
Causality, Influence, and Computation in Possibly
Disconnected Synchronous Dynamic Networks

Othon Michail

joint work with
Ioannis Chatzigiannakis

Paul G. Spirakis

Computer Technology Institute & Press “Diophantus” (CTI)
Dept. of Computer Engineering & Informatics (CEID), Univ. of Patras

16th International Conference On Principles Of DIstributed Systems
(OPODIS)

December 17-20, 2012
Rome, Italy

1 / 27



Distributed Computation in Worst-case Dynamic Networks

Distributed computation as usual

n processors
Interchanging messages with neighbors

Main Difference:

The network may change arbitrarily from round to round

Nodes do not control the changes in the topology

Of course, not too arbitrarily to prevent any computation

Should be at least temporally connected
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A Model of Network Dynamicity: Dynamic Graphs

Dynamic graph

A sequence G(1),G(2), . . . of static graphs
G(i) is the status of the graph at time/round i

e.g. a (static) graph is a special case of dynamic graph in which
E (i + 1) = E (i) for all i
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Distributed Computation Model

Unlimited local storage

Unique ids of size O(log n) bits

Synchronous message passing

Discrete steps/rounds
Global clock available to the nodes
Communication via sending/receiving messages

Message transmission is broadcast
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Connected Instances
[OW05,KLO10]

G (i) is connected, for all times i

Implies “good” temporal connectivity

The dynamic diameter is n − 1

u

Nodes that have
heard of u

Nodes that have
not heard of u
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Possibly Disconnected Instances

Most dynamic networks never have connected instances

We drop the assumption of connected instances

We impose weaker conditions to guarantee temporal connectivity
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Metrics for Disconnectivity

1 Outgoing Influence Time (oit)

2 Incoming Influence Time (iit)

3 Connectivity Time (ct)
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Outgoing Influence Time (oit)

Maximal time until the state of a node influences the state
of another node.

Minimum k ∈ N s.t. for all u ∈ V and all times t, t ′ ≥ 0 s.t. t ′ ≥ t it holds
that

|future(u,t)(t ′ + k)| ≥ min{|future(u,t)(t ′)|+ 1, n}

Example: the oit of a dynamic graph with connected instances is 1

Incoming Influence Time (iit): the same for incoming influences
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Alternating Matchings
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Alternating Matchings (oit=1)

u
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Alternating Matchings (oit=1)

u
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Alternating Matchings (oit=1)

u
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Alternating Matchings (oit=1)

u
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Alternating Matchings (oit=1)

u
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Connectivity Time (ct)

Maximal time until the two parts of any cut of the network
become connected.

Minimum k ∈ N s.t. for all times t ∈ N the static graph (V ,
⋃t+k−1

i=t E (i)) is
connected

If the ct is 1 then we obtain a dynamic graph with connected instances

Greater ct allows for disconnected instances
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Alternating Matchings (ct=2)
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Alternating Matchings (ct=2)
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Alternating Matchings (ct=2)
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Alternating Matchings (ct=2)
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oit vs ct

Proposition
1 oit ≤ ct but

2 there is a dynamic graph with oit = 1 and ct = Θ(n).
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Termination Criteria

To perform global (terminating) computation

Each node u must be able to tell ∀0 ≤ t ≤ t ′ whether

past(u,t′)(t) = V .

If nodes know n, then a node can determine at time t ′ whether
past(u,t′)(t) = V by counting all different t-states that it has heard of so far

If n is not known: the subject of our work

Termination criterion: any locally verifiable property that can be used to
determine whether past(u,t′)(t) = V
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Problems

Counting: Nodes must determine the network size n

All-to-all Token Dissemination (or Gossip): each node is provided with a
unique token, and all nodes must collect all n tokens

Functions on Inputs: each node gets an input symbol from some set X and
the goal is to have all nodes compute some function f on the distributed
input (e.g. min,max,avg)

Termination criteria can be used to directly solve these
problems.
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Known Upper Bound on the ct

Nodes know some upper bound T on the ct

We give an optimal termination criterion

This gives optimal protocols for our problems

O(D + T ) rounds in any dynamic network with dynamic diameter D
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Optimal Protocol

Theorem (Repeated Past)

Node u knows at round r that past(u,r)(0) = V iff past(u,r)(0) = past(u,r)(T ).

vu w

past(u,r)(T )
(w , 0) (v ,T ) (u, r)

r ′ : 1 ≤ r ′ ≤ T
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Known Upper Bound on the oit

Nodes know some upper bound K on the oit

We give a termination criterion which, though being far from the dynamic
diameter, is optimal if a node terminates based on its past set

We then develop a novel technique that gives an optimal termination
criterion based on the future set of a node
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Inefficiency of Hearing the Past

Theorem

If u has heard of l nodes then it must hear of another node in O(Kl2) rounds
(if an unknown one exists)

The bound is locally computable

K and l are both known

Poor time complexity: O(Kn2)

However, some sense of optimality: a node cannot obtain a better upper
bound based solely on K and l
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Inefficiency of Hearing the Past

Even the “Repeated Past” criterion, that is optimal in the ct case, does not
work in the oit case

Essentially, for any t ′, while u has not been yet causally influenced by all
initial states its past set from time 0 may become equal to its past set from
time t ′
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Hearing the Future

Termination criterion:

If future(u,0)(t) = future(u,0)(t + K) then future(u,0)(t) = V

Fundamental goal: Allow a node know its future set

Novelty: instead of hearing the past, a node now directly keeps track of its
future set and is informed by other nodes of its progress
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Hearing the Future

u
future(u,0)(t)

An outgoing influence must occur
in at most K rounds

u keeps track of future(u,0)(t)

checks whether it has increased by
time t + K

If not, no further nodes can exist

[t, t + K ]
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Protocol Hear from known

Theorem

Protocol Hear from known terminates in O(D + K ) rounds and uses messages of
size O(n log Kn).

This is optimal w.r.t. time

Again solves all of our problems
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Improving Message Size

The leader initiates individual conversations with the nodes that it already
knows to have been influenced by its initial state

Sends an invitation to a particular node which is forwarded by all nodes

A node that receives an invitation replies with the necessary data

this message is now preferred and forwarded by all nodes until it gets to the
leader

To make nodes prefer a particular message

we accompany messages with timestamps of creation-time and
have all nodes prefer the data with the most recent timestamps

Terminates in O(Dn2 + K ) rounds by using messages of size O(log D + log n)
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Conclusions

We studied worst-case dynamic networks that are free of any connectivity
assumption about their instances

We proposed new metrics to capture the speed of information propagation

We proved that fast dissemination and computation are possible even under
continuous disconectivity

We presented optimal termination conditions and protocols based on them
for counting and all-to-all dissemination
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Research Directions

Define more informative metrics that capture the speed of propagation

Develop an asynchronous version of our model in which e.g. nodes broadcast
when they detect new neighbors

Propose methods to reduce the communication complexity

So far, nodes broadcast constantly in order to ensure dissemination

Does visibility or predictability help and to what extend?

Find better lower and upper bounds for counting and information
dissemination

Lower bound: Ω(nk/ log n) (even for centralized algorithms on networks with
connected instances and messages of size O(log n)) [DPRSV12]
Upper bound: O(Dn2 + K) (for messages of size O(logD + log n))
There is a big gap here
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Thank You!
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