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Abstract

In this work, we study a discrete system of entities residing on a two-dimensional square grid. Each entity
is modelled as a node occupying a distinct cell of the grid. The set of all n nodes forms initially a connected
shape A. Entities are equipped with a linear-strength pushing mechanism that can push a whole line of
entities in parallel in a single time-step on one position in a given (one of the four possible) direction of a
grid. A target connected shape B is also provided and the goal is to transform A into B via a sequence
of line moves. Existing models based on local movement of individual nodes, such as rotating or sliding a
single node, can be shown to be special cases of the present model, therefore their (inefficient, Θ(n2)-time)
universal transformations carry over. Our main goal is to investigate whether the parallelism inherent in
this new type of movement can be exploited for efficient, i.e., sub-quadratic worst-case, transformations.
This paper provides several solutions for specific and universal centralised transformations in the context
of the new model. In particular we first design O(n log n)-time universal transformation without preserving
the connectivity of original shape. Then we focus on transformations which preserve the connectivity of the
shape throughout its course and develop an O(n

√
n)-time transformation for the apparently hard instance

of transforming a diagonal A into a straight line B.

Keywords:
programmable matter, transformation, reconfigurable robotics, shape formation, complexity, distributed
algorithms

1. Introduction

As a result of recent advances in components such as micro-sensors, electromechanical actuators, and
micro-controllers, a number of interesting systems are now within reach. A prominent type of such sys-
tems concerns collections of small robotic entities. Each individual robot is equipped with a number of
actuation/sensing/communication/computation components that provide it with some autonomy; for in-
stance, the ability to move locally and to communicate with neighbouring robots. Still, individual local
dynamics are weak, and individual computations are restricted due to limited computational power, re-
sources, and knowledge. What makes these systems interesting is the collective complexity of the popu-
lation of devices. A number of fascinating recent developments in this direction have demonstrated the
feasibility and potential of such collective robotic systems, where the scale can range from milli/micro
[BG15, GKR10, KCL+12, RCN14, YSS+07] down to nano [DDL+09, Rot06].

This progress has motivated the parallel development of a theory of such systems. It has been already
highlighted [MS18] that a formal theory (including modelling, algorithms, and computability/complexity) is
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necessary for further progress in systems. This is because theory can accurately predict the most promising
designs, suggest new ways to optimise them, by identifying the crucial parameters and the interplay between
them, and provide with those (centralised or distributed) algorithmic solutions that are best suited for each
given design and task, coupled with provable guarantees on their performance. As a result, a number of
sub-areas of theoretical computer science have emerged such as mobile and reconfigurable robotics [ABD+13,
BKRT04, CFPS12, CKLWL09, DFSY15, DDG+18, DGMRP06, DDG+14, DGR+15, DGR+16, DLFS+19,
DLFP+18, FPS12, KKM10, MSS19, SMO+18, YS10, YUY16, YSS+07], passively-mobile systems [AAD+06,
AAER07, MS16, MS18] including the theory of DNA self-assembly [Dot12, RW00, Win98, WCG+13], and
metamorphic systems [DP04, DSY04a, DSY04b, NGY00, WWA04]; connections are even evident with the
theory of puzzles [BDF+19, Dem01, HD05]. A latest ongoing effort is to join these theoretical forces and
developments within the emerging area of “Algorithmic Foundations of Programmable Matter” [FRRS16].
Programmable matter refers to any type of matter that can algorithmically change its physical properties.
“Algorithmically” means that the change (or transformation) is the result of executing an underlying program.

In this paper, we embark from the model studied in [DP04, DSY04a, DSY04b, MSS19], in which a number
of spherical devices are given in the form of a (typically connected) shape A lying on a two-dimensional square
grid, and the goal is to transform A into a desired target shape B via a sequence of valid movements of
individual devices. In those papers, the considered mechanisms were the ability to rotate and slide a device
over neighbouring devices (always through empty space). We here consider an alternative (linear-strength)
mechanism, by which a line of one or more devices can translate by one position in a single time-step. As a
first step towards understanding the power of the new mechanism, we restrict attention solely to centralised
transformations and leave the distributed case as a direction for future research.

As our main goal is to determine whether the new move under consideration can in principle be exploited
for sub-quadratic worst-case transformations, we naturally restrict our attention to centralised transforma-
tions. We first allow the transformations to break connectivity, and we manage to develop a universal
transformation of O(n log n) worst-case running time. Then, we investigate the case in which the trans-
formations must preserve connectivity and develop an O(n

√
n)-time transformation for some specific pairs

of connected shapes. Distributed transformations and connectivity-preserving universal transformations are
left as interesting future research directions.

1.1. Our Approach

In [MSS19], it was proved that if the devices (called nodes from now on) are equipped only with a rotation
mechanism, then the decision problem of transforming a connected shape A into a connected shape B is
in P, and a constructive characterisation of the (rich) class of pairs of shapes that are transformable to
each other was given. In the case of combined availability of rotation and sliding, universality has been
shown [DP04, MSS19], that is, any pair of connected shapes are transformable into each other. Still, in
these and related models, where in any time step at most one node can move a single position in its local
neighbourhood, it can be proved (see, for instance, [MSS19]) that there will be pairs of shapes that require
Ω(n2) steps to be transformed into each other. This follows directly from the inherent “distance” between
the two shapes and the fact that this distance can be reduced by only a constant in every time step. An
immediate question is then “How can we come up with more efficient transformations?”

Two main alternatives have been explored in the literature in an attempt to answer this question. One
is to consider parallel time, meaning that the transformation algorithm can move more than one node (up
to a linear number of nodes if possible) in a single time step. This is particularly natural and fair for
distributed transformations, as it allows all nodes to have their chances to take a move in every given time-
step. For example, such as transformations based on pipelining [DSY04b, MSS19], where essentially the
shape transforms by moving nodes in parallel around its perimeter, can be shown to require O(n) parallel
time in the worst case and this technique has also been applied in systems (e.g., [RCN14]).

The other approach is to consider more powerful actuation mechanisms, that have the potential to reduce
the inherent distance faster than a constant per sequential time-step. These are typically mechanisms where
the local actuation has strength higher than a constant. This is different from the above parallel-time
transformations, in which local actuation can only move a single node one position in its local neighbourhood
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Figure 1: (a) Dividing the diagonal into
√
n segments of length

√
n each (integer

√
n case). (b) A closer view of a single

segment, where 1, 2, 3, . . . ,
√
n−1 are the required distances for the nodes to form a line segment at the leftmost column (of the

segment). (c) Each line segment is transformed into a line and transferred towards the bottommost row of the shape, ending
up as in (d). (e) All line segments are turned into the bottommost row to form the target spanning line.

and the combined effect of many such moves at the same time is exploited. In contrast, in higher-strength
mechanisms, it is a single actuation that has enough strength to move many nodes at the same time.
Prominent examples in the literature are the linear-strength models of Aloupis et al. [ABD+13, ACD+08],
in which nodes are equipped with extend/contract arms, each having the strength to extend/contract the
whole shape as a result of applying such an operation to one of its neighbours, and of Woods et al. [WCG+13],
in which a whole line of nodes can rotate around a single node (acting as a linear-strength rotating arm).
The present paper follows this approach, by introducing and investigating a linear-strength model in which
a node can push a line of consecutive nodes one position (towards an empty cell) in a single time-step.

In terms of transformability, our model can easily simulate the combined rotation and sliding mechanisms
of [DP04, MSS19] by restricting moves to lines of length 1 (i.e., individual nodes). It follows that this model
is also capable of universal transformations, with a time complexity at most twice the worst-case of those
models, i.e., again O(n2). Naturally, our focus is set on exploring ways to exploit the parallelism inherent
in moving lines of larger length in order to speed-up transformations and, if possible, to come up with a
more efficient in the worst case universal transformation. Further, as reversibility of moves is still valid in
our model, we adopt the approach of transforming any given shape A into a spanning line L (vertical or
horizontal). This is convenient, because if one shows that any shape A can transform fast into a line L, then
any pair of shapes A and B can then be transformed fast to each other by first transforming fast A into L
and then L into B by reversing the fast transformation of B into L.

Given this, our focus in the present study is to investigate whether the presented linear-strength mech-
anism can achieve faster transformations that transform any pair of connected shapes to each other (i.e.,
no requirement to preserve connectivity of the shape during the transformations). For example, take the
diagonal worst-case shape D (e.g., Figure 1 (a)) and try to convert it into a straight line L. Observe that
any transformation requires Θ(n2) sequential individual movements to transform D into L. By exploiting
linear-strength mechanism, let us now perform the following simple strategy; (1) divide D into several diag-
onal segments of length

√
n each (see Figure 1 (a)), then (2) turn each segment into a straight line segment

via individual moves, which takes linear time for each segment (Figure 1 (b) and (c)). Next, (3) transfer
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every line segment all the way down to the bottom of D (Figure 1 (d)) in which each line segment pushes
a maximum of n distance. Finally, (4) change the orientation of all line segments in linear time to form
the target straight line L (Figure 1 (e)). This transformation takes a total of O(n

√
n) time-steps. Thus, in

contrast to the aforementioned models, the new mechanism allows for sub-quadratic strategies, like the one
just sketched. The complete technical description of this strategy can be found in the full report [AMP19b].

In this paper, we exploit the new mechanism in order to develop such sub-quadratic transformations.
Our ultimate goal is universal transformations, meaning transformations that can transform any pair of
connected shapes to each other. By allowing the transformations to break connectivity, we give such a
universal transformation that takes O(n log n) time. We achieve this by enclosing the initial shape into a
square bounding box and then subdividing the box into square sub-boxes of appropriate dimension. Then,
we employ a successive doubling approach through phases of an increasing dimension of the sub-boxes,
that is, through a new partitioning in each phase. Our ultimate theorem (followed by a constructive proof,
providing the claimed transformation) states that: “In this model, when connectivity needs not necessarily
be preserved during the transformation, any pair of connected shapes A and B can be transformed to each
other in sequential time O(n log n)”.

We then turn our attention to the case in which the transformations cannot break connectivity. We identify
the diagonal shape D (which is considered connected in our model and is very similar to the staircase worst-
case shape of [MSS19]) as a potential worst-case initial shape to be transformed into a line L. This intuition
is supported by the O(n2) individual node distance between the two shapes and by the initial unavailability
of long line moves: the transformation may move long lines whenever available, but has to pay first a number
of individual and small line moves in order to construct longer lines. In this benchmark (special) case, the
trivial lower and upper bounds Ω(n) and O(n2), respectively, hold. Moreover, observe that a sequential
gathering of the nodes starting from the top right and collecting the nodes one after the other into a snake-
like line of increasing length is still quadratic, because, essentially, for each sub-trip from one collection to
the next, the line has to make a “turn”, meaning to change both a row and a column, and in this model this
costs a number of steps equal to the length of the line, that is, roughly, 1 + 2 + . . .+ (n− 1) = Θ(n2) total
time-steps.

We solve the problem of transforming D into L while preserving connectivity throughout the transforma-
tion (called DiagonalToLine problem), by developing an O(n

√
n)-time transformation. This approach,

called DLC-Folding, divides the diagonal into
√
n segments of length

√
n each and proceeds in

√
n phases. In

each phase, it folds the segments sequentially in a top-down order via two main operations, turn and push.
In the final phase, the algorithm forms a square shape, which can be transformed fast into a line. Thus, this
transformation (folding) preserves connectivity and takes total time O(n

√
n).

Table 1 summarises the running times of all the transformations (algorithms) developed in this paper.

Connectivity Preserving Transformation Problem Running Time Lower Bound
No U-Box-Doubling Universal O(n log n) Ω(n)
Yes DLC-Folding DiagonalToLine O(n

√
n) Ω(n)

Table 1: A summary of our transformations and their corresponding worst-case running times (the trivial lower bound is in all
cases Ω(n)). All problems are being formally defined in Section 2.2

Section 2 brings together all definitions and basic facts that are used throughout the paper. Section 3
presents our universal transformation in which connectivity is not necessarily preserved throughout transfor-
mations. In Section 4, we consider the case when connectivity must be preserved and study the problem of
transforming a diagonal shape into a line. In Section 5 we conclude and discuss further research directions
that are opened by our work. However, the complete discussion of all transformations and problems of this
work can be found in the full report [AMP19b].
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2. Preliminaries and Definitions

The transformations considered here run on a two-dimensional square grid. Each cell of the grid possesses
a unique location addressed by non-negative coordinates (x, y), where x denotes columns and y indicates
rows. A shape S is a set of n nodes on the grid, where each individual node u ∈ S occupies a single cell
cell(u) = (xu, yu), therefore we may also refer to a node by the coordinates of the cell that it occupies at
a given time. Two distinct nodes (x1, y1), (x2, y2) are neighbours (or adjacent) iff x2 − 1 ≤ x1 ≤ x2 + 1
and y2 − 1 ≤ y1 ≤ y2 + 1 (i.e., their cells are adjacent vertically, horizontally or diagonally). A shape S is
connected iff the graph defined by S and the above neighbouring relation on S is connected. Throughout, n
denotes the number of nodes in a shape under consideration, and all logarithms are to the base 2.

A line L is a sequence of consecutive non-empty cells occupied by nodes, u ∈ S, vertically or horizontally
(not, e.g., diagonally). A line move is an operation by which all nodes of L move together in a single move,
towards an empty cell adjacent to one of L’s endpoints. A line move may also be referred to as a step (or
move or movement) and time is discrete and measured in number of steps throughout. A move in this model
is equivalent to choosing a node u and a direction d ∈ {up, down, left, right} and moving u one position in
direction d. This will additionally push by one position the whole line L of nodes in direction d, L (possibly
empty) starting from a neighbour of u in d and ending at the first empty cell. More formally and in slightly
different terms: A line L = (x, y), (x+1, y), . . . , (x+k−1, y) of length k, where 1 ≤ k ≤ n, can push all its k
nodes rightwards in a single move to positions (x+1, y), (x+2, y), . . . , (x+k, y) iff there exists an empty cell
to the right of L at (x + k, y). The “down”, “left”, and “up” moves are defined symmetrically, by rotating
the whole system 90◦, 180◦, and 270◦ clockwise, respectively.

Definition 1 (A permissible line move). Let L be a line of k nodes, where 1 ≤ k ≤ n. Then, L can move
as follows (depending on its original orientation, i.e., horizontal or vertical):

1. Horizontal. Can push all k nodes rightwards in a single move from (x, y), (x+1, y), . . . , (x+k−1, y) to
positions (x+ 1, y), (x+ 2, y), . . . , (x+ k, y) iff there exists an empty cell to the right of L at (x+ k, y).
Similarly, it can push all k nodes to the left to occupy (x − 1, y), (x, y), . . . , (x + k, y), iff there exists
an empty cell at (x− 1, y).

2. Vertical. Can push all k nodes upwards in a single move from (x, y), (x, y + 1), . . . , (x, y + k − 1) into
(x, y+ 1), (x, y+ 2), . . . , (x, y+ k), iff there exists an empty cell above L at (x, y+ k). Similarly, it can
push all k nodes down to occupy (x, y − 1), (x, y), . . . , (x, y + k), iff there exists an empty cell below L
at (x, y − 1).

We call this model, line-pushing model, in the rest of the paper. The following definitions from [MSS19]
shall be useful for our study. Let us first agree that we colour black any cell occupied by a node (as in Figure
2).

Definition 2. A hole H of a connected shape S is a set of empty cells enclosed by non-empty cells that are
occupied by nodes u ∈ S, such that any simple path of infinite length that starts from an empty cell in the
hole h ∈ H and moves, only vertically and horizontally, must pass through a black cell of a node u ∈ S.

Definition 3. A compact shape is a connected shape that does not contain any holes.

Definition 4. The perimeter (border) of S is defined as a polygon of unit length line segments, which
surrounds the minimum-area of the interior of S′, such as the yellow line in Figure 2.

Definition 5. The surrounding layer of a connected shape S consists of all empty cells in the grid that share
at least a line segment or a corner with the S’s perimeter (e.g., the grey cells in Figure 2).

Definition 6. The external surface of a connected shape S consists of all non-empty cells in the grid that
share at least a line segment or a corner with the S’s perimeter (e.g., cells of black spherical nodes in
Figure 2).

The external surface of a connected shape S is connected (proved in [MSS19]).
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Figure 2: All nodes of S occupy the black cells, where black spherical nodes reside on the external surface of S. The surrounding
layer’s cells are coloured grey, while the yellow line depicts the perimeter of S. The dashed black cells define a hole of S.

Proposition 1. The surrounding layer of any connected shape S is itself a connected shape.

Proof. The proof is an adaptation of Proposition 2 from [MSS19] to our model. Assume S is connected,
then the perimeter of S is connected too; and hence, it forms a cycle. Each segment of the perimeter is
contributed by two cells, belonging to the external surface and the surrounding layer (recall Definitions 4, 5
and 6). Now, if one walks on the perimeter (vertically or horizontally) or turns (left or right) clockwise or
anticlockwise at any segment, one of the following cases will occur:

(i) Pass through two adjacent vertical or horizontal cells on the surrounding layer and the external surface
of S.

(ii) Stay put at the same position (cell) on the external surface and move through three neighbouring cells
connected perpendicularly on the surrounding layer of S.

(iii) Stay put at the same position (cell) on the surrounding layer and pass through three neighbouring cells
connected perpendicularly on the external surface of S.

(iv) Stay put at the same position (cell) on the surrounding layer and:

(a) Either pass through two neighbouring cells connected diagonally on the external surface of S.

(b) Or pass through three neighbouring cells connected perpendicularly on the external surface of S.

Subsequently, all cases above preserve connectedness of the surrounding layer and the external surface of
S.

As mentioned early, we know that there are related settings in which any pair of connected shapes A and
B of the same order (“order” of a shape S meaning the number of nodes of S throughout the paper) can be
transformed to each other1 while preserving the connectivity throughout the course of the transformation.2

This, for example, has been proved for the case in which the available moves to the nodes are rotation and
sliding [DP04, MSS19]. We now show that the model of [DP04, MSS19] is a special case of our model,
implying all transformations established there (with their running time at most doubled, including universal
transformations, are also valid transformations in the present model).

1We also use A→ B to denote that shape A can be transformed to shape B.
2In this paper, whenever transforming into a target shape B, we allow any placement of B on the grid, i.e., any shape B′

obtained from B through a sequence of rotations and translations.
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Figure 3: (a) An example of sliding u1 over u2 and u3 to an empty cell to the left. (b) Rotate u1 a 90◦ clockwise around u2.

Proposition 2. The rotation and sliding model of [DP04, MSS19] is a special case of the line-pushing model.

Proof. We establish a technique to prove that our model is capable of simulating rotation and sliding models
of a two-dimension square grid appeared in [DP04, MSS19]. First, the sliding operation is equivalent in all
those models, that is, if a node u is located at a cell of the grid, u = (x, y), then u can slide right to any
empty cell at (x + 1, y + 1) over a horizontal line of length 2, such as in Figure 3 (a). The “down”, “left”,
and “up” moves are defined symmetrically, by rotating the whole system 90◦, 180◦, and 270◦ clockwise,
respectively. Now, the presented model is capable of performing the same sliding rule in those models, i.e.,
push a line of length 1 vertically or horizontally, as explained in Definition 1. For rotation, all mentioned
models perform a single operation to rotate a node u1 = (x, y) around another u2 = (x, y − 1) by a 90◦

clockwise iff there exits two empty cells at (x + 1, y) and (x + 1, y + 1), see Figure 3(b). Analogously, this
holds for all possible rotations by again rotating the whole system 90◦, 180◦, and 270◦ clockwise, respectively.
Still, the rotation mechanism is also adopted by this model following Definition 1, and actually it costs twice
for a single rotation to take place, compared with others. Subsequently, it implies that all transformations
established there (with its running time at most doubled), including universal transformations and preserving
connectivity (recall Proposition 1), are also valid transformations in the present model.

Consider a line L of k nodes occupying (x, y), (x+ 1, y), . . . , (x+ k − 1, y) and k consecutive empty cells
starting horizontally from postilion (x+ k, y). Now, we aim to transfer all k nodes to the right to fill in all
k empty cells. Any transformation of individual movements performs k per node, in a total of Θ(k2) steps
for all k nodes. The linear-strength mechanism of the line-pushing model achieves more efficient cost of at
most O(k) steps, by transferring all k nodes in parallel distance k to the right. Now, we are ready to show
the following lemma which will be used several times in our transformations:

Lemma 1. It is possible to turn a horizontal line of length k into a vertical line of length k or vice versa in
2k − 2 steps.

Proof. To simplify the argument, assume that a two-dimensional square grid contains only a straight line
L1 of k nodes at (x, y), . . . , (x, y + k − 1), where k ≥ 1, and empty cells on (x + 1, y), . . . , (x + k − 1, y), as
depicted in Figure 4. This assumption can be dropped easily when L1 is a part of a connected shape S in the
grid. Now, L1 wants to change its direction, and without loss of generality, say that L1 turns from vertical
to horizontal, where L1 occupies k consecutive rows and 1 column. Therefore, the first bottommost node,
u1 ∈ L1, moves one position right to occupy an empty cell on (x + 1, y), which consequently creates a new
empty cell at (x, y) that was occupied by u1. Then, by linear-strength pushing mechanism, the consecutive
k−1 ∈ L1 nodes push down one move altogether in parallel in a single-time-move towards the new empty cell
(x, y) to occupy positions (x, y), . . . , (x, y + k − 2). Consequently, L1 consists now of k − 1 nodes occupying
k − 1 consecutive rows, as in Figure 4 (a), (b) and (c). Observe that u1 take one time-step to move right,
and all k − 1 nodes push down in one time-step. By repeating this at most 2k − 2 steps, it shall completely
turn L1 to occupy a single row and k consecutive columns. Therefore, any straight line of k nodes changes
its direction in a number of steps at most twice its length, 2k − 2 = O(k).

A property that typically facilitates the development of universal transformations, is reversibility of
moves. To this end, we next show that line moves are reversible.
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Figure 5: An example of a reversible line move.

Lemma 2 (Reversibility). Let (SI , SF ) be a pair of connected shapes of the same number of nodes n. If
SI → SF (“→” denoting “can be transformed to via a sequence of line moves”) then SF → SI .

Proof. First, we should prove that each single line move is reversible. Figure 5 left shows four nodes forming
two vertical and one horizontal lines, L1 = {u1, u2}, L2 = {u3, u4} and L3 = {u2, u3}, respectively. Assume
this configuration has no more space to the left, beyond the dashed line; therefore, L1 moves to occupy
the empty cell (i + 2, j + 1). Now, all L1 nodes are moving altogether to fill in positions (i + 1, j + 1) and
(i + 2, j + 1), as depicted in Figure 5 right. Consequently, the previous line move creates another empty
cell at (i, j + 1), which can be occupied reversibly by L1. Since every line move is reversible, it implies that
reversibility holds for any finite sequence of line moves.

2.1. Nice shapes

A family of shapes, denoted NICE , is introduced in this study to act as efficient intermediate shapes of
the transformation. A nice shape is, informally, any connected shape that contains a particular line called
the central line (denoted LC). Intuitively, one may think of LC as a supporting (say horizontal) base of the
shape, where each node u not on LC must be connected to LC through a vertical line.

Definition 7 (Nice Shape). A nice shape S ∈ NICE is a compact connected shape (Definition 3), which
contains a central line LC ⊆ S, such that every node u ∈ S \LC is connected to LC via a line perpendicular
to LC (Figure 6 shows some examples of a nice shape and non nice shapes).

By reversibility (Lemma 2), we provide the following proposition:

Proposition 3. Let (A,B) ∈ NICE be a pair of nice shapes of the same order. Then A → B and B → A
in O(n) steps.
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Figure 6: The central line LC occupies black cells of nice shapes in (a), (b) and (d). In (c), the shape is not nice (due to the
lack of LC). (e) is also not nice because of the hole, white cells inside the shape, which prevents the formation of LC .

Proof. Let SNICE be a nice shape of order n that contains a central line of i nodes, for some 1 ≤ i ≤ n,
and assume without loss of generality, that LC is horizontal and occupies row y1. By Definition 7, there will
be n − i nodes, where all are connected to LC via a line orthogonal to LC . Similarly, we can say there are
L1, L2, . . . , Lw vertical lines of total n− i nodes, where 1 ≤ w < n, which are all perpendicularly connected
to LC . Now, by Lemma 1, such a vertical line would perform a number of steps twice its length to change
its direction, occupy row y1 and be an extension to LC . Then, it follows that all those vertical lines requires
a total cost of at most 2(n − i) = O(n) steps to eventually occupy n consecutive cells in row y1 where a
straight line of order n remains. By Lemma 2, we conclude that any pair of nice shapes are transformable
to each other via a straight line in O(n) steps.

2.2. Problem Definitions

We now formally define the problems to be considered in this paper.

DiagonalToLine. Given an initial connected diagonal line SD and a target vertical or horizontal
connected spanning line SL of the same order, transform SD into SL, so that connectivity is preserved
during the transformation.

UniversalTransformation. Give a general transformation, such that, for all pairs of shapes (SI , SF ) of
the same order, where SI is the initial shape and SF the target shape, it will transform SI into SF , without
necessarily preserving connectivity during its course.

3. Breaking Connectivity: An O(n log n)-time Universal Transformation

We now present our universal transformation, called U-Box-Doubling, that transforms any pair of con-
nected shapes, of the same order, to each other in O(n log n) steps, without preserving connectivity. Given a
connected shape SI of order n, do the following. Enclose SI into an arbitrary n× n box. For simplicity, we
assume that n is a power of 2, but this assumption can be dropped. Proceed in log n phases as follows: In
every phase i, where 1 ≤ i ≤ log n, partition the n × n box into 2i × 2i sub-boxes, disjoint and completely
covering the n× n box. Assume that from any phase i− 1, any 2i−1 × 2i−1 sub-box is either empty or has
its k, where 0 ≤ k ≤ 2i−1, bottommost rows completely occupied with nodes, possibly followed by a single
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incomplete row on top of them containing l, where 1 ≤ l < 2i−1, consecutive nodes that are left aligned
on that row. This case holds trivially for phase 1 and inductively for every phase. That is, in odd phases,
we assume that nodes occupy the leftmost columns of boxes in a symmetric way. Every 2i × 2i sub-box (of
phase i) consists of four 2i−1 × 2i−1 sub-boxes from phase i − 1, each of which is either empty or occupied
as described above.

The operation of Boundary-Filling is to fill in empty cells at a boundary of the 2i × 2i sub-box by nodes
of lines that are aligned perpendicularly to that boundary. Due to symmetry, we only show the left boundary
case. That is, start filling in empty cells from the leftmost column bottom-top and continuing to the right,
by exploiting a linear procedure similar to that of Figure 4 (and of nice shapes). Without loss of generality,
fill in the leftmost column until the row is exhausted or the column is being completely occupied, in this
case, start filling in the next column to the right (see Figure 7 (b)). If an incomplete column remains in the
top left 2i−1 × 2i−1 sub-box, push the nodes in it to the bottom of that column, see Figure 8.

Consider the case where i is odd, thus, the nodes in the 2i−1 × 2i−1 sub-boxes are bottom aligned. For
every 2i−1 × 2i−1 sub-box, move each line from the previous phase that resides in the sub-box to the left
as many moves as required until that row contains a single line of consecutive nodes, starting from the left
boundary of the sub-box, as shown in Figure 7 (a). Then, perform Boundary-Filling on the left boundary
the 2i × 2i sub-box, as in Figure 7 (b). The case of even i is symmetric, the only difference being that the
arrangement guarantee from i − 1 is left alignment on the columns of the 2i−1 × 2i−1 sub-boxes and the
result will be bottom alignment on the rows of the 2i × 2i sub-boxes of the current phase. This completes
the description of the transformation. We first prove correctness:

2i × 2i

2i−1 × 2i−1

(a) Pushing left in each 2i−1×2i−1 sub-box of the 2i×2i

sub-box.

2i × 2i

2i−1 × 2i−1

(b) The operation of Boundary-Filling on the left boarder
of the 2i × 2i sub-box.

Figure 7: An example of the transformations during phase i.

2i × 2i

2i−1 × 2i−1

Figure 8: The operation of Boundary-Filling when an incomplete column remains.

Lemma 3. Starting from any connected shape SI of order n, U-Box-Doubling forms by the end of phase
log n a line of length n.

Proof. In phase log n, the procedure partitions into a single box, which is the whole original n × n box.
Independently of whether gathering will be on the leftmost column or on the bottommost row of the box,
as all n nodes are contained in it, the outcome will be a single line of length n, vertical or horizontal,
respectively.

Now, we shall analyse the running time of U-Box-Doubling. To facilitate exposition, we break this down
into a number of lemmas.
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Lemma 4. In every phase i, the “super-shape” formed by the occupied 2i × 2i sub-boxes is connected.

Proof. By induction on the phase number i. For the base of the induction, observe that for i = 0 it holds
trivially because the initial SI is a connected shape. Assuming that it holds for phase i−1, we shall now prove
that it must also hold for phase i. By the inductive assumption, the occupied 2i−1 × 2i−1 sub-boxes form
a connected super-shape. Observe that, by the way the original n× n box is being repetitively partitioned,
any box contains complete sub-boxes from previous phases, that is, no sub-box is ever split into more than
one box of future phases. Additionally, observe that a sub-box is occupied iff any of its own sub-boxes (of
any size) had ever been occupied, because nodes cannot be transferred between 2i × 2i sub-boxes before
phase i+ 1. Assume now, for the sake of contradiction, that the super-shape formed by 2i × 2i sub-boxes is
disconnected. This means that there exists a “cut” of unoccupied 2i×2i sub-boxes as in Figure 9. Replacing

a cut of unoccupied 2i × 2i sub-boxes

occupied 2i × 2i sub-boxes

Figure 9: An example of a “cut” of unoccupied 2i × 2i sub-boxes.

everything by 2i−1 × 2i−1 sub-boxes, yields that this must also be a cut of 2i−1 × 2i−1 sub-boxes, because
a node cannot have transferred between 2i × 2i sub-boxes before phase i + 1. But this contradicts the
assumption that 2i−1 × 2i−1 sub-boxes form a connected super-shape. Therefore, it must hold that the
2i × 2i sub-boxes super-shape must have been connected.

Next, we give an upper bound on the number of occupied sub-boxes in a phase i.

Lemma 5. Given that U-Box-Doubling starts from a connected shape SI of order n, the number of occupied
sub-boxes in any phase i is O( n

2i ).

Proof. First, observe that a 2i × 2i sub-box of phase i is occupied in that phase iff SI was originally going
through that sub-box. This follows from the fact that nodes are not transferred by this transformation
between 2i × 2i sub-boxes before phase i+ 1. Therefore, the 2i × 2i sub-boxes occupied in (any) phase i are
exactly the 2i × 2i sub-boxes that the original shape SI would have occupied, thus, it is sufficient to upper
bound the number of 2i × 2i sub-boxes that a connected shape of order n can occupy. Or equivalently, we
shall lower bound the number Nk of nodes needed to occupy k sub-boxes.

In order to simplify the argument, whenever SI occupies another unoccupied sub-box, we will award it
a constant number of additional occupations for free and only calculate the additional distance (in nodes)
that the shape has to cover in order to reach another unoccupied sub-box. In particular, pick any node of
SI and consider as freely occupied that sub-box and the 8 sub-boxes surrounding it, as depicted in Figure
10 (a). Giving sub-boxes for free can only help the shape, therefore, any lower bound established including
the free sub-boxes will also hold for shapes that do not have them (thus, for the original problem). Given
that free boxes are surrounding the current node, in order for SI to occupy another sub-box, at least one
surrounding 2i × 2i sub-box must be exited. This requires covering a distance of at least 2i, through a
connected path of nodes. Once this happens, SI has just crossed the boundary between an occupied sub-box
and an unoccupied sub-box. Subsequently, it has just crossed the boundary between an occupied sub-box
and an unoccupied sub-box. Then, by giving it for free at most 5 more unoccupied sub-boxes, SI has to pay
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another 2i nodes to occupy another unoccupied sub-box; see Figure 10 (b). We then continue applying this
5-for-free strategy until all n nodes have been used.

(a) (b)

Figure 10: (a) A node of shape SI in red and the occupied sub-boxes that we give for free to the shape. (b) The shape just exited
the sub-box with arrow entering an unoccupied sub-box. By giving the 5 horizontally dashed sub-boxes for free, a distance of
at least 2i has to be travelled in order to reach another unoccupied sub-box.

To sum up, the shape has been given 8 sub-boxes for free, and then for every sub-box covered it has to
pay 2i and gets 5 sub-boxes. Thus, to occupy k = 8 + l · 5 sub-boxes, at least l · 2i nodes are needed, that is,

Nk ≥ l · 2i. (1)

But, that leads to

k = 8 + l · 5⇒ l =
k − 8

5
. (2)

Thus, from (1) and (2):

Nk ≥
k − 8

5
· 2i. (3)

But shape SI has order n, which means that the number of nodes available is upper bounded by n, i.e.,
Nk ≤ n, which gives:

k − 8

5
· 2i ≤ Nk ≤ n⇒

k − 8

5
· 2i ≤ n⇒ k − 8

5
≤ n

2i
⇒

k ≤ 5

(
n

2i

)
+ 8.

We conclude that the number of 2i × 2i sub-boxes that can be occupied by a connected shape SI , and,
thus, also the number of 2i × 2i sub-boxes that are occupied by U-Box-Doubling in phase i, is at most
5(n/2i) + 8 = O(n/2i).

As a corollary of this, we obtain:

Corollary 1. Given a uniform partitioning of n× n square box containing a connected shape SI of order n
into d× d sub-boxes, it holds that SI can occupy at most O(n

d ) sub-boxes.

We are now ready to analyse the running time of U-Box-Doubling.

Lemma 6. Starting from any connected shape of n nodes, U-Box-Doubling performs O(n log n) steps during
its course.
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Proof. We prove this by showing that in every phase i, 1 ≤ i ≤ log n, the transformation performs at most
a linear number of steps. We partition the occupied 2i × 2i sub-boxes into two disjoint sets, B1 and B0,
where sub-boxes in B1 have at least 1 complete line (from the previous phase), i.e., a line of length 2i−1,
and sub-boxes in B0 have 1 to 4 incomplete lines, i.e., lines of length between 1 and 2i−1 − 1. For B1, we
have that |B1| ≤ n/2i−1. In each phase, we may have horizontal or vertical lines that need to be aligned to
the left or bottom boundary of their 2i × 2i sub-box, respectively, depending on the parity of i. As the two
cases are symmetric, without loss of generality we only show horizontal lines which are moving to their left.
Hence, for every complete line, we pay at most 2i−1 to transfer it left. As there are at most n/2i−1 such
complete lines in phase i, the total cost for this is at most 2i · (n/2i−1) = n.

Each sub-box in B1 may also have at most 4 incomplete lines from the previous phase, as in Figure 7
left, where at most two of them may have to pay a maximum of 2i−1 to be transferred left (as the other
two are already aligned). As there are at most n/2i−1 sub-boxes in B1, the total cost for this is at most
2 · 2i−1 · (n/2i−1) = 2n. Therefore, the total cost for pushing all lines towards the required border in B1

sub-boxes is at most:

n+ 2n = 3n. (4)

For B0, we have (by Lemma 5) that the total number of occupied sub-boxes in phase i is at most 5(n/2i)+8,
therefore, |B0| ≤ 5(n/2i) + 8 (taking into account also the worst case where every occupied sub-box may be
of type B0). There is again a maximum of 2 incomplete lines per such sub-box that need to be transferred
a distance of at most 2i−1, therefore, the total cost for this to happen in every B0 sub-box is at most:

2 · 2i−1
(

5 · n
2i

+ 8

)
= 5n+ 8 · 2i ≤ 13n. (5)

By paying the above costs, all occupied sub-boxes have their lines aligned to the left, and the final task of
the transformation for this phase is to apply a linear procedure in order to fill in the left boundary of the
2i × 2i sub-box. This procedure costs at most 2k for every k nodes aligned as above, in a total of at most
(2n− 2) steps (see Lemma 1). As there is an additional cost of 2i−1 for an incomplete line to be transferred
into the bottom left, as shown in Figure 8, the total cost for this phase is at most:

2n− 2 + (2i−1) ≤ 3n. (6)

This completes the operation of U-Box-Doubling for phase i. Putting (4), (5), and (6) together, we obtain
that the total cost Ti, in steps, for phase i is,

Ti ≤ 3n+ 13n+ 3n

= 19n.

As there is a total of log n phases, we conclude that the total cost T of the transformation is,

T ≤ 19n · log n

= O(n log n).

Finally, together Lemma 3, Lemma 6, and reversibility (Lemma 2) imply that:

Theorem 1. For any pair of connected shapes SI and SF of the same order n, transformation U-Box-
Doubling can be used to transform SI into SF (and SF into SI) in O(n log n) steps.
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4. Preserving Connectivity: Transforming the Diagonal into a Line through Folding in O(n
√
n)

time

In this section, we study the case in which the transformation cannot break connectivity during its
course. We identify the diagonal connected shape SD of order n as an initial potential worst-case shape to
be transformed into a straight line SL. Our goal is then to transform SD into SL while preserving connectivity
during transformations, i.e., solve the DiagonalToLine problem. We do this, because this problem, as
mentioned before in Section 1.1, seems to capture the worst-case complexity of transformations in this model.

Consider an SD of n nodes occupying (x, y), (x+ 1, y+ 1), . . . , (x+n− 1, y+n− 1), such as the diagonal
line of 25 nodes depicted in Figure 12. Observe that the diagonal comprises some special properties which
cannot be found in other connected shapes. First, this staircase shape of stairs of length 1 has a special
property in which each single node occupies a unique row and a unique column. Hence, it is much harder
than the staircase worst-case shape of [MSS19] of stairs of length 2, where most rows and columns contain
two nodes. Further, this particular diagonal shape consists of n lines of length 1, which is the maximum
possible number of lines a connected shape can have. Below, we give an O(n

√
n)-time transformation to

transform SD into SL by exploiting the line-pushing mechanism, while preserving connectivity of the shape
throughout transformations.

This strategy, called DLC-Folding, divides SD into
√
n segments each of length

√
n and proceeds in√

n phases. Informally, DLC-Folding performs two different operations, turn and push to fold the diagonal
segments in every phase as follows: turn diagonals into straight lines, push the lines

√
n distance towards

the following diagonal segment and then inversely turn the lines again into diagonals. Figure 11 shows the
transformations of the first phase that is folding the top segment of SD. The strategy keeps folding segments
above each other, until arriving at the bottom segment. By the end of the final phase, DLC-Folding forms
a nice shape, which can then be trivially transformed into a line (see Proposition 3). Figures 12, 13, 14, 15,
and 16 demonstrate the above transformations on a diagonal of 25 nodes.

√
n

√
n

l1 √
n

Turn

l2

√
n

Push Turn

√
n

√
n

Base point b1

Base point b2

Figure 11: Folding the top segment of the diagonal line.

√
n = 5

n
=
25

l1

l2

l3

l4

l5

Figure 12: A diagonal line of 25 nodes.
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Turn TurnPush

Base point p1

Figure 13: The first phase of folding.

TurnPushBase point p2 Turn

Figure 14: The second phase of folding.

TurnPushTurn

Base point p3

Figure 15: The third phase of folding.

TurnPushTurn
Base point p4

Figure 16: The fourth phase of folding. Notice the resulting connected shape in the far right represents a nice shape.

More formally, let SD be a diagonal of n nodes occupying (x, y), (x+ 1, y+ 1), . . . , (x+ n− 1, y+ n− 1),
such that (x, y) is the left bottom point of SD. Then, SD is divided into

√
n segments, l1, l2, . . . ,

√
n, each

of which has a length of
√
n, where l1 and l√n are the top and bottom segments of SD, respectively. Each

segment lk, 1 ≤ k ≤
√
n, consists of

√
n nodes occupying (i, j), (i + 1, j + 1), . . . , (i +

√
n − 1, j +

√
n − 1),

where i = x + hk and j = y + hk, for hk = n − k
√
n. Here, lk has a base point bk = (i, j), which is the

bottommost node of lk.
In the first phase, the top segment l1 folds around b1 as follows (due to symmetry, it is sufficient to demon-

strate one orientation); (1) Turn all
√
n nodes into the bottommost row of l1 (brute-force line formation).

Consider that the l1 nodes change their positions from (i, j), (i + 1, j + 1), . . . , (i +
√
n − 1, j +

√
n − 1)

into (i, j), (i + 1, j), . . . , (i +
√
n − 1, j). By the end of this operation, a horizontal line segment of

length
√
n is formed, and the base point b1 keeps place at (i, j). Then, (2) Push the line segment l1

a distance of
√
n towards the leftmost column y of SD. All

√
n nodes of l1 transfer altogether into

(i −
√
n, j), (i + 1 −

√
n, j), . . . , (i +

√
n − 1 −

√
n, j). Finally, perform an inverse operation of (1), which

converts the line segment l1 into diagonal again to align above the next following diagonal segment l2, by
transferring them into positions (i −

√
n, j −

√
n + 1), (i + 1 −

√
n, j −

√
n + 2), . . . , (i +

√
n − 1 −

√
n, j),

(except the base point b1 which stays still in place, at (i −
√
n, j)). By the end of this phase, two parallel

diagonal segments l1 and l2 have been created, as in Figure 11.
Then, a new connected shape is formed, which can be defined as follows:
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Definition 8. A Ladle is a connected shape of order n consisting of two parts, D and S. For a given
phase k, where 2 ≤ k ≤ d

√
ne, we have Ladlek = Dk + Sk, where both parts are connected via a base point

bk = (i, j), such that:

- Dk, is a diagonal containing n− k
√
n+ 1 nodes occupying (x, y), (x+ 1, y + 1), . . . , (i, j), such that (x, y)

are the left bottom point of Ladlek, where
√
n < i = j < n−

√
n+ 1. Dk is connected to Sk via (i, j).

- Sk, is parallelogram consists of k parallel diagonal segments of size k
√
n nodes formed

√
n lines. Sk is

connected to Dk via its bottommost node at (i, j), as depicted in Figure 17.

Dk = n − k
√

n + 1

Sk = k
√

n

(x, y)

Base point ba

(i, j)

√ n

(i, j′)

(i +
√

n − 1, j′ +
√

n − 1)

(i +
√

n − 1, j +
√

n − 1)

Figure 17: A Ladle shape in phase k, where j′ = j + k − 1.

The following lemmas prove correctness of DLC-Folding :

Lemma 7. Let SD be a diagonal of order n partitioned into d
√
ne segments l1, l2, ..., l√n. DLC-Folding

converts SD into a Ladle by the end of the first phase.

Proof. Consider a diagonal SD of n nodes as defined above, which partitioned into
√
n segments of length√

n each. Due to symmetry, it is sufficient to show the implementation on the top segment of SD. Given
that, we will obtain a connected shape consists of two parts, (1) a diagonal part occupies (x, y), (x+ 1, y +
2), . . . , (x + n −

√
n − 1, y + n −

√
n − 1) and (2) two parallel diagonal segments of 2

√
n nodes. Both are

connected via the base point (x + n−
√
n− 1, y + n−

√
n− 1), which is the topmost node of the diagonal

part and the bottommost of the two parallel diagonal segments. As a result, the new shape constructed by
the end of the first phase meets all conditions mentioned in Definition 8, therefore, it is a Ladle.

Lemma 8. Consider a Ladle of n nodes in phase k, where 1 < k ≤
√
n. Then, in phase k+1, DLC-Folding

increases the size of Sk by
√
n and decreases the length of Dk by

√
n.

Proof. The size of the Ladle = |n| must be the same each phase and all time. In phase k, a Ladlek consists of
two parts, Dk = |n− k

√
n+ 1| and Sk = |k

√
n| connected via a common node (i, j) (see Definition 8). Now,

fold the Sk part that contains k segments of length
√
n aligned diagonally on top of each other. Without

loss of generality, move all
√
n vertical lines downwards to the bottommost row i of Sk, which shall form

k horizontal lines by completely filling in the k bottom rows of Sk. Hence, those horizontal lines create a
rectangle, as depicted in Figure 18 (a). Then, push the k horizontal lines

√
n distance towards the left, see

Figure 18 (b). Lastly, the strategy turns these lines inversely above the next diagonal segment (notice that
every vertical line is moved except the rightmost one), see Figure 18 (c). By the end of phase k + 1, a new
Ladle has been created, which is consisting of Dk+1 = |n− (k−1)

√
n+ 1| and Sk+1 = |(k+ 1)

√
n| connected

via the common bk+1 base point at (i −
√
n, j −

√
n). Therefore, we conclude that in phase k + 1, the size
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of Sk+1 increased by
√
n nodes, while the length of Dk+1 decreased by

√
n. Thus, this holds trivially and

inductively for any phase k, where 1 < k ≤
√
n.

Dk = n − k
√

n + 1

Sk = k
√

n

(x, y)

Base point bk

(i, j)

(i, j′)
(i +

√
n, j′)

(i +
√

n, j)

√
n

(a)

(x, y)

(i −
√

n, j)

(i −
√

n, j′) (i − 1, j′)

(i − 1, j)

√
n

(b)

(x, y)

(i −
√

n, j −
√

n − 1)

(i −
√

n, j′ −
√

n − 1)

(i − 1, j′)

(i − 1, j − 1)

√ n

Base point bk+1

Sk+1 = (k + 1)
√

n

Dk+1 = n − (k − 1)
√

n + 1

(c)

Figure 18: Folding a Ladlek over phase k, , where j′ = j + k − 1, see Lemma 8 for further explanation.

Next, we prove that DLC-Folding transforms SD into a nice shape in
√
n phases.

Lemma 9. Given a diagonal SD of order n partitioned into
√
n segments, DLC-Folding converts SD into a

nice shape in
√
n phases.

Proof. By Lemma 7, SD converts to a Ladle2 which consists of two parts D2 = |n−2
√
n+1| and S2 = |2

√
n|.

Then, by Lemma 8, through the final phase k =
√
n, the diagonal part of the Ladle will be exhausted

D√n = φ, whilst the parallelogram part acquires all n nodes, S√n = |n|, by folding all segments diagonally
over each other. By the end of the final phase, the resulting new shape of

√
n vertical (horizontal) lines is a

nice shape.

Now, we are ready to analyse the running time of DLC-Folding that preserves connectivity over its course.

Lemma 10. Given a diagonal SD of order n partitioned into
√
n segments, DLC-Folding folds the topmost

(bottommost) segment in O(n) steps.
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Proof. In the first phase, the top (bottom) segment of SD of length
√
n turns into a line segment by a

brute-force line formation (similar of Figure 1 (b)) that is trivially computed by:

1 + 2 + ...+ (
√
n− 1) =

√
n(
√
n− 1)

2
=
n−
√
n

2
= O(n).

After that, DLC-Folding performs push operation on that line segment in a total cost of O(
√
n) steps and

turn it again inversely into diagonal with the same cost of (n−
√
n)/2 = O(n). Therefore, the first segment

folds in a total cost of at most:

t1 =
n−
√
n

2
+
√
n+

n−
√
n

2
= n−

√
n+
√
n = n

= O(n).

Lemma 11. By the end of phase k, for all 1 < k ≤
√
n, DLC-Folding folds Ladlek in O(n) steps.

Proof. In phase k, we have Ladlek consists of two parts, Dk = |n− k
√
n+ 1| and Sk = |k

√
n|. DLC-Folding

turns all
√
n lines of Sk in a total run of steps at most:

1 + 2 + ...+ (
√
n− 1) =

√
n(
√
n− 1)

2
=
n−
√
n

2
= O(n). (7)

Now, the
√
n lines have moved and formed another k horizontal lines in a different orientation. DLC-

Folding pushes those k lines a distance of
√
n in a total of at most:

k
√
n = O(n), (8)

steps.
Then, the

√
n lines turn diagonally above the following segment incurring the same cost of (7) by at

most:

n−
√
n

2
= O(n). (9)

With this, the total cost of phase k is given by summing (7), (8), and (9):

tk =
n−
√
n

2
+ k
√
n+

n−
√
n

2
= n−

√
n+ k

√
n

= O(n). (10)

Finally, this trivially holds from phase 2 and inductively for every phase k, for all 1 < k ≤
√
n.

Altogether, Proposition 3 and Lemmas 10 and 11, the running time of DLC-Folding is,

Theorem 2. Given an initial connected diagonal of n nodes, DLC-Folding solves the DiagonalToLine
problem in O(n

√
n) steps.

Proof. By Lemma 10, DLC-Folding creates a Ladle in a total cost of:

T1 =
n−
√
n

2
. (11)
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Now, by Lemma 11, the total running time for all k phases, 1 < k ≤
√
n, is given as follows:

T2 =

√
n−1∑
i=1

n−
√
n+ i

√
n = n

√
n− 2n−

√
n+

√
n−1∑
i=1

i
√
n

= n
√
n− 2n−

√
n+
√
n

√
n−1∑
i=1

i = n
√
n− 2n−

√
n+ n

(√
n− 1

2

)
= n
√
n− 2n−

√
n+

(
n
√
n− n
2

)
=
n
√
n− 5n− 2

√
n

2

= O(n
√
n). (12)

By summing the cost of the first phase in (11) with (12):

T3 = T1 + T2

=
n−
√
n

2
+
n
√
n− 5n− 2

√
n

2
=

2n− 2
√
n+ 2n

√
n− 10n− 4

√
n

4

=
2n
√
n− 8n− 6

√
n

4
=
n
√
n− 4n− 3

√
n

2
= O(n

√
n). (13)

Finally, the resulting shape of DLC-Folding is a nice shape, which can be transformed into a line SL in
O(n) steps (see Proposition 3), therefore, the total cost T required to transform SD into SL, is bounded by:

T = T3 +O(n)

= O(n
√
n) +O(n)

= O(n
√
n).

In the full report [AMP19b], we provide another O(n
√
n)-time transformation, called DLC-Extending,

which also preserves connectivity of the shape during the transformation through different strategy.

5. Conclusions

In this work, we studied a new linear-strength model of line moves. The nodes can now move in parallel
by translating a line of any length by one position in a single time-step. This model, having the model of
[DP04, MSS19] as a special case, adopts all its transformability results (including universal transformations).
Then, our focus naturally turned to investigating if pushing lines can help achieve a substantial gain in
performance (compared to the Θ(n2)-time of those models). Even though it can be immediately observed
that there are instances in which this is the case (e.g., initial shapes in which there are many long lines,
thus, much initial parallelism to be exploited), it was not obvious that this holds also for the worst case.
We have successfully developed an O(n log n)-time universal transformation that can transform any pair
of connected shapes to each other. Further, by identifying the diagonal as a potentially worst-case shape
(essentially, because in it any parallelism to be exploited does not come for free), we provide an O(n

√
n)-time

transformation that preserves connectivity when transforming the diagonal into a line.
There is a number of interesting problems that are opened by this work. The obvious first target (and

apparently intriguing) is to answer whether there is an o(n log n)-time transformation (e.g., linear) or whether
there is an Ω(n log n)-time lower bound matching our best transformations. We suspect the latter, but do not
have enough evidence to support or prove it. Moreover, we didn’t consider parallel time in this paper. If more
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than one line can move in parallel in a time-step, then are there variants of our transformations (or alternative
ones) that further reduce the running time? In other words, are there parallelisable transformations in this
model? In particular, it would be interesting to investigate whether the present model permits an O(log n)
parallel time (universal) transformation, i.e., matching the best transformation in the model of Aloupis et
al. [ACD+08]. It would also be worth studying in more depth the case in which connectivity has to be
preserved during the transformations. In the relevant literature, a number of alternative types of grids have
been considered, like triangular (e.g., in [DDG+14]) and hexagonal (e.g., in [WWA04]), and it would be
interesting to investigate how our results translate there. Finally, an immediate next goal is to attempt to
develop distributed versions of the transformations provided here.
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