We investigate the empire colouring problem (as defined by Heawood, in 1890) for maps whose dual planar graph is a tree. After noticing that if each empire has at most \(r \) countries then \(2r \) colours are necessary and sufficient (in the worst-case) to solve the problem we concentrate on average-case analysis.

Let \(G_r(T_n) \) denote the probability space induced by the process of selecting a random labelled tree \(T_n \) on vertex set \(V = \{1, \ldots, n\} \) and (independently) a random partition of the set \(V \) into \(\frac{n}{r} \) blocks (or \emph{empires}) of size \(r \). We call a typical element of the space \(G_r(T_n) \) a \emph{random} \(r \)-empire tree.

In our work we study assignments of colours to \(V \) that give the same colour to all vertices in the same block and different colours to vertices in blocks connected by (at least) one edge of \(T_n \). We first prove that, for each fixed \(r \geq 1 \), there exists a positive integer \(s_r \) such that, for large \(n \), almost all \(n \) country empire trees with empires of size \(r \) cannot be coloured in such a way with at most \(s_r \) colours. The values of \(s_r \) for the first few values of \(r \) are given in the table below.

| \(r \) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | \ldots | 20 | \ldots | 50 |
|-------|---|---|---|---|---|---|---|---|---|------|----|------|
| \(s_r \) | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | \ldots | 9 | \ldots | 17 |

(we also find that, for large \(r \), \(s_r = \lceil \frac{r}{\log r} \rceil (1 + O(\frac{1}{\log \log r})) \)). Furthermore, our main result shows that, by counting the spanning trees of a particular class of graphs, it is possible to find all moments of \(Z_{s,r} \), a random variable for the number of balanced \(s \)-colourings of \(G_r(T_n) \) and, for each integer \(s \), and \(r \) greater than one and \(k \geq 1 \), there exist constants \(C_{s,r,k} > 0 \) such that

\[
\mathbb{E} Z_{s,r}^k \sim C_{s,r,k} (a_n)^k
\]

(here \(a_n = n^{-\frac{r-1}{2}} (s^{\frac{1}{r}-1} (s-1))^n \)). A consequence of our analysis is the following result

\textbf{Theorem 1} For any fixed integer \(r \geq 2 \) and \(s > s_r \), a random \(r \)-empire tree is \(s \)-colourable with (at least) constant probability.

MSC2000: 05C80, 05C15.

Keywords: random trees, empire colouring, probability.