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General Motivation

A wide range of physical/biological
systems are governed by algorithmic
laws

Usually collections of very large
numbers of simple distributed entities

Higher-level properties are the outcome
of coexistence and constant interaction
(cooperative and/or competing) of such
entities

Goal:

Reveal the algorithmic aspects of
physical systems

Develop innovative artificial systems
inspired by them
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Some Existing Theoretical Approaches

Cellular Automata model neural activity, self-replication, bacterial
growth, ...

Population Protocols [AADFP, PODC ’04] are formally equivalent to
Chemical Reaction Networks [Doty, SODA ’14]

Network Constructors [Michail, Spirakis, PODC ’14; Michail, PODC
’15]: abstract and simple model of distributed network formation

Algorithmic self-assembly of DNA: DNA tiles binding to other tiles via
Watson-Crick complementary sticky ends

Models of programmable matter equipped with active mobility/
actuation mechanisms
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Some Existing Systems

DNA self-assembly: single-stranded
DNA molecules folded into arbitrary
nanoscale shapes and patterns
[Rothemund, Nature ’06]

Kilobot [RCN, Science ’14]:
programmable self-assembly of complex
2D shapes by a swarm of 1000 simple
autonomous robots

Robot Pebbles: 1cm cubic modules able
to form 2D shapes through
self-disassembly [GKR10]

Millimotein: a chain which can fold
itself into arbitrary 3D shapes [KCL+12]

Catoms [GCM05]: Nanotechnology,
Intel
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Long-term Vision: Programmable Matter

Manipulate matter via information-theoretic and computing
mechanisms and principles

Incorporation of information to the physical world

Plausible future outcome of progress in high-volume nanoscale
assembly

Physical realization of any computer-generated object

Profound implications for how we think about chemistry and materials

Materials will become user-programmed, smart, and adaptive

It will change the way we think about engineering and manufacturing
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Population Protocols

[Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC ’04]

Distributed model. n computational entities, called nodes

1 interact in pairs

2 cannot control their interactions

passive mobility, like particles in a well-mixed solution

fair adversary or uniform random scheduler

3 have constant memory (uniformity)

4 do not have unique ids (anonymity)

5 δ : Q × Q → Q × Q: transition function
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An Illustration
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PPs and Natural Processes

May be viewed as an abstraction of “fast-mixing” physical systems

Chemical Reaction Networks
Finite sets of chemical reactions such as A + B → A + C

Promising programming language for molecular control circuitry

Some CRNs can simulate space-bounded Turing machines

PPs are formally equivalent to CRNs [Doty ’14]
Consequence: bounds for PPs, usually translate to inherent properties
of natural systems

e.g., time-consuming to generate exact quantities of molecular species
quickly [DS15]

Relations to self-assembly, gene regulatory networks, opinion
spreading, and antagonism of species models

A predicate is computable by PPs iff it is semilinear [AAER ’07]
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An Introduction
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Dynamic Environments: A Motivating Example

n tiny computational devices

Injected into a human circulatory
system for monitoring/treating

Move and interact passively (blood
flow)

Cooperation: can create bonds with
each other

Self-assemble into a desired global
structure/network

The artificial population evolves greater
complexity, better storage capacity, and
adapts and optimizes its performance to
the specific task to be accomplished
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Distributed Network Construction

[Michail and Spirakis, PODC ’14 and Distrib. Comput. ’16]

Fundamental problem: Algorithmic distributed construction of an actual
communication topology

Processes can form/delete connections between them

Physical or virtual connections depending on the application

on/off case: a connection either exists (active) or does not exist
(inactive)

Initially all connections are inactive

Goal: End up with a desired stable network
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A Minimal Model

Processes are finite automata

Homogeneity: All begin from the same initial state and execute the
same finite program

Adversarial environment: Fair adversary scheduler choosing pairwise
interactions (a la population protocols)

Uniform random scheduler to estimate efficiency

Complex global behaviour via simple, uniform, anonymous,
homogeneous, and cooperative entities
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Related Work

PPs/CRNs can only capture the dynamics of molecular counts and
not of structure formation

We aim to capture the stable structures that may occur in a
well-mixed solution

Our Goal: Determine what stable structures can result in such systems,
how fast, and under what conditions (e.g. by what underlying codes/
reaction-rules)
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Applications

Principles of algorithmic network formation

Programmable matter

Reconfigurable robotics

Medicine (diagnosis/treatment)

Smart material (that self-built, self-adjust, ...)

Biomaterial manufacture

Modeling and understanding network formation by
physical/chemical/biological processes (e.g. molecules reacting in a
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The Model of Network Constructors

1 Q: finite set of node-states,

2 q0 ∈ Q: initial node-state,

3 Qout ⊆ Q: set of output node-states, and

4 δ : Q × Q × {0, 1} → Q × Q × {0, 1}: the transition function

In every step, a pair uv is selected by the scheduler and u, v interact
according to δ

Fair scheduler: If a configuration is reachable infinitely often then it is
eventually reached

Output network: nodes that are in output states and edges between
them that are active

Stability: The output network cannot change in future steps
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An Illustration: Spanning Star

2 states: black and red

Initially all black

Construct a global star

Program:

(b, b, 0)→ (b, r , 1)

(r , r , 1)→ (r , r , 0)

(b, r , 0)→ (b, r , 1)
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An Illustration: Spanning Star

Size: 2 states

Time: O(n2 log n)

Optimal w.r.t. both

Time = # interactions
(sequencial)

Parallel time is on the average
1
n · sequential time
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Global Line

Global Line: For all n, the n processes must construct a spanning line

Theorem (Generic Lower Bound)

The expected time to convergence (always under the uniform random
scheduler) of any protocol that constructs a spanning network is
Ω(n log n).

Proof.

Consider the time at which the last edge is activated. By that time, all
nodes have some active edge incident to them, thus every node has
interacted at least once. The latter can be shown to require an expected
number of Θ(n log n) steps.

Theorem (Line Lower Bound)

The expected time to convergence of any protocol that constructs a
spanning line is Ω(n2).

Othon Michail, Paul G. Spirakis Network Constructors: A Model for Programmable Matter 17 / 66



Simple-Global-Line Protocol

Protocol Simple-Global-Line:

(q0, q0, 0)→ (q1, l , 1)

(l , q0, 0)→ (q2, l , 1)

(l , l , 0)→ (q2,w , 1)

(w , q2, 1)→ (q2,w , 1)

(w , q1, 1)→ (q2, l , 1)

Every node remembers its degree (q0, q1, q2)

Every line has a unique leader (endpoint: l , internal: w)

Lines expand towards isolated nodes and merge to other lines via l

After merging, w performs a random walk to reach an endpoint

Othon Michail, Paul G. Spirakis Network Constructors: A Model for Programmable Matter 18 / 66



Simple-Global-Line Protocol
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Simple-Global-Line Protocol

Theorem

Protocol Simple-Global-Line constructs a spanning line. It uses 5 states
and its expected running time is Ω(n4) and O(n5).

Proof

We have to prove two things:

1 There is a set S of output-stable configurations whose active network
is a spanning line

2 For every reachable configuration C it holds that C  Cs for some
Cs ∈ S

1 Spanning line, non-leader endpoints in state q1, non-leader internal
nodes in q2, and unique leader either in l (endpoint) or in w (internal)

2 Any reachable C is a collection of active lines with unique leaders and
isolated nodes. It is not hard to present a finite sequence of
transitions that converts C to a Cs ∈ S.
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Simple-Global-Line Protocol

Upper bound: (n − 2)[O(n2) + O(n4)] = O(n5)

Lower Bound:

w.h.p. constructs Θ(n) different lines of length 1 during its course

k = Θ(n) disjoint lines ⇒ k − 1 = Θ(n) distinct merging processes

tmin: the first time at which there is a line L of length h ≥ k/4

It holds that k/4 ≤ h ≤ k/2 − 1

remaining length at least k − h ≥ k − (k/2 − 1) = k/2 + 1 to get
merged to L via distinct sequential mergings

di : length of the ith line merged to L

E[Y ] = E[
∑j

i=1 Yi ] =
∑j

i=1 E[Yi ] =
∑j

i=1 n2(h + d1 + . . . + di−1)di

≥ n2 ∑j
i=1 hdi = n2h

∑j
i=1 di ≥ n2 · k

4
· ( k

2
+ 1)

= n2 · Θ(n) · Θ(n)

= Θ(n4)
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Fast-Global-Line Protocol

(q0, q0, 0)→ (q1, l , 1)

(l , q0, 0)→ (q2, l , 1)

(l , l , 0)→ (q′2, l
′, 1)

(l ′, q2, 1)→ (l ′′, f1, 0)

(l ′, q1, 1)→ (l ′′, f0, 0)

(l ′′, q′2, 1)→ (l , q2, 1)

(l , f0, 0)→ (q2, l , 1)

(l , f1, 0)→ (q′2, l
′, 1)
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Fast-Global-Line Protocol

Avoid mergings as they seem to consume much time

even deterministic merging takes time Ω(n3) and O(n4)

When leaders of lines interact, they play a pairwise game

The winner grows by one towards the other line and the loser sleeps

A sleeping line cannot increase any more and only loses nodes by lines
that are still awake

A single leader is guaranteed to always win and eventually remain
unique and this occurs quite fast

The leader makes progress (by one) in most interactions and every
such progress is in turn quite fast

Running-time: O(n3)
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All Established Bounds

Protocol # states Expected Time Lower Bound

Simple-Global-Line 5 Ω(n4) and O(n5) Ω(n2)
Intermediate-Global-Line 8 Ω(n3) and O(n4) Ω(n2)
Fast-Global-Line 9 O(n3) Ω(n2)
Cycle-Cover 3 Θ(n2) (optimal) Ω(n2)
Global-Star 2 (optimal) Θ(n2 log n) (optimal) Ω(n2 log n)
Global-Ring 9 Ω(n2)
2RC 6 Ω(n log n)
kRC 2(k + 1) Ω(n log n)
c-Cliques 5c − 3 Ω(n log n)
Graph-Replication 12 Θ(n4 log n)
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Generic Constructors

Question: Is there a generic constructor capable of constructing a large
class of networks?

1 constructors that simulate a Turing Machine

2 a constructor that simulates a distributed system with names and
logarithmic local memories

l : the binary length of the input of a TM
In what follows, l = Θ(n2)

DGS(f (l)): the class of graph languages decidable by a TM of
(binary) space f (l) (input graph in adjacency matrix encoding)

REL(g(n)): the class of graph languages constructible with useful
space g(n) (relation or on/off class)

PREL(g(n)): (i) allow transitions that with probability 1/2 give one
outcome and with probability 1/2 another (ii) all graphs must be
constructed equiprobably
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Generic Constructors: Main Mechanism

To construct a decidable graph-language L.

The TM ACCEPTS

The TM
REJECTS

Output G2

Construct on k of the nodes a net-
work G1 capable of simulating a TM
and of constructing a random net-
work on the remaining n− k nodes.

Use G1 to construct a random net-
work G2 ∈ Gn−k,1/2 on the remain-
ing n− k nodes.

Execute on G1 the TM that decides
L with G2 as input.
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Linear Waste-Half

Theorem (Linear Waste-Half)

DGS(O(n)) ⊆ PREL(bn/2c). In words, for every graph language L that is
decidable by a O(n)-space TM, there is a protocol that constructs L
equiprobably with useful space bn/2c.

Proof

Partition the population into equal sets U and D and construct an
active perfect matching between U and D

Construct a spanning line in U (e.g. Fast-Global-Line)

Organize the line into a TM M

M must compute a graph from L and construct it on D

uniquely identify the nodes of D by their distance from one endpoint

to modify edge (i , j) mark appropriately the D-nodes at distances i and
j from one endpoint
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Linear Waste-Half

qu qu qu qu qu

qd qd qd qd qd

U

D

M computes a graph G from L equiprobably: activate/deactivate
each edge of D equiprobably and independently of other edges

Then it simulates on input G the TM that decides L in
√

l space to
determine whether G ∈ L

The TM rejects: M repeats the random experiment to produce a new
random graph G ′

The TM accepts: release the network, set D-nodes to qout

Reinitialize whenever the global line protocol makes progress
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Reinitialization

Nodes cannot detect termination and cannot sequentially compose
subroutines

Instead, all subroutines must be executed in parallel and become
“sequentialized” by perpetual reinitializations

Executed whenever a line on U-nodes expands

The protocol “assumes” that no further expansions will occur,
restores the components of the simulation to their original values,
ensures that each U-node has a D-neighbor, and starts drawing a new
random graph

The assumption may be wrong several times

However, eventually the assumption of the protocol will be correct

The simulation will be reinitialized and executed for the last time on
the correct sets U and D

Later we shall discuss terminating protocols that are correct w.h.p.
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Linear Waste-Two Thirds

Theorem (Linear Waste-Two Thirds)

DGS(O(n2) + O(n)) ⊆ PREL(bn/3c). That is, for every graph language
L that is decidable by a O(n2)-space TM, there is a protocol that
constructs L equiprobably with useful space bn/3c.

qu qu qu qu qu

qd qd qd qd qd

U

D

qm qm qm qm qm
M
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Logarithmic Waste

Theorem (Logarithmic Waste)

DGS(O(log n)) ⊆ PREL(n − log n).

Proof.

Construct a line to count n in binary, i.e. to occupy log n cells

Release the constructed counter and reinitialize the other (free) nodes

So, there is a logarithmic memory with a leader, knowing a good
estimate of n − log n

Construct a random graph on the free nodes:

For every free node, let it toss a coin on one after the other its edges to
other free nodes

To know when to stop, count on the line up to n − log n (known)
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Supernodes

A population consisting of n nodes can be partitioned into k
supernodes each consisting of log k nodes, for the largest such k

The internal structure of each supernode is a line, thus it can be
operated as a TM of memory logarithmic in the total number of
supernodes

This amount of storage is sufficient for the supernodes to obtain
unique names and exploit their names and their internal storage to
realize nontrivial constructions

We are interested in the networks that can be constructed at the
supernode abstraction layer
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Supernodes

Theorem (Partitioning into Supernodes)

For every network G that can be constructed by k nodes having local
memories dlog ke and unique names there is a NET that constructs G on
n = kdlog ke nodes.
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Network Transformations

[Michail and Spirakis, TCS ’16]

Minimal strengthenings of NETs that can maximize computational
power

Also gain termination

Initial configuration: any connected graph spanning V

Ability to detect small local degrees

e.g., a node can detect if its active degree is 0

we can now simulate any constructor that assumes an empty initial
network

Pre-elected leader or pairs of nodes able to tell whether they have a
neighbor in common
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Characterization

Gives the maximum computational power that one can hope for in
this family of models

Can compute with termination any symmetric predicate computable
by a TM of space Θ(n2), and no more than this, i.e., it is an exact
characterization

Symmetricity can only be dropped by UIDs or other means of
maintaining an ordering of the nodes’ inputs

This power is maximal because the distributed space of the system is
Θ(n2)

Universal computations are now terminating and not just eventually
stabilizing

The additional mechanisms are minimal. Removing each one leads to
impossibility of termination or

substantial decrease in the computational power
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Approach

Develop protocols exploiting initial connectivity to

transform the network to a less symmetric and detectable

without ever breaking its connectivity

Still, very symmetric components cannot be exploited for powerful
computations

Symmetric target-networks may not be detectable for termination

Our protocols always transform to a spanning line

Detectable

Can serve as a linear memory

Exploit it to count n and to simulate TMs of space Θ(n) or even Θ(n2)
(with an additional transformation)
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Our Results

Unique leader + detect local degree 1

Time-optimal transformation to spanning line, with running time
Θ(n2 log n)

Implies a full-power TM simulation

Identical nodes

Impossibility: no protocol to transform to an acyclic topology without
breaking connectivity

Common neighbor detection

transformation to spanning line, with running time O(n3)

Implies a full-power TM simulation
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Line-Around-a-Star

Unique leader in state l and all other nodes in state q0

The leader (center) starts connecting with the q0s converting them to
p0s (peripherals)

p0s repel by disconnecting edges between them

A p0 with degree 1 becomes p (normal peripheral)

The leader constructs a line with its left endpoint on the center of the
star and expanding over the peripherals until it covers them all

Terminates when the degree of the center becomes 1 for the first time
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An Example Execution
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Impossibility

Theorem (Strong Impossibility)

For every connected graph G with at least one cycle, there is an infinite
family of graphs G such that for every G ′ ∈ G every protocol (beginning
from identical states on all nodes) that makes G acyclic may disconnect
G ′ in some executions.
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ui
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Line-Transformer

Theorem

By assuming that nodes are equipped with a common neighbor detection
mechanism and have the ability to detect local degrees 1 and 2, Protocol
Line-Transformer solves the Terminating Line Transformation problem in
the setting in which all nodes are initially identical. Its running time is
O(n3).
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An Example Execution
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All Established Bounds

Protocol Leader DD CND Expected Time Lower Bound

Online-Cycle-Elimination Yes 1 No Θ(n4) Ω(n2 log n)
Line-Around-a-Star Yes 1 No Θ(n2 log n) (opt) Ω(n2 log n)
Line-Transformer No 1,2 Yes O(n3) Ω(n2 log n)

Leader: Whether it makes use of a pre-elected unique leader

DD: what local degree detection is used

CND: whether it uses common neighbor detection

Expected Time: Expected running time under the uniform random scheduler

Lower Bound: Best known lower bound
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A Geometric Version

[Michail, PODC ’15]

Adjust some of the abstract parameters
of NETs

Allowable interactions are geometrically
constrained (by already formed
structures)

Each device can connect to other
devices only via a limited number of
ports (4 in 2D and 6 in 3D)

py

px

p−x
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py
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p−y

py
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p−x

p−y
p−z

pz py

px

p−x

p−y

p−z

pz

2D

3D

Connections are made at unit distance and are perpendicular to
neighboring connections

Known universal constructors do not apply in this case

Othon Michail, Paul G. Spirakis Network Constructors: A Model for Programmable Matter 44 / 66



A Geometric Version

[Michail, PODC ’15]

Adjust some of the abstract parameters
of NETs

Allowable interactions are geometrically
constrained (by already formed
structures)

Each device can connect to other
devices only via a limited number of
ports (4 in 2D and 6 in 3D)

py

px

p−x

p−y

py

px

p−x

p−y

py

px

p−x

p−y
p−z

pz py

px

p−x

p−y

p−z

pz

2D

3D

Connections are made at unit distance and are perpendicular to
neighboring connections

Known universal constructors do not apply in this case

Othon Michail, Paul G. Spirakis Network Constructors: A Model for Programmable Matter 44 / 66



A Geometric Version

[Michail, PODC ’15]

Adjust some of the abstract parameters
of NETs

Allowable interactions are geometrically
constrained (by already formed
structures)

Each device can connect to other
devices only via a limited number of
ports (4 in 2D and 6 in 3D)

py

px

p−x

p−y

py

px

p−x

p−y

py

px

p−x

p−y
p−z

pz py

px

p−x

p−y

p−z

pz

2D

3D

Connections are made at unit distance and are perpendicular to
neighboring connections

Known universal constructors do not apply in this case

Othon Michail, Paul G. Spirakis Network Constructors: A Model for Programmable Matter 44 / 66



A Geometric Version

[Michail, PODC ’15]

Adjust some of the abstract parameters
of NETs

Allowable interactions are geometrically
constrained (by already formed
structures)

Each device can connect to other
devices only via a limited number of
ports (4 in 2D and 6 in 3D)

py

px

p−x

p−y

py

px

p−x

p−y

py

px

p−x

p−y
p−z

pz py

px

p−x

p−y

p−z

pz

2D

3D

Connections are made at unit distance and are perpendicular to
neighboring connections

Known universal constructors do not apply in this case

Othon Michail, Paul G. Spirakis Network Constructors: A Model for Programmable Matter 44 / 66



A Geometric Version

[Michail, PODC ’15]

Adjust some of the abstract parameters
of NETs

Allowable interactions are geometrically
constrained (by already formed
structures)

Each device can connect to other
devices only via a limited number of
ports (4 in 2D and 6 in 3D)

py

px

p−x

p−y

py

px

p−x

p−y

py

px

p−x

p−y
p−z

pz py

px

p−x

p−y

p−z

pz

2D

3D

Connections are made at unit distance and are perpendicular to
neighboring connections

Known universal constructors do not apply in this case

Othon Michail, Paul G. Spirakis Network Constructors: A Model for Programmable Matter 44 / 66



The Model

The transition function is now:
δ : (Q × P)× (Q × P)× {0, 1} → Q × Q × {0, 1},
P = {u, r , d , l} is the set of ports in 2D

In every step, a pair (v1, p1)(v2, p2) is selected by the scheduler and
v1, v2 interact via their p1, p2 ports according to δ

Valid configuration: its connected components are subnetworks of the
2D grid network

Uniform random scheduler: selects independently and uniformly at
random from the permitted interactions (leading to valid config.)

Output shape: nodes that are in output (or halting) states and edges
between them that are active
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An Illustration: Spanning Square

δ:

(Lu, u), (q0, d), 0→ (q1, Lr , 1)

(Lr , r), (q0, l), 0→ (q1, Ld , 1)

(Ld , d), (q0, u), 0→ (q1, Ll , 1)

(Ll , l), (q0, r), 0→ (q1, Lu, 1)

(Lu, u), (q1, d), 0→ (Ll , q1, 1)

(Lr , r), (q1, l), 0→ (Lu, q1, 1)

(Ld , d), (q1, u), 0→ (Lr , q1, 1)

(Ll , l), (q1, r), 0→ (Ld , q1, 1)

Othon Michail, Paul G. Spirakis Network Constructors: A Model for Programmable Matter 46 / 66



Spanning-Square Protocol
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Probabilistic Counting

Uniform random scheduler

Terminating protocol that counts n (or a large fraction of n) w.h.p.

The best that we can hope for

There is no protocol that always terminates and is always correct

Main subroutine of generic constructors

Allows for sequential composition and avoids perpetual
reinitializations
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Fast Probabilistic Counting with a Leader

Unique leader l , all other in q0 initially

Disregard for a while ports, geometry, and link activations

The scheduler selects in every step equiprobably one of the
n(n − 1)/2 possible node pairs

Assume for simplicity that the leader can store two n-counters in its
memory

Classical PP with an additional leader with linear memory

Then, the protocol is adjusted to work in the present model

Only keep the unique leader assumption (but drop its memory)
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Counting-Upper-Bound Protocol

l(r0, r1): The state of l , where r0, r1 are the values of the two
counters, 0 ≤ r0, r1 ≤ n

Rules:

(l(r0, r1), q0)→ (l(r0 + 1, r1), q1)

(l(r0, r1), q1)→ (l(r0, r1 + 1), q2), and

(l(r0, r1), ·)→ (halt, ·) if r0 = r1

r0 counts the number of q0s in the population

r1 counts the number of q1s in the population

When a q0 (q1) is counted it is converted to q1 (q2)

Terminates when r0 = r1 for the first time
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Counting-Upper-Bound Protocol

Theorem

Counting-Upper-Bound halts in every execution. Moreover, if the scheduler
is a uniform random one, when this occurs, w.h.p. it holds that r0 ≥ n/2.

j
i

q0
q0

q0
q0

q0

q1

q1

q1

q1

q0

q0

q0

q0

r1

q2

q2

r0

q0

q0

q0

Proof

pij = i/(i + j): probability that an effective interaction is an (l , q0)

qij = 1− pij = j/(i + j): probability that it is an (l , q1)

r.w. on a line with n + 1 positions 0, 1, . . . , n

a particle begins from position b, absorbing barrier at 0, and
reflecting at n, position corresponds to r0 − r1 = j
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Counting-Upper-Bound Protocol

0 b n/2

qij = 1− pij pij

Proof

“difficult” r.w.: the transition probabilities depend on the position j
and also on i + j which decreases in time

upper bound P[failure] = P[reach 0 before r0 ≥ n/2 holds] ≤
reduce it to a r.w. that does not depend on i + j

Ehrenfest r.w.

r0 + r1 ≤ n but r1 ≤ r0 ⇒ 2r1 ≤ r0 + r1, thus

2r1 ≤ n⇒ r1 ≤ n/2⇒ (n−1)−(i + j) ≤ n/2⇒ i + j ≥ (n/2)−1 = n′
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Proof

If we set n′ = (n/2)− 1 we have i + j ≥ n′

When r0 + r1 = n + 1 we have n + 1 = r0 + r1 ≤ 2r0 ⇒ r0 ≥ n/2

During the first n effective interactions: i + j ≥ n′ = (n/2)− 1

When interaction n + 1 occurs: r0 ≥ n/2

If the process is still alive after time n, then r0 has managed to count
up to n/2
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Counting-Upper-Bound Protocol

0 b n/2

qij = 1− pij pij

Proof

i + j ≥ n′ implies that pj ≥ (n′ − j)/n′ and qj ≤ j/n′

Now the probabilities only depend on the position j

Ehrenfest random walk from the theory of brownian motion [EE1907]

Gas molecules moving randomly in a container, divided into two urns

Prob. counting fails asympt. equivalent to prob. urn I becomes
empty in the first n steps, assuming it initially contains b molecules

The mean recurrence time is ((R + k)!(R − k)!/(2R)!)22R [Ka47]

For k = −R, initial position is R + k = 0 and gives 22R = 2n/2

In the sequel, we turn this into the desired high probability argument
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Counting-Upper-Bound Protocol

Proof

Reduce the Ehrenfest walk to one in which the probabilities do not
depend on j

Further restrict the walk, to the prefix [0, b] of the line

It holds that j ≤ b, implying that p ≥ (n′ − b)/n′ and q ≤ b/n′

Set p = (n′ − b)/n′ and q = b/n′

This may only increase the probability of failure

Imagine now an absorbing barrier at 0 and another one at b

Whenever the r.w. is on b − 1 it will either return to b before
reaching 0 or it will reach 0 (and fail) before returning to b

A r.w. with b + 1 positions, where 0 and b are absorbing

Equivalent: begins from position 1, moves forward with probability
p′ = q, backward with probability q′ = p, and fails at b
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Counting-Upper-Bound Protocol

Proof

Bound P[reach b before 0 (when beginning from position 1)]

Probability of winning in the classical ruin problem

If we set x = q′/p′ = p/q = (n′ − b)/b we have that:

P[reach b before 0] = 1− xb − x

xb − 1
=

x − 1

xb − 1
≤ x

xb − 1
≈ 1

xb−1

≈ 1

nb−1 .

Thus, whenever the original walk is on b − 1, the probability of
reaching 0 before reaching b again, is at most 1/nb−1

Repeat the above walk n times

Place the particle on b − 1 and play the game

If it returns to b, place the particle on b − 1 and play the game again
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Counting-Upper-Bound Protocol

From Boole-Bonferroni inequality, we have that:

P[fail at least once] ≤
n∑

m=1

P[fail at repetition m]

≤
n∑

m=1

1

nb−1 =
n

nb−1

=
1

nb−2

In summary:

Even if the protocol was restricted to disregard counter differences
greater than b

With probability ≥ 1− 1/nc (for constant c = b − 2) the protocol has
not terminated after at least n effective interactions

Implies that the leader has counted at least half of the nodes
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Further Remarks

Expected running time: O(n2 log n) interactions

Experiments show that in most cases the estimation is closer to
(9/10)n

Exact value of n: l waits an additional large polynomial of r0

The unique leader seems to be necessary (also some experimental
evidence)

very interesting open problem

w.h.p. all states coexist with Θ(n) cardinalities [Doty, SODA ’14]

a node may observe the same as in a fixed population and terminate
after meeting a few nodes

If there is no leader but UIDs we can solve the problem

The maximum id can be made to simulate the behavior of a leader
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Generic Constructors

Characterization for the class of constructible 2D shape languages

Simulate shape-constructing TMs to realize their output-shape in the
distributed system

1 Counting Protocol: constructs w.h.p. a line of length Θ(log n),
containing n in binary

2 The leader exploits knowledge of n to construct a
√

n ×√n square

3 Simulate the TM on the square n distinct times, one for each pixel

input: index of pixel and
√

n, in binary

output: on or off (decision for the corresponding pixel)

4 Release the connected shape consisting of the on pixels
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Characterization

Theorem

Let L = (S1, S2, . . .) be a connected 2D shape language, such that L is
TM-computable in space d2. Then there is a protocol that w.h.p.
constructs L. In particular, for all d ≥ 1, whenever the protocol is
executed on a population of size n = d2, w.h.p. it constructs Sd and
terminates. In the worst case, when Gd (that is, the shape of Sd) is a line
of length d, the waste is (d − 1)d = O(d2) = O(n).
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Counting-on-a-line Protocol

Adapt Counting-Upper-Bound to work in the present model

The same probabilistic process

The leader constructs a line that stores the two counters in binary

The line grows whenever more space is required

Lemma

Counting-on-a-Line protocol terminates in every execution. Moreover,
when the leader terminates, w.h.p. it has formed an active line of length
log n containing n in binary in the r0 components of the nodes of the line
(each node storing one bit).
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Constructing a
√
n ×√n Square

Lr

Ls
seed replica

replicas

L

Lr

Lr Lr

LrLr

free nodes

square segment

√
n

original line

Lr
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Simulating and Releasing

L L

L

L
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Parallelizing the Simulations

d

d

k x
y

z

Theorem

Let L = (S1, S2, . . .) be a TM-computable connected 2D shape language,
such that Sd is computable in space k = f (d) and k is computable in
space O(k · d2). Then there is a protocol that w.h.p. constructs L. In
particular, for all d ≥ 1, whenever the protocol is executed on a population
of size n = k · d2, w.h.p. it constructs Sd and terminates, by executing d2

simulations in parallel each with space O(k).
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Open Problems

Complete characterization of constructed networks

Give a faster than O(n3) protocol for global line (e.g. O(n2 log n))

Count w.h.p. and terminate if all nodes are initially identical?

Models of active mobility/actuation (or hybrid active-passive)

Take other physical considerations into account
mass, strength of bonds, rigid and elastic structure, collisions

Structures that optimize some global property or that achieve a
behavior/functionality

Protocols that efficiently reconstruct broken parts of the structure

Draw connections to natural processes and to self-assembly and
programmable matter models

We need more real systems-collectives of large numbers of simple
interacting devices
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Thank You!
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