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Abstract. The problem of determining the unsatisfiability threshold for random
3-SAT formulas consists in determining the clause to variable ratio that marks the
(experimentally observed) abrupt change from almost surely satisfiable formulas
to almost surely unsatisfiable. Up to now, there have been rigorously established
increasingly better lower and upper bounds to the actual threshold value. An up-
per bound of 4.506 was announced by Dubois et al. in 1999 but, to the best of our
knowledge, no complete proof has been made available from the authors yet. We
consider the problem of bounding the threshold value from above using meth-
ods that, we believe, are of interest on their own right. More specifically, we
explain how the method of local maximum satisfying truth assignments can be
combined with results for coupon collector’s probabilities in order to achieve an
upper bound for the unsatisfiability threshold less than 4.571. Thus, we improve
over the best, with an available complete proof, previous upper bound, which was
4.596. In order to obtain this value, we also establish a bound on the g-binomial
coefficients (a generalization of the binomial coefficients) which may be of inde-
pendent interest.

1 Introduction

Let ¢ be a random 3-SAT formula constructed by selecting uniformly and with replace-
ment m clauses from the set of all possible clauses with three literals of three distinct
variables. It has been observed experimentally that as the numbers n, m of variables
and clauses respectively tend to infinity, while the ratio m/n tends to a constant r, the
random formulas exhibit a threshold behaviour: if » > 4.17 (approximately) then al-
most all random formulas are unsatisfiable while the opposite is true if » < 4.17. The
constant r is called the density of the formula. On the theoretical side, Friedgut [10] has
proved that there exists a sequence -y, such that forany e > 0, if m/n < ~,, — € for suf-
ficiently large n then the probability of a random formula being satisfiable approaches
0 while if m/n > ~, + € for sufficiently large n then this probability approaches 1
although it is not known if the sequence -y, convergences to some constant value -.
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Thus, finding the exact value of the threshold point or even proving that a threshold
value exists is still a major problem in probability and complexity theory. Up to now,
only upper and lower bounds have been rigorously established for the threshold value.
The best lower bound has been recently proved by Achlioptas and Sorkin [1] and it is
3.26 while the currently best upper bound has been announced by Dubois et al. [7] and
it is 4.506.

In this paper, we address the upper bound question for the unsatisfiability threshold
from a new perspective that combines the idea of local maximum satisfying truth assign-
ments proposed by Kirousis et al. [14], with the use of sharp estimates on some of the
probabilities involved based on results about the so called coupon collector experiment
(see for instance [17] and references thereafter). We obtain an upper bound of 4.571
thus improving over the best, with an available complete proof, previous upper bound
(4.596 given in [12]). As a by-product of our proof, we also establish an upper bound
to the g-binomial coefficients (a generalization of the binomial coefficients). Despite
the extensive literature on g-binomial coefficients (see, e.g., [9, 11, 15]), no such bound
was, to the best of our knowledge, known.

2 The method of local maxima

In this section, we will state briefly the methodology followed in [14] and obtain the
starting upper bound on the probability that a random formula is satisfiable. Let S be
the class of all truth assignments to n variables and A4,, the (random) class of truth
assignments that satisfy a random formula ¢. For a given A € S, a single flip sf is
the change in A of exactly one FALSE value to TRUE and by ASf we denote the truth
assignment that results from this change. We define as A, C A, the random class of
truth assignments with the following two properties:

- A9,
— for every single flip sf, it holds ASf E @.

A partial order can be defined on S: a truth assignment A is smaller than a truth as-
signment A’ iff there exists an 4 such that both A and A’ assign the same value to all
variables z;, for all j < i while A assigns FALSE to z; and A’ assigns TRUE to it. The
random class AL coincides with the set of satisfying truth assigments that are local max-
ima with respect to the partial order defined above among satisfying truth assignments
that differ in one bit.

A more restricted random class of truth assignments results from A}, if we extend
the scope of locality in obtaining a local maximum. A double flip is the change of
exactly two variables z; and z; (with ¢ < j) where z; is changed from FALSE to TRUE
and z; from TRUE to FALSE. In analogy with single flips, by A% we denote the truth
assignment that results from A if we apply the double flip df. Let A2 be defined as the
set truth of assignments A that have the following properties:

- A |: ¢v
— for all single flips sf, it holds ASf E o,
— for all double flips df, it holds AdT j£ ¢.



Our starting point is the following inequality:

Lemma 1. [14]
. - 281 df sf
Pr[¢ is satisfiable] < E[|A2|] = ZAGS Pr[Vdf A™ [ ¢, Vsf A¥ (£ ¢, A |= ¢
= @3y Prlva AN i g v AT g A )
=@y, PrlvsaT g glap gl Prva AT g laeal) @

In order to find an upper bound for the unsatisfiability threshold, it suffices to find
the smallest possible value for » for which the right-hand side of (1) tends to 0. In
the sections to follow, we will describe the sequence of steps that will lead us to the
determination of an upper bound on the probabilities that appear in the third line of (1).

3 Coupon collectors and single flips

For notational convenience, we will consider a formula ¢ as a set of clauses. Thus, the
expression ¢ N A, with A a set of clauses, has the meaning of set intersection with the
additional requirement that a clause that appears in the intersection, appears as many
times as it appears in ¢.

Given a truth assignment A, and a variable x such that A(z) = FALSE, the set of
critical clauses for z in A, B(A, x), is the set of clauses whose unique TRUE literal is
~z. Note that [B(4,z)| = (";") and B(A,z) N B(A,y) = 0 for z # y.

Assuming A sets k variables FALSE, the probability Pr[Vsf ASf Kol AE ¢ in
(1) is the ratio between a function N (n,m, k), counting the number of ways to build
a formula with m clauses out of n variables containing at least one critical clause for
each of the £ critical variables, and the total number of ways to build a formula on m
clauses out of n variables which is satisfied by A. Hence

f _ N(n,m,k)
Privsf ASU [£ ¢ | A |= ¢ = ™

If ¢ contains | € {k,k + 1,...,m} critical clauses, then

Prlvsf 45 [ 6 | A | 4] = S, Cmpmtd
3

where C(n,m, k,l) counts the number of ways of choosing [ critical clauses so that
at least one member of B(A,z) is chosen for each of the & critical variables and
R(n,m, k,1) counts the number of ways of filling up the remainder of ¢ with m — I
clauses that are true under A but not critical.

Lemma 2. For any choice of the parameters R(n,m, k,1) = (7(3) — k(";l))mfl.
Proof. There are 7() clauses consistent with A. If A forces k variables to be critical
there are k disjoint groups of (";1) critical clauses. O



Lemma 3. Forany choice of the parameters C'(n,m, k,1) = (7}) k("5")]' coupon(l, k)
where coupon(l, k) is the probability that a coupon collector picks & distinct random
coupons over [ trials.

Proof. Assume that there are & critical variables associated with a given assignment
A. Moreover ¢ contains [ critical clauses. There are (T) ways of choosing [ positions
out of the m available. Also, there are k(";l) critical clauses. Therefore, if we do not

distinguish among the non-critical clauses, there are (') [k (";1)]1 ways of choosing a
sequence of m clauses so that exactly I of them are critical. Since C(n,m, k, 1) counts
the number of these which has at least one occurrence of a critical clause for each of
the k critical variables, and since there are equal numbers of possible critical clauses
for each variable, the ratio of these terms is the probability coupon(l, k). O

To be able to state the main result in this section we need to quote a result giving

asymptotic approximations to the probabilities coupon(l, k).

Theorem 1. [4] Let z = [/k with [ = O(k). For all z > 1 define g1 (z) =4 (e™ —
1) (%) where rq is the solution of e’;‘fl = z. Also let g1(1) = e~L. Then for all
k

sufficiently large integer k£ and all x > 1, coupon(l, k) ~ g1(x)".

The proof of the following theorem is entailed by the argument above, the use of
the estimate given in Theorem 1 and Stirling’s approximation to the various factorials

involved. In the following result F < G denotes the fact that In F' ~ InG. So for
example (") < [(M)#( rn )(1,#)]

l rn—I

Theorem 2. The probability that a truth assignment A with an FALSE values is a local
maximum satisfies:

s porara= 5 () (G2f) o) e

an

An important remark is that in the expression given in Theorem 2, two polynomially
large factors have been omitted: one implicit in the relation “~ used in Theorem 1 and
one related to the asymptotics of the binomial coefficients. However, for our goal of
making a certain expression that contains (2) converge to 0, such factors are immaterial
and what is required is an optimal estimate only for the exponential factors which is
guaranteed by Theorem 1 and the asymptotics for the binomial coefficients given above.

4 Probability models for random formulas

A random 3-SAT formula ¢ with m = rn clauses is most commonly formed according
to one of the following probability models ({2 is the set of 8 (g) possible 3-SAT clauses):

1. Select the m clauses of ¢, drawing each clause uniformly and independently from
£2, with replacement (model G,,).

2. Select the m clauses of ¢, drawing each clause uniformly and independently from
{2, without replacement (model G,,).



3. With probability p(n) each clause is chosen independendly of the others and with
probability p(n) for inclusion in ¢ (model Gp).

The probability that a random formula ¢ generated according to model G, G, OF G
belongs to a set () defining some property, is denoted by Pr,,[¢ € Q], Prm[¢ € Q]
and Prp[¢ € Q] respectively. Notice that the probabilities in (1) are all in G, Since
the model we considered until now allows clause repetitions when forming a formula.
We will now outline an argument showing that the second probability in the third line
of (1) can be rewritten into the G, model, in order to take advantage of the computation
of this probability in G, that has already been performed in [14].

Consider again an arbitrary but fixed truth assignment A. As all probabilities which
will undergo a change in the probabilistic model are conditional on A = ¢, in the
considerations below we assume that the universe of all clauses is restricted to those
that are satisfied by A, and consequently that p(n) = % ~ %’;—

First let “NoRep” be the event that ¢ has no two clauses identical and let NoRep its
complement. Then, because the order of the number of all possible clauses is ©(n?) and
the order of the number of the clauses contained in ¢ is @(n), lim,,_, oo P, [NoRep] =
0.

Now let Q1 and - be two arbitrary events such that the following two conditions,

which we call regularity conditions hold:

— For some € > 0 and for all n, In (Prym[Q2|Q1]) < —e, i.e. Pry,[Q2|Q1] is
bounded away from 1.

— limp 00 Prmm[NoRep|Q1, Q2] = limy,—, o0 Prmm[NoRep|@1] = 0.

Notice that the events we consider in this paper have probabilities (conditional or not)

that are exponentially small, so the first of the two regularity conditions is satisfied.
Also, the second regularity condition is true when @ and Q- are the events A € AL

and vdf Adf £ ¢, respectively. Indeed both these events and their conjunction are

negatively correlated with NoRep, S0 Pr,,m[NoRep|Q1] < Prym[NoRep] — 0 and

similarly for Pr,,,,»[NoRep|Q1,Q2]. To prove the negative correlation claim for, say,

Q1 and NoRep, observe that the correlation claim is equivalentto Pr,,,,[@Q1|NoRep] >

Prp,m[Q1], which in turn is equivalent to Pry, [Q1] > Prp,, [@1]. This last inequality
is intuitively obvious under the assumption that A |= ¢, because the probability to get

at least a critical clause for each critical variable of the satisfying truth assignment A

increases when the clauses of the formula are assumed to be different. For a formal

proof of this for general increasing and reducible properties (like @1 and Q-), we refer

to [13]. Therefore, the second regularity condition is also true for the probabilities we

will consider below.

Under the above regularity conditions, we have that:

Prm[Q2|Q1] = Prmm[Q2|Q1] (3)

Indeed,
Prmm[QQ |Q1] - Prmm[Q? A NoRep |Q1]
1 — Prym[NoRep |Q1]
1 — Prym[NoRep |Q2, Q1]
1 — Prpm[NoRep |Q1]

Prm[Q2 |Q1] = Prmm[Q2 |Q1, NoRep] =

= Prmm[Q2 |Q1]




Now first taking logarithms, then dividing both sides with In (Pz,,[Q2|@1]) and
finally letting n — oo, we get the required inequality (the regularity conditions are
needed in the computation of the limits).

On the other hand, it follows easily from Theorem 11.2 (iii) in [3] that:

Pr,[Q2 |Q1] < 3m'/Pr,[Q> |Q1]- (4)

The inequality above has been proved by Bollobas for an arbitrary unconditional event.
In general, it might not be true for conditional events. However, if both )5 and @, are
monotone increasing (i.e. Pr,,,[Q;] > Pr,, [@;] for any my > m4, for both i = 1, 2),
then it still holds true. For an informal explanation why this is indeed so, first observe
that the conditional @1, being monotone increasing, "forces more clauses” into the
formula in the variable-length G, model. Since @); is also monotone increasing, this has
as a consequence that the conditional probability of Q> in G, deviates even further to
the right from the corresponding conditional probability in the fixed-length model G,,,.
A formal proof of this, based in the four-functions theorem of Ahlswede and Daykin
[8] (see [2] for a nice presentation) will be given in the full paper. Finally, notice that
the events ()2 and @)1, for which we apply this inequality below are trivially monotone
increasing.

Now, (3) (4) and (1) imply that Pr,,,.,,[¢ is satisfiable] is at most (ignoring polyno-
mial factors):

(3) S Pramtv a¥ g1 A g Provat AT gl ae Al ©

AeS

We are now in a position to use the probability calculations performed earlier in this
paper using the coupon collector analogy for the method of local maxima with the
probability calculations in [14] in order to derive a value for » that makes the right-
hand side of (5) converge to 0. It is perhaps interesting to note that Pr,[A |= ¢] #
Pr,,m[A | ¢] (the former is larger). Therefore, as both Pr,,[A |= ¢] and Pr,m[A = &)
are easily computable, it was advantageous to retain in the first factor of the right hand
side of (5) the value of Pr[A = ¢](= (7/8)™) computed in the model G, rather
than replace it with its value in G, (Pr,[A = ¢] < (e~(1/97). Also, Pr,[Vsf AST j£

¢ | A E ¢] # Prpnm[Vsf ASf = ¢ | A = ¢]. The coupon collector analogy helped us
exploiting the advantage of the model G,,,,,, for the probability of single flips. We were
unable to do the same for the computation of Pr,,,[Vdf Adf ol Ae AL sowe
resorted to the “easier”, but worse, model G, (in contrast, by Equation (3), the models
Gmm and G, are not asymptotically distinguishable, ignoring polynomial factors).

5 Calculations

Let sf(A) denote the number of FALSE values assigned by a truth assignment A. We
define the following functions of r:

w = e—r/7

_ 6u®ln(1/u) | 18u°In*(1/u) 6u® In(1/u)
FTETTI s (1 —u3)? 2( 1—us )

(6)




X (£ (4)) = Pronlvsf A% £ ¢ | A = 9] ™
1 1 .
Y:1+zﬁ +o<ﬁ), (notice that z < 0), (8)
where ¢, (t) is the smallest root of ¢, () = e*%2() and can also be expressed by means
of the Lambert W function [6]. Although ¢, is defined only in the interval [0, e ], we

have verified that the argument to ¢ in the definition of z in (6) lies in this interval for
all » > 0. In [14], it was proved that

Pr,[vdf A9T £ ¢ | 4 € AL] < YHA),
Therefore, using Equations (7) and (8), expression (5) may be written as follows:

" af (A)
(5) X, XGray®. ©)
Furthermore the following equality can be derived [14] by induction on n:
af(A) _ —~ (n
D e, X (AP T = kz:j (k> X (10)

where (:)q denotes the g-binomial or Gaussian coefficients (see [11]). From expres-

sion (9), the definition of X (sf(A)) in (7), Equality (10) and Theorem 2, we deduce
that Pr,, ., [¢ is satisfiable] is at most (omitting a polynomial factor)

(52 (2), ).
where

Br r—rpg3 al™
Bl s = |(3)” (#2%5) 0 (2)’]

We will now consider an arbitrary term of the double sum that appears in (11) and
examine for which values of r it converges to 0. If we find a condition on r that forces
all such terms to converge to 0, then the whole sum will converge to 0 since it contains
polynomially many terms, all of which vanish exponentially fast. This technique avoids
the problem of finding a closed-form upper bound for the sum itself. However, in order
to handle an arbitrary term, we need an upper bound for the ¢g-binomial coefficients. To
establish such a bound one will need the following standard result:

Lemma 4. [18] Let f(z) = Yoo, fiz* be the generating function for the sequence f;,
i > 0. Then if f(2) is analytic in |z| < R and if f; > 0 for all ¢ > 0, then for any ¢,
0 <t < R,andanyn > 0, it holds that f, < ¢t~ " f(t).

Using this lemma, we can prove the following:

Theorem 3. Let (a"n)q denote the g-binomial coefficients for « real in (0,1) and an
an integer. Then the following inequality holds:
(ann> S2q,(g)maneﬁ[di1og(1+m0)—dilog(1+m0q"—1)1 12)

q

where 2 = s===4r and dilog(x) = [}’ {2¢dt.



Proof. For the ordinary generating function of q(;) (’Z‘)q it holds [5, p.118]

n

n

@A™\ »_ 1 -1y _ D" n(l+ee’Th)
> (7) o = Tl s -
-

i=1

=14z iz (e ™)

Since In(1 + z¢*~ 1) is decreasing in i,
> (") g < (1t a)-efi MO _ (g gy orglaos(ihe)dilog(1-rag" ),
=0 ¢ q
Applying Lemma 4 and using the fact that « < 1, we obtain the inequality
i n . 1 ra; T n—1
q(z) ( ) <z '(l1+z)- e T [dilog(1+2)—dilog(1+2¢™ = 5)] (13)
Pl S
q

The above inequality holds for any value of z € (0, 1). Therefore, we may optimize it

by choosing the value zg = ql:q% that minimizes the expression on the right-hand
side of (13). From this we obtain

(7?) 5gq—(é)mgieﬁ[dilog(1+xo)—dilog(1+xoq"—1)1_ (14)
1
q

which gives the required inequality by setting i = an. O

Setting g =Y =1+ z/n in (12) and using the approximationIn(1 + z/n) ~ z/n,
as n — oo, the following can be derived:

(ann) <2 I:(xio)a . e_%-‘r%[di105(1+300)—di105(1+$0€z)]] " , (15)
q

where zo = 5%, which is expedient in the proof of the following:

Theorem 4. An arbitrary term of the double sum in (11) is asymptatically (ignoring
polynomial multiplicative factors) bounded from above by:

T . 3a Br 7_3a r—rfB rB ae—0‘22+%[dilog(1+:c0)—dilog(1+zoez)] "
en=1(5) (mp) o)

—_ k _ 1 _ 1—e** H H
where, a = 7, B = .-, To = Zaz—=, z as given in (6).

rn’

An immediate consequence of this result is that the smallest value of r for which
T,(c, B) is smaller than 1 for all & € (0,1) and 8 € (a/r,1) is an upper bound
for the unsatisfiability threshold.

We finally claim that for any value of r, the expression In 7,.(«, 3) is a convex func-
tion of «, 8 over the domain D = {a, 8 € [0,1] and % > 1}. Therefore we will com-
pute its unique maximum value for »r = 4.571 and (a, 3) € D. Due to the complexity
of the expression for In T'.(«, ), we maximized it numerically using a Maple [16] im-
plementation of Downhill Simplex. This implementation is based on the method and the



code described in [19] and it is freely distributed by F.J. Wright in his Web page [21].
Using the plots of T'-(«, 8) we obtained with Maple, we chose as a starting set of values
for the downhill simplex algorithm the values («, 8) = (0.42,0.21) and we set the ac-
curacy and the scale parameters equal to 10~5°. In addition, we set the Digits parameter
of Maple (accuracy of floating point numbers) equal to 100. We ran the algorithm and it
returned as the maximum value of In T.(«, 8) the value —0.0000884. Additionally, we
computed all the partial derivatives of In T'.(«, 8) at the point where downhill simplex
claims that it has located the maximum and they were found to be numerically equal to
0. Therefore, this provides additional support that at this point the function attains its
maximum. As a final check, we generated 30000 random points close to the point at
which downhill simplex finds the maximum of ln 7, («, 8) and we confirmed that the
value of In T'.(a, B) is not above the value returned by the method. All these considera-
tions show that —0.0000884 is a global maximum of In T'.(«, 38), which establishes the
value r = 4.571 as an upper bound to the unsatisfiability threshold.

6 Discussion

We derived an upper bound for the unsatisfiability threshold that improves over all pre-
viously proved upper bounds, except the one announced in [7]. We looked at the prob-
lem from a new perspective, by combining the method of local maximum satisfying
truth assignments proposed in [14] with the sharp estimates on some of the probabili-
ties involved based on the coupon collector experiment. In addition, we gave a relation-
ship between two conditional probability spaces for generating random formulas that
allowed us to use probability calculations performed in the easier to handle probability
model according to which each of the clause is selected independently of the others
with some fixed probability to appear in the formula. As a final ingredient, we proved a
tight upper bound for the ¢g-binomial coefficients that may be of interest in its own right.
Our approach showed that the unsatisfiability threshold is less than 4.571. This bound
improves over the best previous upper bound with a complete proof (4.596, see [12]).
Dubois et al. in [7] have announced the value 4.506 but to the best of our knowledge,
no complete proof is available yet from the authors. Nevertheless, we believe that our
approach contains elements of a separate value and interest that might be useful in an-
other context or in other applications: exact (in the exponential order) computation of
the first probability in the last line of (1) using the coupon collector problem, relation-
ships between conditional probability models and an upper bound for the g-binomial
coefficients. And even though we used a numerical method for maximizing our func-
tion in order to show that for r = 4.571 it is strictly below 1 for every legal value of its
parameters, our proof that the function is convex and the observation that its derivatives
are bounded, renders our proof essentially rigorous since the Downhill Simplex method
is certain to find a global maximum within guaranteed accuracy. We also believe that
our approach of using the occupancy problem for the accurate computation of the first
probability in (1) can be extented in order to give a sharp estimate also for the second
probability in the last line of (1). To this end, we are currently working on extending
the coupon collector approach or some similar scheme to model double flips. If this
is accomplished, then it is conceivable that an analogue of Theorem 2 can be proved



that will enable further improvements on the value obtained in this paper. There is also
the question of combining this approach with the idea of “typical formulas” proposed
in [7], thus obtaining still better bounds, under 4.5.
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