Passively Mobile Communicating Machines that Use Restricted Space

Andreas Pavlogiannis

Joint work with: I. Chatzigiannakis, O. Michail, S. Nikolaou, P. G. Spirakis

Research Academic Computer Technology Institute (RACTI)
Patras, Greece

Talk at FOMC 2011
June 2011
Wireless Sensor Networks have received great attention recently due to their wide range of applications.
The Background Work

- Theoretical models for WSNs have become significantly important in order to understand their capabilities and limitations.
- Population Protocols [Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC ’04] is a model for WSNs where:
 - Each node: limited computational device → a *finite-state* machine + *sensing* + *communicating* device: *agent*.
 - **Passively mobile** agents: incapable to control or predict.
 - How: unstable environment, like water flow or wind, or the natural mobility of their carriers.
 - Significant properties:
 - **Uniformity**: Protocol descriptions are independent of the population size.
 - **Anonymity**: There is no room in the state of an agent to store a unique identifier.

- Why focus on such a minimalistic model?
 - Real case scenarios: severe restrictions on resources (power, etc).
 - Clearer understanding of the inherent properties and foundations.
Agents interact in pairs according to a **communication graph** $G = (V, E)$ where:

- V: A **population** of $|V| = n$ agents of constant memory (independent of n).
- E: The permissible interactions between the agents.

Interaction pattern: adversary

Adversarial choices: fairness condition

Fairness condition: population partition (the adversary cannot avoid a possible step forever)
Computation

In every execution of a PP:

- Initially: Each agent senses its environment → an input symbol from a finite input alphabet X.
 - **input assignment**: tuple specifying an input for each agent.
 - the input symbol is mapped by the input function $I : X \rightarrow Q$ to a state from a finite set of agent states Q
 - **population configuration**(C): tuple specifying the state of each agent.

- each state is mapped by the output function $O : Q \rightarrow Y$ to an output symbol from a finite output alphabet Y (agent’s output).

- Interaction: transition function $\delta : Q \times Q \rightarrow Q \times Q \Rightarrow$ agents update their states according to δ.
 - population configuration(C) changes(C'): goes from C to C' in one step ($C \rightarrow C'$).
Stable Computation

- **Computation**: Infinite fair sequence \(C_0, C_1, C_2, \ldots \), s.t. \(C_i \rightarrow C_{i+1} \) for all \(i \).
- **Population protocols do not halt. They stabilize.**
- **stability**: there is a point/configuration in the computation after which no agent can change its output.
- **stable computation**: regular computation + stabilization.
Due to the minimalistic nature of the model the class of computable predicates is fairly small.

In [Angluin et al. 2004, 2006] it was proven that it is exactly the class of semilinear predicates.

Formulas such as $N_a \geq 10$ or $N_a < N_b$ capturing scenarios such as the infection of a percentage of a fish population or fire detection by a majority of sensors scattered in a forest.

This class does not include multiplication, exponentiation and other important operations on input variables.
Relaxing the PP constraints

- **Tiny** (constant) space \rightarrow **Restricted** space
 - Allowing for logarithmic memory is reasonable.
 - 10^9 agents only need $\propto 30$ bits!
- Preserve passive mobility - no control over the interactions.
 - But still, fair.
- **Passively Mobile Communicating Machines**
- Study space complexity of various problems.
 - Interest remains on problems that use *restricted space*.
Agent

- **Sensor**: Receive the input $x \in X$.
- **Working Tape**: Internal computation.
- **Output Tape**: Agent’s output.
- **Outgoing Message Tape**: Send messages to other agents.
- **Incoming Message Tape**: Receive messages from other agents.
- **Working Flag**: When set, the agent is busy doing internal computation and *cannot interact*.
Agent

- **Sensor**: Receive the input $x \in X$.
- **Working Tape**: Internal computation.
- **Output Tape**: Agent’s output.
- **Outgoing Message Tape**: Send messages to other agents.
- **Incoming Message Tape**: Receive messages from other agents.
- **Working Flag**: When set, the agent is busy doing internal computation and cannot interact.
The Passively Mobile Communicating Machines Model

Computational Power of the PM Model

Agent

- **Sensor**: Receive the input $x \in X$.
- **Working Tape**: Internal computation.
- **Output Tape**: Agent’s output.
- **Outgoing Message Tape**: Send messages to other agents.
- **Incoming Message Tape**: Receive messages from other agents.
- **Working Flag**: When set, the agent is busy doing internal computation and cannot interact.
Agent

- **Sensor**: Receive the input $x \in X$.
- **Working Tape**: Internal computation.
- **Output Tape**: Agent’s output.
- **Outgoing Message Tape**: Send messages to other agents.
- **Incoming Message Tape**: Receive messages from other agents.
- **Working Flag**: When set, the agent is busy doing internal computation and cannot interact.
Agent

- **Sensor**: Receive the input $x \in X$.
- **Working Tape**: Internal computation.
- **Output Tape**: Agent’s output.
- **Outgoing Message Tape**: Send messages to other agents.
- **Incoming Message Tape**: Receive messages from other agents.
- **Working Flag**: When set, the agent is busy doing internal computation and cannot interact.
Agent

- **Sensor**: Receive the input $x \in X$.
- **Working Tape**: Internal computation.
- **Output Tape**: Agent’s output.
- **Outgoing Message Tape**: Send messages to other agents.
- **Incoming Message Tape**: Receive messages from other agents.
- **Working Flag**: When set, the agent is busy doing internal computation and cannot interact.
Agent

- **Sensor**: Receive the input $x \in X$.
- **Working Tape**: Internal computation.
- **Output Tape**: Agent’s output.
- **Outgoing Message Tape**: Send messages to other agents.
- **Incoming Message Tape**: Receive messages from other agents.
- **Working Flag**: When set, the agent is busy doing internal computation and *cannot interact*.
Introduction

The Passively Mobile Communicating Machines Model
Computational Power of the PM Model

Motivation

The Model

The Passively Mobile Machines Model (PM)

Definition

PM protocol: 6-tuple $(X, \Gamma, Q, \delta, \gamma, q_0)$

- X: *input alphabet*, $\sqcup \notin X$,
- Γ: *tape alphabet*, $\sqcup \in \Gamma$ and $X \subset \Gamma$,
- Q: set of *states*,
- $\delta : Q \times \Gamma^4 \rightarrow Q \times \Gamma^4 \times \{L, R, S\}^4 \times \{0, 1\}$, the *internal transition function*,
 - Internal computation, Message processing...
- $\gamma : Q \times Q \rightarrow Q \times Q$, the *external transition function*,
 - Upon interaction, transition to a state that starts reading the incoming message.
- $q_0 \in Q$, the *initial state*.
Computing in PM

- **Agent Configuration** $B \in B$: A tuple specifying the agent “state”. Configuration yieldability $C \rightarrow C'$: C' occurs from C in one step.

- **Population Configuration** $C \in C$: A tuple capturing the population state.

 Initially, every agent is assigned an *input symbol*.

- An **Input Function** $I : X \rightarrow B$ specifies the initial configuration for each agent.

 The output of the agent is found in the *output message tape*.

- The adversary chooses:
 - An agent to execute on internal step (application of δ).
 - A pair of agents to interact (message exchange and application of γ). The *initiator - responder distinction*.
 - But *fairly*.
 - If $C \rightarrow C'$ and C appears infinite times, C' also appears infinite times.
Computation in PM

- **Agent Configuration** $B \in \mathcal{B}$: A tuple specifying the agent “state”. Configuration yieldability $C \rightarrow C'$: C' occurs from C in one step.

- **Population Configuration** $C \in \mathcal{C}$: A tuple capturing the population state.

- Initially, every agent is assigned an *input symbol*.

- An **Input Function** $I : X \rightarrow B$ specifies the initial configuration for each agent.

- The output of the agent is found in the *output message tape*.

- The adversary chooses:
 - An agent to execute on internal step (application of δ).
 - A pair of agents to interact (message exchange and application of γ)
 - initiator - responder distinction.

- But fairly.
 - If $C \rightarrow C'$ and C appears infinite times, C' also appears infinite times.
Computation in PM

- **Agent Configuration** $B \in \mathcal{B}$: A tuple specifying the agent “state”. Configuration yieldability $C \rightarrow C'$: C' occurs from C in one step.
- **Population Configuration** $C \in \mathcal{C}$: A tuple capturing the population state.
- Initially, every agent is assigned an *input symbol*.
- An **Input Function** $I : X \rightarrow \mathcal{B}$ specifies the initial configuration for each agent.
- The output of the agent is found in the *output message tape*.
- The adversary chooses:
 - An agent to execute on internal step (application of δ).
 - A pair of agents to interact (message exchange and application of γ)
 - initiator - responder distinction.
- **But fairly.**
 - If $C \rightarrow C'$ and C appears infinite times, C' also appears infinite times.
Computation in PM

- **Agent Configuration** $B \in \mathcal{B}$: A tuple specifying the agent “state”. Configuration yieldability $C \rightarrow C'$: C' occurs from C in one step.

- **Population Configuration** $C \in \mathcal{C}$: A tuple capturing the population state.

- Initially, every agent is assigned an *input symbol*.

- An **Input Function** $I : X \rightarrow \mathcal{B}$ specifies the initial configuration for each agent.

- The output of the agent is found in the **output message tape**.

- The adversary chooses:
 - An agent to execute on internal step (application of δ).
 - A pair of agents to interact (message exchange and application of γ)
 - initiator - responder distinction.

- But **fairly**.
 - If $C \rightarrow C'$ and C appears infinite times, C' also appears infinite times.
Computation in PM (Continued)

- **Execution**: a sequence of population configurations \((C_1, C_2, \ldots)\) such that \(C_i \rightarrow C_{i+1}\).
- **Computation**: an infinite fair execution.
- PM protocols **stabilize**: \(\exists i : \forall v \in V, \forall j \geq i, \) agent \(v\) does not change his output tape in \(C_j\).
- Stable computation of predicates \(p : X^{|V|} \rightarrow \{0, 1\}\).
 - **Symmetric predicates**: \(p(a) = 1 \iff p(\tilde{a}) = 1\), \(\tilde{a}\): permutation of \(a\).
- **Space Complexity Classes**:
 - \(\text{PMSPACE}(f(n))\): Predicates computable by a PM protocol using \(O(f(n))\) space.
 - \(\text{SSPACE}(f(n)), \text{SNSPACE}(f(n))\): Symmetric subsets of predicates in \(\text{SPACE}(f(n)), \text{NSPACE}(f(n))\).
 - \(\text{SEM}\): Class of Semilinear predicates.
Computation in PM (Continued)

- **Execution**: a sequence of population configurations \((C_1, C_2, \ldots)\) such that \(C_i \rightarrow C_{i+1}\).
- **Computation**: an infinite fair execution.
- PM protocols **stabilize**: \(\exists i : \forall v \in V, \forall j \geq i, \text{agent } v \text{ does not change his output tape in } C_j\).
- Stable computation of predicates \(p : X^{|V|} \rightarrow \{0, 1\}\).
 - **Symmetric predicates**: \(p(a) = 1 \iff p(\tilde{a}) = 1\), \(\tilde{a}\): permutation of \(a\).
- **Space Complexity Classes**:
 - \(\text{PMSPACE}(f(n))\): Predicates computable by a PM protocol using \(O(f(n))\) space.
 - \(\text{SSPACE}(f(n)), \text{SNSPACE}(f(n))\): Symmetric subsets of predicates in \(\text{SPACE}(f(n)), \text{NSPACE}(f(n))\).
 - \(\text{SEM}\): Class of Semilinear predicates.
Computation in PM (Continued)

- **Execution**: a sequence of population configurations \((C_1, C_2, \ldots)\) such that \(C_i \rightarrow C_{i+1}\).
- **Computation**: an infinite fair execution.
- PM protocols **stabilize**: \(\exists i : \forall v \in V, \forall j \geq i, \text{agent } v \text{ does not change his output tape in } C_j\).
- Stable computation of predicates \(p : X^{|V|} \rightarrow \{0, 1\}\).
 - Symmetric predicates: \(p(a) = 1 \iff p(\tilde{a}) = 1\), \(\tilde{a}\): permutation of \(a\).
- **Space Complexity Classes**:
 - \(\text{PMSPACE}(f(n))\): Predicates computable by a PM protocol using \(O(f(n))\) space.
 - \(\text{SSPACE}(f(n)), \text{SNSPACE}(f(n))\): Symmetric subsets of predicates in \(\text{SPACE}(f(n)), \text{NSPACE}(f(n))\).
 - SEM: Class of Semilinear predicates.
Computation in PM (Continued)

- **Execution**: a sequence of population configurations \((C_1, C_2, \ldots)\) such that \(C_i \rightarrow C_{i+1}\).
- **Computation**: an infinite fair execution.
- PM protocols **stabilize**: \(\exists i : \forall v \in V, \forall j \geq i, \text{agent } v \text{ does not change his output tape in } C_j\).
- Stable computation of predicates \(p : X^{|V|} \rightarrow \{0, 1\}\).
 - **Symmetric predicates**: \(p(a) = 1 \iff p(\tilde{a}) = 1\), \(\tilde{a}\): permutation of \(a\).
- **Space Complexity Classes**:
 - **PMSPACE**\((f(n))\): Predicates computable by a PM protocol using \(O(f(n))\) space.
 - **SSPACE**\((f(n))\), **SNSPACE**\((f(n))\): Symmetric subsets of predicates in \(SPACE(f(n))\), \(NSPACE(f(n))\).
 - **SEM**: Class of Semilinear predicates.
Dividing the predicate space

- Study of the impact of passive mobility in computational capabilities of distributed systems.

Goal: Divide predicate space according to predicate space complexity.
Assigning Unique Ids

Theorem

Any PM protocol \mathcal{A} can assume the existence of unique ids and knowledge of the population size, at the cost of $O(\log n)$ space.

Proof: A protocol \mathcal{I} for UID assignment.

- All agents start with $uid = 0$.
- **Effective** interactions only between agents with the same uid.
 - Initiator increments uid.
- \mathcal{I} does not terminate. **Every time a uid is incremented, the agent broadcasts a message for \mathcal{A} to reinitiate computation.**
- Agents ignore such messages with uid smaller than the last one (ignore *late* messages).
 - After $uid = n - 1$, reinitiations stop, and \mathcal{A} finally is executed correctly.
Assigning Unique Ids (Continued)

Theorem

Any PM protocol A can assume the existence of unique ids and knowledge of the population size, at the cost of $O(\log n)$ space.

Proof.

$\text{uid}=0$
Assigning Unique Ids (Continued)

Theorem

Any PM protocol \mathcal{A} can assume the existence of unique ids and knowledge of the population size, at the cost of $O(\log n)$ space.

Proof.

$\text{uid}=0$
Assigning Unique Ids (Continued)

Theorem

Any PM protocol A can assume the existence of unique ids and knowledge of the population size, at the cost of $O(\log n)$ space.

Proof.

\[\text{uid} = 0 \quad \text{uid} = 1 \]
Assigning Unique Ids (Continued)

Theorem

Any PM protocol \(A \) can assume the existence of unique ids and knowledge of the population size, at the cost of \(O(\log n) \) space.

Proof.

\[
\begin{align*}
uid=0 & \quad \text{\textbf{u}} \\
u & \quad \text{\textbf{v}} \\
w & \quad \text{\textbf{w}} \\
uid=1 & \quad \text{\textbf{v}} \\
\end{align*}
\]
Assigning Unique Ids (Continued)

Theorem

Any PM protocol \(A \) can assume the existence of unique ids and knowledge of the population size, at the cost of \(O(\log n) \) space.

Proof.

![Diagram showing unique ids assignment process]

- uid=0
- uid=1
Assigning Unique Ids (Continued)

Theorem

Any PM protocol A can assume the existence of unique ids and knowledge of the population size, at the cost of $O(\log n)$ space.

Proof.

uid=0 \rightarrow \ldots \rightarrow uid=1 \rightarrow uid=n-1
Theorem

Any PM protocol A can assume the existence of unique ids and knowledge of the population size, at the cost of $O(\log n)$ space.

Proof.

\[\text{uid}=0 \quad \text{uid}=1 \quad \text{uid}=n-1 \]

Still anonymous!
Simulating a Deterministic Turing Machine

Theorem

\[\text{SSPACE}(\Omega(n \log n)) \subseteq \text{PMSPACE}(\Omega(\log n)) \]

Proof.

Input string \(w \in \text{SSPACE}(\Omega(\log n)) \) decided by a TM \(D \), \(|w| = n \).

- Each agent receives a symbol of \(w \).
- Use \(I \) to align all agents.
- Use this alignment as a tape in a **modular** fashion.
 - The **local tape** of each agent provides \(O(\log n) \) cells.
- Each time, one **active** agent carries the simulation.
- State transition rules of \(D \) embedded in the PM protocol.
- Head move \(\rightarrow \) pass **control** + **current state** to neighbor.

Simulation accepts a permutation of \(w \).
Simulating a Deterministic Turing Machine

Theorem

\[\text{SSPACE}(\Omega(n \log n)) \subseteq \text{PMSPACE}(\Omega(\log n)) \]

Proof.

Input string \(w \in \text{SSPACE}(\Omega(\log n)) \) decided by a TM \(D \), \(|w| = n \).

- Each agent receives a symbol of \(w \).
- Use \(I \) to align all agents.
- Use this alignment as a tape in a modular fashion.
 - The local tape of each agent provides \(O(\log n) \) cells.
- Each time, one active agent carries the simulation.
- State transition rules of \(D \) embedded in the PM protocol.
- Head move \(\rightarrow \) pass control + current state to neighbor.

Simulation accepts a permutation of \(w \).
Simulating a Deterministic Turing Machine

Theorem

\[\text{SSPACE}(\Omega(n \log n)) \subseteq \text{PMSPACE}(\Omega(\log n)) \]

Proof.

Input string \(w \in \text{SSPACE}(\Omega(\log n)) \) decided by a TM \(D \), \(|w| = n\).

- Each agent receives a symbol of \(w \).
- Use \(\mathcal{I} \) to align all agents.
- Use this alignment as a tape in a **modular** fashion.
 - The **local tape** of each agent provides \(O(\log n) \) cells.
- Each time, one **active** agent carries the simulation.
- State transition rules of \(D \) embedded in the PM protocol.
- Head move \(\rightarrow \) pass **control** + **current state** to neighbor.
- **Simulation accepts a permutation of** \(w \).
Allowing for non-determinism

Theorem

\[\text{SNSPACE}(\Omega(n \log n)) \subseteq \text{PMSPACE}(\Omega(\log n)) \]

Proof.

Input string \(w \in \text{SNSPACE}(\Omega(\log n)) \) decided by a NTM \(N \), \(|w| = n \).

- Initial configuration \(C \): all agents set output to reject.
- Use simulation of \(D \).
- Non deterministic choice out of \(k \) possible.
- Exploit fairness of the adversary!
 - Pause simulation and wait for interaction.
 - Pick choice based on \(uid \) of the other participant.
- Simulating branch \(N \) rejects: Reset population to \(C \).
- \(N \) accepts: A good simulating branch starting from \(C \) exists.
 - Simulation keeps reinitiating to \(C \), until that branch is followed.
Allowing for non-determinism

Theorem

\[\text{SNSPACE}(\Omega(n \log n)) \subseteq \text{PMSPACE}(\Omega(\log n)) \]

Proof.

Input string \(w \in \text{SNSPACE}(\Omega(\log n)) \) decided by a NTM \(N \), \(|w| = n \).

- Initial configuration \(C \): all agents set output to reject.
- Use simulation of \(D \).
- **Non deterministic** choice out of \(k \) possible.
- **Exploit fairness of the adversary!**
 - Pause simulation and wait for interaction.
 - Pick choice based on uid of the other participant.
- Simulating branch \(N \) rejects: Reset population to \(C \).
- \(N \) accepts: A good simulating branch starting from \(C \) exists.
 - Simulation keeps reinitiating to \(C \), until that branch is followed.
Allowing for non-determinism

Theorem

$$\text{SNSPACE}\left(\Omega(n \log n)\right) \subseteq \text{PMSPACE}\left(\Omega(\log n)\right)$$

Proof.

Input string $w \in \text{SNSPACE}\left(\Omega(\log n)\right)$ decided by a NTM N, $|w| = n$.

- Initial configuration C: all agents set output to reject.
- Use simulation of D.
- Non deterministic choice out of k possible.
- Exploit fairness of the adversary!
 - Pause simulation and wait for interaction.
 - Pick choice based on uid of the other participant.

- Simulating branch N rejects: Reset population to C.
- N accepts: A good simulating branch starting from C exists.
 - Simulation keeps reinitiating to C, until that branch is followed.
Allowing for non-determinism

Theorem

\(\text{SNSPACE}(\Omega(n \log n)) \subseteq \text{PMSPACE}(\Omega(\log n)) \)

Proof.

Input string \(w \in \text{SNSPACE}(\Omega(\log n)) \) decided by a NTM \(N \), \(|w| = n \).

- Initial configuration \(C \): all agents set output to \textbf{reject}.
- Use simulation of \(D \).
- \textbf{Non deterministic} choice out of \(k \) possible.
- \textbf{Exploit fairness of the adversary!}
 - Pause simulation and wait for interaction.
 - Pick choice based on \textit{uid} of the other participant.
- Simulating branch \(N \textbf{ rejects} \): Reset population to \(C \).
- \(N \textbf{ accepts} \): A \textit{good} simulating branch starting from \(C \) exists.
 - Simulation keeps reinitiating to \(C \), until that branch is followed.
A Space Hierarchy

Theorem

For $h(n) \in \Omega(\log n)$ and recursive $l(n)$, separated by a nondeterministically fully space constructible function $g(n)$, with $h(n) \in \Omega(g(n))$ but $l(n) \notin \Omega(g(n))$, there exists a language in $\text{PMSPACE}(h(n)) \neq \text{PMSPACE}(l(n))$.

Proof.

- A unary separation language has been shown to exist for NSPACE.
 - V. Geffert. Space hierarchy theorem revised.
- Unary languages are symmetric: $\text{NSPACE} = \text{SNSPACE}$.
- But when $h(n) \in \Omega(\log n) \rightarrow \text{SNSPACE}(h(n)) = \text{PMSPACE}(h(n))$.
A Computational Threshold

Theorem

Threshold. $\text{PMSPACE}(o(\log \log n)) = \text{SEM}.$

Proof Idea

Agent Configuration Graph: Describes the effects of interactions of protocol A, but ignores the *deterministic* internal computation.

- Fixed for specific A, V.

![Diagram of Agent Configuration Graph](image-url)
A Computational Threshold

Theorem

Threshold. $\text{PMSPACE}(o(\log \log n)) = \text{SEM}$.

Proof Idea

Agent Configuration Graph: Describes the effects of interactions of protocol A, but ignores the *deterministic* internal computation.

- Fixed for specific A, V.
- Moving to $V', |V'| > |V|$ adds new configurations k.
 - Accessible through interacting configurations (a, b) existing in V.
 - Since k does not exist in V, a and b cannot exist concurrently in V.

![Diagram](image-url)
A Computational Threshold (Continued)

Theorem

Threshold. $\text{PMSPACE}(o(\log \log n)) = \text{SEM}$.

Proof Idea

- **Important Lemma:** When $f(n) = o(\log \log n)$, $\exists V$ such that any configuration can occur in a subpopulation of size $\frac{|V|}{2}$.
A Computational Threshold (Continued)

Theorem

Threshold. $\text{PMSPACE}(o(\log \log n)) = \text{SEM}$.

Proof Idea

- **Important Lemma**: When $f(n) = o(\log \log n)$, $\exists V$ such that any configuration can occur in a subpopulation of size $\frac{|V|}{2}$.
- Partition V in V_1, V_2.
Theorem

Threshold. \(\text{PMSPACE}(o(\log \log n)) = \text{SEM} \).

Proof Idea

- **Important Lemma**: When \(f(n) = o(\log \log n) \), \(\exists V \) such that any configuration can occur in a subpopulation of size \(\frac{|V|}{2} \).
- Partition \(V \) in \(V_1, V_2 \).
- \(V_1 \) creates \(a \), \(V_2 \) creates \(b \).
A Computational Threshold (Continued)

Theorem

Threshold. $\text{PMSPACE}(o(\log \log n)) = \text{SEM}$.

Proof Idea

- **Important Lemma:** When $f(n) = o(\log \log n)$, $\exists V$ such that any configuration can occur in a subpopulation of size $\frac{|V|}{2}$.
- Partition V in V_1, V_2.
- V_1 creates a, V_2 creates b.
- Interaction creates $k \rightarrow k$ not new in V'!
Theorem

Threshold. \(\text{PMSPACE}(o(\log \log n)) = \text{SEM} \).

Proof Idea

- **Important Lemma**: When \(f(n) = o(\log \log n) \), \(\exists V \) such that any configuration can occur in a subpopulation of size \(\frac{|V|}{2} \).
- Partition \(V \) in \(V_1, V_2 \).
- \(V_1 \) creates \(a \), \(V_2 \) creates \(b \).
- Interaction creates \(k \to k \) not new in \(V' \)!

No new states in \(V' \)!
Power of 2 predicate

Theorem

Predicate p: $\log N_a = t$, for some t is in $\text{PMSPACE}(\log \log n)$.

Proof.

A PM protocol A computing p in $O(\log \log n)$ space.

- Agent v that received an a sets $x_v = 1$, otherwise $x_v = 0$.
- Agents u and v interact only if $x_u = x_v \neq 0$.
 - $x_u = x_u + 1$, $x_v = 0$.
- In parallel, a PP B checks whether $\exists u, v : x_u, x_v \geq 1$.
 - If so, set output to 0, otherwise 1.
- B runs on stabilizing inputs.
 - D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semilinear.
Power of 2 predicate

Theorem

Predicate $p : \log N_a = t$, for some t is in $\text{PMSPACE}(\log \log n)$.

Proof.

A PM protocol A computing p in $O(\log \log n)$ space.

- Agent v that received an a sets $x_v = 1$, otherwise $x_v = 0$.
- Agents u and v interact only if $x_u = x_v \neq 0$.
 - $x_u = x_u + 1$, $x_v = 0$.
- In parallel, a PP B checks whether $\exists u, v : x_u, x_v \geq 1$.
 - If so, set output to 0, otherwise 1.

- B runs on stabilizing inputs.

 - D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semilinear.
Power of 2 predicate

Theorem

Predicate $p : \log N_a = t$, for some t is in $\text{PMSPACE}(\log \log n)$.

Proof.

A PM protocol A computing p in $O(\log \log n)$ space.

- Agent v that received an a sets $x_v = 1$, otherwise $x_v = 0$.
- Agents u and v interact only if $x_u = x_v \neq 0$.
 - $x_u = x_u + 1$, $x_v = 0$.
- In parallel, a PP B checks whether $\exists u, v : x_u, x_v \geq 1$.
 - If so, set output to 0, otherwise 1.
- B runs on stabilizing inputs.
 - D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semilinear.
Power of 2 predicate

Theorem

Predicate \(p : \log N_a = t \), for some \(t \) is in \(\text{PMSPACE}(\log \log n) \).

Proof.

A PM protocol \(A \) computing \(p \) in \(O(\log \log n) \) space.

- Agent \(v \) that received an \(a \) sets \(x_v = 1 \), otherwise \(x_v = 0 \).
- Agents \(u \) and \(v \) interact only if \(x_u = x_v \neq 0 \).
 - \(x_u = x_u + 1 \), \(x_v = 0 \).
- In parallel, a PP \(B \) checks whether \(\exists u, v : x_u, x_v \geq 1 \).
 - If so, set output to 0, otherwise 1.
- \(B \) runs on **stabilizing inputs**.
 - D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semilinear.
Power of 2 predicate

Theorem

Predicate \(p : \log N_a = t, \) for some \(t \) is in \(\text{PMSPACE}(\log \log n) \).

Proof.

A PM protocol \(A \) computing \(p \) in \(O(\log \log n) \) space.

- Agent \(v \) that received an \(a \) sets \(x_v = 1 \), otherwise \(x_v = 0 \).
- Agents \(u \) and \(v \) interact only if \(x_u = x_v \neq 0 \).
 - \(x_u = x_u + 1, \ x_v = 0 \).
- In parallel, a PP \(B \) checks whether \(\exists u, v : x_u, x_v \geq 1 \).
 - If so, set output to 0, otherwise 1.

- \(B \) runs on **stabilizing inputs**.

 - D. Angluin, J. Aspnes, and D. Eisenstat. *Stably computable predicates are semilinear.*
Proof.

- Whenever \(x_v = x_v + 1 \) for some \(v \), there are at least \(2^{x_v+1} \) \(a \)'s in the population.
- \(x_v \neq 0 \) for only one \(v \) \iff \(2^{x_v+1} \).
- \(\text{Max}(x_v) = \log N_a \leq \log n \implies O(\log \log n) \text{ space} \).

\[x = \lfloor \log N_a \rfloor \]

\[x = 2 \]

\[x = 1 \]

\[x = 0 \]
Proof.

- Whenever $x_v = x_v + 1$ for some v, there are at least 2^{x_v+1} a’s in the population.
- $x_v \neq 0$ for only one $v \iff 2^{x_v+1}$.
- $\text{Max}(x_v) = \log N_a \leq \log n \implies O(\log \log n) \text{ space.}$

$x = \lfloor \log N_a \rfloor$

- $x = 2$
- $x = 1$
- $x = 0$
Proof.

- Whenever $x_v = x_v + 1$ for some v, there are at least 2^{x_v+1} a’s in the population.
- $x_v \neq 0$ for only one $v \iff 2^{x_v+1}$.
- $\text{Max}(x_v) = \log N_a \leq \log n \implies O(\log \log n) \text{ space}$.

\[
x = \lfloor \log N_a \rfloor
\]

\[
\begin{align*}
x = 2 \\
x = 1 \\
x = 0
\end{align*}
\]
Proof.

- Whenever $x_v = x_v + 1$ for some v, there are at least 2^{x_v+1} a’s in the population.
- $x_v \neq 0$ for only one $v \iff 2^{x_v+1}$.
- $\text{Max}(x_v) = \log N_a \leq \log n \implies O(\log \log n)$ space.

\[
x = \lfloor \log N_a \rfloor
\]

- $x = 2$
- $x = 1$
- $x = 0$
Proof.

- Whenever \(x_v = x_v + 1 \) for some \(v \), there are at least \(2^{x_v+1} \) a's in the population.
- \(x_v \neq 0 \) for only one \(v \) \(\iff \) \(2^{x_v+1} \).
- \(\text{Max}(x_v) = \log N_a \leq \log n \implies O(\log \log n) \text{ space.} \)

\[
x = \lfloor \log N_a \rfloor
\]

- \(x = 2 \)
- \(x = 1 \)
- \(x = 0 \)
Proof.

- Whenever $x_v = x_v + 1$ for some v, there are at least 2^{x_v+1} a’s in the population.
- $x_v \neq 0$ for only one v \iff 2^{x_v+1}.
- $\text{Max}(x_v) = \log N_a \leq \log n \implies O(\log \log n)$ space.

\[x = \lfloor \log N_a \rfloor \]

\[x = 2 \]

\[x = 1 \]

\[x = 0 \]
Conclusions - Further Research

Our contribution:
- We have presented a new model to study passive mobility in interaction-based, distributed, anonymous systems.
- We have given a space hierarchy for functions $\Omega(\log n)$.
- We have proved an interesting threshold in $o(\log \log n)$.
 - Tight.

Further research:
- Computational characterization between $\log \log n$ and $\log n$.
- Fault tolerance.
- Probabilistic assumptions & time complexity.
- Adversarial perspective.
Thank You!