All Symmetric Predicates in $NSPACE(n^2)$ are Stably Computable by the Mediated Population Protocol Model

Stavros Nikolaou

Joint work with: I. Chatzigiannakis, O. Michail A. Pavlogiannis, P. G. Spirakis

Research Academic Computer Technology Institute (RACTI) Patras, Greece

> MFCS 2010 Brno, Czech Republic August 2010

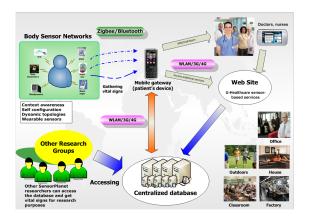
2 The Mediated Population Protocol Model

Omputational Power of the SMPP Model

Introduction - Population Protocols

The Mediated Population Protocol Model Computational Power of the SMPP Model Epilogue Theoretical Wireless Sensor Networks model - Population Protocols Model and Characteristics Computability

The Motivation



Wireless Sensor Networks have received great attention recently due to their wide range of applications.

Theoretical Wireless Sensor Networks model - Population Protocols Model and Characteristics Computability

Population Protocols - An Introduction

- Theoritical models for WSNs have become significantly important in order to understand their capabilities and limitations.
- Population Protocols [Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC '04] is a model for WSNs where:
 - Each node: limited computational device \longrightarrow a *finite-state* machine + *sensing* + *communicating* device: agent.
 - Passively mobile agents: incapable to control or predict.
 - How: unstable environment, like water flow or wind, or the natural mobility of their carriers.
- Significant properties:
 - **Uniformity:** Protocol descriptions are independent of the population size. (*constant* size)
 - Anonymity: There is no room in the state of an agent to store a unique identifier.

Theoretical Wireless Sensor Networks model - Population Protocols Model and Characteristics Computability

The Population Protocols Model and Characteristics

- Agents interact in pairs according to a **communication graph** G = (V, E) where:
 - V: A population of |V| = n agents.
 - E: The permissible interactions between the agents.
- Interaction pattern: adversary
- Adversarial choices: fairness condition
- fairness condition: population partition (the adversary cannot avoid a possible step forever)

Theoretical Wireless Sensor Networks model - Population Protocols Model and Characteristics Computability

Computation

In every execution of a $PP(X, Y, Q, I, O, \delta)$:

- Initially: Each agent senses its environment → an input symbol from a finite input alphabet X.
 - input assignment: tuple specifying an input for each agent.
- the input symbol is mapped by the input function $I: X \to Q$ to a state from a finite set of agent states Q
 - **population configuration**(*C*): tuple specifying the state of each agent.
- each state is mapped by the output function O : Q → Y to an output symbol from a finite output alphabet Y (agent's output).
- Interaction: transition function $\delta : Q \times Q \rightarrow Q \times Q \implies$ agents update their states according to δ .
 - population configuration(C) changes(C'): goes from C to C' in one step $(C \rightarrow C')$.

Theoretical Wireless Sensor Networks model - Population Protocols Model and Characteristics Computability

Stable Computation

- Computation: Infinite fair sequence C₀, C₁, C₂, ..., s.t. C_i → C_{i+1} for all i.
- Population protocols do not halt. They stabilize.

Epilogue

- **stability**: there is a point/configuration in the computation after which no agent can change its output.
- stable computation: regular computation + stabilization

Theoretical Wireless Sensor Networks model - Population Protocols Model and Characteristics Computability

Computational Power

- Due to the minimalistic nature of the model the class of computable predicates is fairly small.
- In [Angluin et al. 2004, 2006] it was proven that it is exactly the class of semilinear predicates.
- Predicates such as $N_a \ge 10$ or $N_a < N_b$ capturing scenarios such as the infection of a percentage of a fish population or fire detection by a majority of sensors scattered in a forest.
- This class does not include multiplication, exponentiation and other important operations on input variables.

Mediated Population Protocols

Modifying the PP model

- The next step is to enhance the model with extra realistic and implementable assumptions in order to gain more computational power.
- Mediated Population Protocols: We assume that each edge is equipped with a buffer of $\mathcal{O}(1)$ storage capacity (independent of the size of the population).
- This minor addition greatly enhances the computability of the model.

Mediated Population Protocols

The Mediated PP model [I. Chatzigiannakis, O. Michail, and P. G. Spirakis, ICALP '09]

- Model's description:
 - each edge \longrightarrow a state from a finite set of edge states S
 - transition function $\delta: Q \times Q \times S \rightarrow Q \times Q \times S$
 - When agents u_1, u_2 in states a, b, respectively, interact through (u_1, u_2) in state s then $(a, b, s) \rightarrow (a', b', s')$ is applied and
 - a goes to a', b goes to b' and s goes to s'.
- Configuration: includes the states of the edges \longrightarrow **network configuration**.
- The *computation* of the model is in every other respect the same as in the PP model.

Mediated Population Protocols

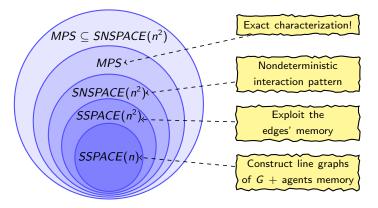
Symmetric MPP: An MPP variation

- Symmetric MPP (SMPP): complete communication graph *G* + all edges are initially in a common state *s*₀.
- An SMPP protocol A: symmetric predicates (permuting the input symbols does not affect the outcome of the predicate).
- Mediated Predicates in the fully Symmetric case (MPS): class of stably computable predicates.
- Let SSPACE(f(n)) and SNSPACE(f(n)) be SPACE(f(n))'s and NSPACE(f(n))'s restrictions to symmetric predicates, respectively.

Correctly Labeled Line Graphs All Symmetric Predicates in SPACE(n) are also in MPS Extending MPS: MPS \subseteq SSPACE(n²) SNSPACE(n²) \subseteq MPS An exact characterization: MPS = SNSPACE(n²)

Road Map

• From [I. Chatzigiannakis *et al.* ICALP, 2009.] we have that all predicates in *MPS* are also in *SNSPACE*(n^2).



 $\begin{array}{l} \mbox{Correctly Labeled Line Graphs} \\ All Symmetric Predicates in SPACE(n) are also in MPS \\ Extending MPS: MPS \subseteq SSPACE(n^2) \\ SMSPACE(n^2) \subseteq MPS \\ An exact characterization: MPS = SNSPACE(n^2) \end{array}$

Correctly Labeled Line Graphs

- *label*: agents and edges (label component of the state)
- The labels are used to define line graphs into the communication graph.

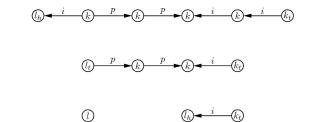


Figure: Some correctly labeled line subgraphs. We assume that all edges not appearing are in state 0 (inactive).

Correctly Labeled Line Graphs All Symmetric Predicates in SPACE(n) are also in MPS Extending MPS: MPS \subseteq SSPACE(n²) SNSPACE(n²) \subseteq MPS An exact characterization: MPS = SNSPACE(n²)

$SSPACE(n) \subseteq MPS$

Theorem (Angluin et al., 2006)

For any predicate $p \in SSPACE(n)$ there is an (M)PP A that stably computes p in a spanning line graph of n agents.

- SMPP *I*: constructs a correctly labeled spanning line subgraph of any complete *G*.
- Initially all agents are simple leaders and all edges are inactive.
- *Idea*: leaders interact via inactive edges → merge linegraphs.

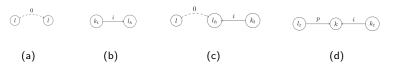
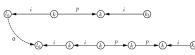
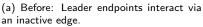


Figure: (a)-(b): Individual agents create non trivial line subgraphs. (c)-(d): Simple leaders extend already formed line subgraphs.

Correctly Labeled Line Graphs All Symmetric Predicates in SPACE(n) are also in MPS Extending MPS: MPS \subseteq SSPACE(n²) SNSPACE(n²) \subseteq MPS An exact characterization: MPS = SNSPACE(n²)

$SSPACE(n) \subseteq MPS$ Merging Process





(b) Update the labels appropriately.

(c) After: The resulting line graph include all agents from both line graphs and an additional edge.

Figure: Two line subgraphs are merged together.

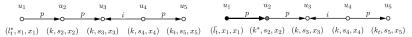
Correctly Labeled Line Graphs All Symmetric Predicates in SPACE(n) are also in MPS Extending MPS: MPS \subseteq SSPACE(n²) SNSPACE(n²) \subseteq MPS An exact characterization: MPS = SNSPACE(n²)

$SSPACE(n) \subseteq MPS$ continued

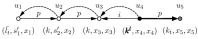
- By repeatedly merging line graphs, as shown above, we construct a spanning line subgraph of *G*.
- This process is called **spanning process** and terminates in a finite number of steps.
- We can construct an SMPP \mathcal{B} that is a composition of \mathcal{A} and a protocol \mathcal{I} which is responsible for the spanning process.
- Agents don't know when spanning process ends.
- These protocols run in "parallel" in different state components.
- While the spanning process is ongoing the execution of A does not take place in a spanning line graph of G. Therefore it has to be **reinitialized** after each merging.

Correctly Labeled Line Graphs All Symmetric Predicates in SPACE(n) are also in MPS Extending MPS: MPS \subseteq SSPACE(n²) SNSPACE(n²) \subseteq MPS An exact characterization: MPS = SNSPACE(n²)

$SSPACE(n) \subseteq MPS$ Reinitialization



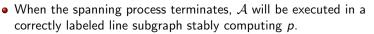
(a) Just after merging. The leader end- (b) The agent who has that mark get reinipoint has the special star mark. tialized and passes it to the right neighbor.



(c) The process ends when the tail non-leader gets reinitialized.

Figure: An example of the reinitialization process. When an agent gets reinitialized, it restores A's initial state, which it stores in an input backup component of the state.

• The reinitialization process terminates in a finite number of steps.



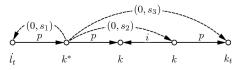
CTI

Correctly Labeled Line Graphs All Symmetric Predicates in SPACE(n) are also in MPS Extending MPS: MPS \subseteq SSPACE(n^2) SNSPACE(n^2) \subseteq MPS An exact characterization: MPS = SNSPACE(n^2)

$SSPACE(n^2) \subseteq MPS$

Theorem

Given a correctly labeled spanning line subgraph of a complete communication graph G, there is MPP A that running on such a graph can simulate a deterministic TM of $\mathcal{O}(n^2)$ space computing symmetric predicates.



(a) The agent in k^* controls now the simulation. The dot label marks k^* 's outgoing inactive edge that will be used by the simulation as a tape cell.

Figure: The simulation uses the inactive edges as tape cells.

Correctly Labeled Line Graphs All Symmetric Predicates in SPACE(n) are also in MPS Extending MPS: MPS \subseteq SSPACE(n^2) SNSPACE(n^2) \subseteq MPS An exact characterization: MPS = SNSPACE(n^2)

$SSPACE(n^2) \subseteq MPS$ continued

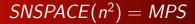
- By moving those special labels across the line graph according the movement of the head of the simulated machine we can access the inactive edges of the communication graph in a systematic fashion.
- The inactive outgoing edges provide the $\mathcal{O}(n^2)$ space needed for the simulation.
- Therefore for any predicate p ∈ SSPACE(n²) there is a MPP A that stably computes it in a correctly labeled line graph of n agents.
- Using the same ideas as before: SMPP $\mathcal{B} = \mathcal{A} + \mathcal{I}$.
- $\mathcal I$ also reinitializes inactive edges.

Correctly Labeled Line Graphs All Symmetric Predicates in SPACE(n) are also in MPS Extending MPS: MPS \subseteq SSPACE(n²) SNSPACE(n²) \subseteq MPS An exact characterization: MPS = SNSPACE(n²)

$SNSPACE(n^2) \subseteq MPS$ Construction

- To construct a nondeterministic TM $\mathcal{N}:$ inherent nondeterminism of the interaction pattern.
- Whenever a nondeterministic choice has to be made the selected choice is determined by the **next arbitrary interaction** of the agent in control of the simulation with another agent.
- If \mathcal{N} rejects then its computation is reinitialized in order to follow another path in the tree representing the nondeterministic computation.
- Fairness guarantees that all the computation paths will eventually be followed.

Correctly Labeled Line Graphs All Symmetric Predicates in SPACE(n) are also in MPS Extending MPS: MPS \subseteq SSPACE(n²) SNSPACE(n²) \subseteq MPS An exact characterization: MPS = SNSPACE(n²)



Theorem

A predicate is in MPS iff it is symmetric and is in NSPACE (n^2)

Summary

Our research:

- We have given an **exact characterization** of for the fully symmetric case of the MPP model.
- We showed we can organize a population of tiny artifacts into a TM machine that computes symmetric predicates and makes use of all the available space from both agents and edges.

Further research and open problems:

- Stable decidability of properties of the communication graph (see e.g. [Chatzigiannakis, Michail, Spirakis, SSS '10 2] for a first attempt for MPPs),
- Expected time complexity of predicates under some probabilistic scheduling assumption
- Fault-tolerance

Summary Thank You!

Thank You!

