocol uses O(log log n) space.

Proof. As protocol B computes a semilinear predicate, it only uses O(c) space,
with c being a constant. To examine the space bounds of A, pick any agent
u. We examine the greatest value that can be assigned to the variable xu.
Observe that in order for xu to reach value k, there have to be at least 2
preexisting x− variables with values k − 1. Through an easy induction, it
follows that there have to be at least 2k pre-existing variables with the value
1. Since 2k ≤ Na, k ≤ logNa ≤ log n, so xu is upper bounded by logn, thus
consuming O(log log n) space.

Lemma 10. For every agent u, eventually outu = 1 if logNa = t for some
arbitrary t, and outu = 0 otherwise.

Proof. Indeed, the execution of protocol B guarantees that all agents will set
out = 1 iff eventually there exists only one agent u that has a non-zero value
assigned in xu. Assume that xu = k for some k. Then, because of the analysis
of lemma 9 during the initialization of the population will exist 2k x−variables
set to 1. Since each of those variables corresponds to one a assignment, Na =
2k ⇒ logNa = k. On the other hand, if the answer of the protocol is 0 then
there are t > 1 agents in the population with x−variables set to different values
x1, x2, · · · , xt otherwise they could have effective interactions with each other.
Therefore, there should have initially existed 2x1−1 +2x2−1 + · · ·+2xt−1 agents
with input a. This, however, means that Na 6= 2k for any k since each number
can be uniquely expressed as a sum of distinct powers of 2. Thus the protocol
correctly outputs 0.

Thus, we have presented a non-semilinear predicate that can be computed
by a PM protocol using O(log log n) space. Combining this result with Theorem
10, we obtain the following theorem:

Theorem 11 (Threshold Theorem). SEM = PMSPACE(f(n)) when f(n) =
o(log log n) and SEM (PMSPACE(f(n)) when f(n) = Ω(log log n).

Theorem 11 resembles a similar well-known result of Computational Com-
plexity for the class of regular languages REG, according to which REG =
SPACE(o(log log n)) (SPACE(Ω(log log n)) (see [27, 31] and Theorem 5.1.3,
pages 29-30, of [32]). However, the model under consideration here and, conse-
quently, the proof that we provide are quite different.

8. Conclusions - Future Research Directions

We proposed the PM model, an extension of the PP model, in which the
agents are communicating TMs. Throughout our work, we studied the computa-
tional power of the new model when the space used by each agent is bounded by
a function f(n) of the population size. To do so, we presented protocols in which
the number of states used by any execution on n agents is bounded by O(cf(n))
(so that each state can be represented by O(f(n)) tape cells), where c constant,

25

and the new states of the interacting agents are computable in f(n) space by a
TM. Although the model preserves uniformity and anonymity, interestingly, we
have been able to prove that the agents can organize themselves into a NTM
that makes full use of the agents’ total memory (i.e. of O(nf(n)) space) when
f(n) = Ω(log n). The agents are initially identical and have no global knowl-
edge of the system, but by executing an iterative reinitialization process they
are able to assign unique consecutive ids to themselves and get informed of the
population size. In this manner, we showed that PMSPACE(f(n)), which
is the class of predicates stably computable by the PM model using O(f(n))
memory, contains all symmetric predicates in NSPACE(nf(n)). Moreover, by
proving that PMSPACE(f(n)) ⊆ SNSPACE(nf(n)), we concluded that for
f(n) = Ω(log n), it is precisely equal to the class consisting of all symmetric pred-
icates in NSPACE(nf(n)). We also explored the behavior of the PM model
for space bounds f(n) = o(logn) and proved that SEM = PMSPACE(f(n))
when f(n) = o(log log n). Finally, we showed that this bound acts as a thresh-
old, that is, SEM (PMSPACE(f(n)) when f(n) = Ω(log log n).

Many interesting questions remain open. Is the PM model fault-tolerant?
What preconditions are needed in order to achieve satisfactory fault-tolerance?
What is the behavior of the model when the agents use O(f(n)) memory, where
f(n) = o(logn) and f(n) = Ω(log log n)? Does a space hierarchy similar to the
one presented in Section 6.3, hold for functions o(logn)?

Acknowledgements

We wish to thank some anonymous reviewers for their very useful comments
on a previous version of this work.

References

[1] I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. G. Spi-
rakis, Passively mobile communicating logarithmic space machines, Tech-
nical Report FRONTS-TR-2010-16, RACTI, Patras, Greece, 2010. http:
//fronts.cti.gr/aigaion/?TR=154, arXiv/1004.3395v1.

[2] I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. G. Spirakis,
Passively Mobile Communicating Machines that Use Restricted Space,
Technical Report, RACTI, Patras, Greece, 2010. http://arxiv.org/abs/
1012.2440v1.

[3] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, R. Peralta, Computation
in networks of passively mobile finite-state sensors, Distributed Computing
(2006) 235–253.

[4] S. Ginsburg, E. H. Spanier, Semigroups, presburger formulas, and lan-
guages, Pacific Journal of Mathematics 16 (1966) 285–296.

26

[5] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, E. Ruppert, When birds
die: Making population protocols fault-tolerant, in: IEEE 2nd Intl Confer-
ence on Distributed Computing in Sensor Systems (DCOSS), volume 4026
of Lecture Notes in Computer Science, Springer-Verlag, 2006, pp. 51–66.

[6] R. Guerraoui, E. Ruppert, Names trump malice: Tiny mobile agents can
tolerate byzantine failures, in: 36th International Colloquium on Au-
tomata, Languages and Programming (ICALP), volume 5556 of Lecture
Notes in Computer Science, Springer-Verlag, 2009, pp. 484–495.

[7] D. Angluin, J. Aspnes, D. Eisenstat, A simple population protocol for fast
robust approximate majority, Distributed Computing 21 (2008) 87–102.

[8] I. Chatzigiannakis, O. Michail, P. G. Spirakis, Mediated population pro-
tocols, in: 36th International Colloquium on Automata, Languages and
Programming (ICALP), volume 5556 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, 2009, pp. 363–374.

[9] D. Angluin, J. Aspnes, D. Eisenstat, Fast computation by population
protocols with a leader, Distributed Computing 21 (2008) 183–199.

[10] I. Chatzigiannakis, S. Dolev, S. P. Fekete, O. Michail, P. G. Spirakis, Not
all fair probabilistic schedulers are equivalent, in: 13th International Con-
ference on Principles of Distributed Systems (OPODIS), volume 5923 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg,
2009, pp. 33–47.

[11] O. Bournez, P. Chassaing, J. Cohen, L. Gerin, X. Koegler, On the con-
vergence of population protocols when population goes to infinity, Applied
Mathematics and Computation (2009).

[12] I. Chatzigiannakis, P. G. Spirakis, The dynamics of probabilistic popula-
tion protocols, in: 22nd international symposium on Distributed Comput-
ing (DISC), volume 5218 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, Heidelberg, 2008, pp. 498–499.

[13] I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. G. Spirakis,
All symmetric predicates in NSPACE(n2) are stably computable by the
mediated population protocol model, in: 35th International Symposium
on Mathematical Foundations of Computer Science (MFCS), volume 6281
of Lecture Notes in Computer Science, Springer-Verlag, 2010, pp. 270–281.

[14] O. Michail, I. Chatzigiannakis, P. G. Spirakis, Mediated population proto-
cols, Theoretical Computer Science (TCS) 412 (2011) 2434–2450.

[15] D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, R. Peralta,
Stably computable properties of network graphs, in: V. K. Prasanna,
S. Iyengar, P. Spirakis, M. Welsh (Eds.), Distributed Computing in Sensor
Systems: First IEEE International Conference, DCOSS 2005, Marina del

27

Rey, CA, USA, June/July, 2005, Proceedings, volume 3560 of Lecture Notes
in Computer Science, Springer-Verlag, 2005, pp. 63–74.

[16] I. Chatzigiannakis, O. Michail, P. G. Spirakis, Stably decidable graph
languages by mediated population protocols, in: 12th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS),
volume 6366 of Lecture Notes in Computer Science, Springer-Verlag, 2010,
pp. 252–266.

[17] J. Beauquier, J. Clement, S. Messika, L. Rosaz, B. Rozoy, Self-stabilizing
counting in mobile sensor networks, in: Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing, PODC
’07, ACM, New York, NY, USA, 2007, pp. 396–397.

[18] O. Bournez, J. Chalopin, J. Cohen, X. Koegler, Playing With Population
Protocols, ArXiv e-prints (2009). http://arxiv.org/abs/0906.3256.

[19] J. Aspnes, E. Ruppert, An introduction to population protocols, Bulletin
of the European Association for Theoretical Computer Science 93 (2007)
98–117.

[20] P. G. Spirakis, Theoretical Aspects of Distributed Computing in Sensor
Networks, Springer-Verlag.

[21] O. Michail, I. Chatzigiannakis, P. G. Spirakis, New Models for Population
Protocols, N. A. Lynch (Ed), Synthesis Lectures on Distributed Computing
Theory, Morgan & Claypool, 2011.

[22] I. Chatzigiannakis, O. Michail, P. G. Spirakis, Recent advances in popula-
tion protocols, in: 34th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS), volume 5734 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 56–76.

[23] C. Àlvarez, A. Duch, J. Gabarro, M. Serna, Sensor field: A computational
model, in: 5th Intl Workshop on Algorithmic Aspects of Wireless Sensor
Networks (ALGOSENSORS), Springer-Verlag, Berlin, Heidelberg, 2009,
pp. 3–14.

[24] C. Àlvarez, M. Serna, P. G. Spirakis, On the computational power of con-
stant memory sensor fields, Technical Report FRONTS-TR-2010-10, 2010.

[25] C. Àlvarez, I. Chatzigiannakis, A. Duch, J. Gabarró, O. Michail, S. Maria,
P. G. Spirakis, Computational models for networks of tiny artifacts: A
survey, Computer Science Review 5 (2011) 7–25.

[26] P. C. Fischer, A. R. Meyer, A. L. Rosenberg, Counter machines and counter
languages, Mathematical Systems Theory 2 (1968) 265–283.

28

[27] R. E. Stearns, J. Hartmanis, P. M. Lewis, Hierarchies of memory limited
computations, in: Proceedings of the 6th Annual Symposium on Switch-
ing Circuit Theory and Logical Design (SWCT 1965), FOCS ’65, IEEE
Computer Society, Washington, DC, USA, 1965, pp. 179–190.

[28] N. Immerman, Nondeterministic space is closed under complementation,
SIAM J. Comput. 17 (1988) 935–938.

[29] V. Geffert, Space hierarchy theorem revised, Theor. Comput. Sci. 295
(2003) 171–187.

[30] D. Angluin, J. Aspnes, D. Eisenstat, Stably computable predicates are
semilinear, in: 25th annual ACM Symposium on Principles of Distributed
Computing (PODC), ACM Press, New York, NY, USA, 2006, pp. 292–299.

[31] M. Alberts, Space complexity of alternating turing machines, in: L. Bu-
dach (Ed.), Fundamentals of Computation Theory, volume 199 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, 1985, pp. 1–7.
10.1007/BFb0028785.

[32] A. Szepietowski, Turing Machines with Sublogarithmic Space, Springer-
Verlag New York, Inc., 1994.

29

