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Abstract. This paper studies the complexity of the Maximum Induced
Matching problem (MIM) in regular graphs and trees. We show that
the largest induced matchings in a regular graph of degree d can be
approximated with a performance ratio less than d. However MIM is
NP-hard to approximate within some constant ¢ > 1 even if the input
is restricted to various classes of bounded degree and regular graphs.
Finally we describe a simple algorithm providing a linear time optimal
solution to MIM if the input graph is a tree.

1 Introduction

If G = (V,E) is a graph, aset M C E is a matching in G if for all e;,es € M it is
e1Nes = 0. Let V(M) be the set of vertices belonging to edges in the matching.
A matching M is mazimal if for every e € E\ M, M Ue is not a matching; M
is induced if for every edge e = {u,v}, e € M if and only if u,v € V(M) and
e € E. Let v1(G) denote the maximum cardinality of an induced matching in G.
The maximum induced matching problem (MIM) is that of finding an induced
matching in G with v7(G) edges.

The problem was introduced in [14] as a variation of the maximum matching
problem and motivated as the “risk-free” marriage problem: find the maximum
number of pairs such that each married person is compatible with no married
person other than the one he (or she) is married to. Induced matchings have
stimulated a lot of interest in discrete mathematics because finding large induced
matchings is a subtask of finding a strong edge-colouring in a graph (see [5, 6]
and [15,11] for more recent results), a proper colouring of the edges such that
no edge is adjacent to two edges of the same colour.

MIM is NP-complete even for bipartite graphs of maximum degree four [14].
One way of coping with the NP-completeness of an optimization problem is to
relax the optimality requirement and look for the existence of polynomial time
algorithms which guarantee solutions whose size is close to the size of the opti-
mum. In what follows we say that a maximization problem P is approximable
with (performance) ratio p if there is a polynomial time algorithm returning a
solution whose size is at least p~! times the size of an optimal solution. Not much
is known about the approximability of MIM. In Section 2, fairly simple combi-
natorial arguments allow us to prove the existence of approximation algorithms
giving a ratio smaller than d, for regular graphs of degree d. In Section 3, we
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establish a number of non-approximability results. We provide explicit bounds
on the performance ratio such that MIM is NP-hard to approximate with ratio
less than these bounds in several classes of bounded degree graphs including
regular graphs of degree four.

A graph G = (V,E) is a tree if it is connected and it has no cycle, it is
chordal if any cycle of at least four vertices contains an edge connecting two
non-consecutive vertices. MIM in chordal graphs can be reduced [3] to finding
the largest independent set in a chordal graph and the latter problem admits
an optimal polynomial time solution [7]. Since trees are chordal graphs, this
argument (and an efficient implementation of Gavril’s algorithm) implies the
existence of a O(|V|?) algorithm for finding the maximum induced matching in
a tree. In Section 4 we present an alternative algorithm which again solves MIM
optimally if the input graph is a tree but it runs in O(|V]) time.

2 Combinatorial Bounds

If G = (V, E) is a graph let deg v, the degree of v, be the number of vertices that
are adjacent to v. Let V;(G) = {v € V : deggv =i} foralli =0,...,|V| -1
Notations V(G) and E(G) will be used instead of V and E when necessary
to prevent ambiguities. A (4, A)-graph is a graph with minimum degree § and
maximum degree A. A (d, d)-graph is a regular graph of degree d. Let (4, A)-MIM
(resp. d-MIM) identify MIM when the input is restricted to (0, A)-graphs (resp.
regular graphs of degree d). In this section we look at positive approximation
results for MIM in regular graphs. We describe two results that “come for free”
in the sense that they do not require any involved algorithmic idea and their
validity is implied by the combinatorial structure of the matching problem under
consideration. The negative results in Section 3 show that there is not much scope
for better results.

Definition 1. [9] An independence system is a pair (E,F) where E is a finite
set and F a collection of subsets of E with the property that whenever F C
H € F then F € F. The elements of F are called independent sets. A maximal
independent set is an element of F that is not subset of any other element of F.

Korte and Hausmann [9] analysed the independence system formed by all
matchings in G and proved an upper bound of 2 on the ratio between the sizes
of any two maximal matchings. In the next result a similar argument is applied
to estimate the maximum ratio between two maximal induced matchings.

Let M;(G) be the set of all induced matchings in a graph G. The pair
(E(G), M1(G)) is an independence system. For every S C E the lower (resp.
upper) rank of S, p(S) (resp. p(S)) is the size of the smallest (resp. largest)
maximal induced matching included in S. By [9, Theorem 1.1], if M is a maximal
induced matching, then

v1(G) p(S)
|M| — sCE p(S)




Fig. 1. A cubic graph with large induced matching.

Theorem 1. Let G be a (3, A)-graph and (E(G), M1(G)) be given. Then

p(5)
sEfe p5) =47

Proof. Let M; and M> be two maximal induced matchings in G and let e €
M\ M. Clearly M; U{e} C E and, by the maximality condition, this set is not
independent (i.e. it is not an induced matching anymore). Hence there exists
¢(e) € M, at distance less than two from e and again since M, is maximal
and independent ¢(e) € M; \ M. Indeed ¢ defines a function from M, \ M; to
M; \ M. Let f be one of the edges in the range of ¢. A bound on the number of
edges e € My \ M; that can be the pre-image of f € M; \ M, is needed. There
can be at most 2(A — 1) such e. The result follows. O

The last result gives a bound on the ratio of any algorithm that construct a
maximal induced matching in a given graph.

Theorem 2. (1, A)-MIM can be approzimated with ratio 2(A — 1).
This result can be slightly improved on regular graphs.
Theorem 3. If G is a (6, A)-graph then vi(G) < %. Moreover for every

d > 3, with d odd, there exists a reqular graph of degree d, with 2(2d — 1) vertices
and a mazimum induced matching of size d.

Proof. Let G be a (0, A)-graph and M be a maximal induced matching in G.
Let R = V \ V(M). Each v € V(M) is adjacent to at least § — 1 vertices
in R. Each v € R can be adjacent to at most A vertices in V(M). Hence
(IV(@)| —2|M|)A > 2|M|(6 — 1) and the result follows.

The second part can be proved by giving a recursive description of a family
of graphs {G;};en+- It is convenient to draw G; so that all its vertices are on
five different layers, called far-left, mid-left, central, mid-right and far-right layer.
Figure 1 shows G;. Vertices v; and vy (respectively u; and wus) are in the far-
left (respectively far-right) layer. Vertices vs and vy (respectively uz and wuy)
are in the mid-left (respectively mid-right) layer. Vertices z; and 2o are in the
central layer. Moreover an horizontal axis separates odd-indexed vertices (which
are below it) from even-indexed ones (which are above), with smaller indexes
below higher ones.

Let G;-1, for i@ > 2, be given. The graph G; is obtained by adding four
central vertices, two mid-left and two mid-right vertices. Since GG; has two
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Fig. 2. A regular graph of degree d with large induced matching.

central and two pairs of mid vertices and easy inductions proves that G;_;
has 2[2(i — 1) — 1] central vertices and 2(¢ — 1) mid-left and mid-right ones.
Let z4(;—1)—1,24(i—1)> 24i—3, 24i—2 be the four “new” central vertices, vo;11 and
Va(it1), U2i+1 and us(i1) the mid-left and mid-right ones. G; has all edges of
Gi—1 plus the following groups:

1. two edges connecting each of va;y1, V2(i41)» (respectively uzi+1 and U2(i+1))
to v1 and vy (respectively u; and us), plus edges

{v2it1, 24(1'71)71}, {vaiy1, 24(1'71)}, {U2(z’+1) ) Z4i-3}, {U2(i+1); 24i-2},

{u2iy1, Z4(i—1)—1}a {u2iy1, z4(i—1)}7 {U2(i+1), 24i-3}, {Uz(i+1); 2452}
All these edges are the continuous black lines in Figure 2.(c).

2. A final set of edges connects each of the even index mid vertices with the
central vertices of G;_; with indices 4) —2 and 4j —3 for 5 =0,1,...,¢—1.
Each of the odd index mid vertices are connected with the central vertices
of G;_1 with indices 4(j — 1) and 4(j — 1) — 1 for j = 1,...,4. The squares
in Figure 2 represent all mid vertices in G;_1. The bold solid lines in Figure
2.(d) represent this kind of edges.

Graph G7 has an induced matching of size three. For each ¢ > 2 the matching
in G; is obtained by adding the two edges {z4i—2, 24(i—1)} and {z4i-3, 24(i—1)—1}
to the matching in G;_;. |

Theorem 3 is complemented by the following result, giving a lower bound on
the size of a particular family of induced matchings.

Theorem 4. Let f(5,A) = (4A2—4A+2)/6. If G is a (8, A)-graph then vi(G) >
[V(@)|/f(,A). Moreover for every d > 2 there exists a regular graph of degree
d with d - f(d,d) vertices and a mazimal induced matching of size d.

Proof. Let G be a (§, A)-graph and M a maximal induced matching in G. Each
edge in G must be covered by at least an edge in M. Conversely every edge in
M can cover at most 2(A — 1)2 +2A — 1 edges. Thus

E@| V(@)
(A—1)2+2A-17 20242 —2A+1)

|M]| >
2



A d-ary depth two tree Ty is formed by connecting with an edge the roots of
two identical copies of a complete d-ary tree on d? — d + 1 vertices. The graph
obtained by taking d copies of Ty all sharing the same set of (d — 1)? leaves is
regular of degree d, it has d - f(d,d) vertices and a maximal induced matching
of size d. O

Corollary 1. d-MIM can be approzimated with ratio d — (d —1)/(2d — 1).

Proof. Let G be a regular graph of degree d. The proof follows from Theorem
3 and Theorem 4 and the use of any greedy algorithm that returns a maximal
induced matching in G. O

3 Hardness of Approximation

In this section we investigate the non-approximability of MIM for various classes
of bounded degree graphs. Although several notions of approximation preserving
reductions have been proposed (see for example [4]) the L-reduction defined in
[13] is perhaps the easiest one to use. Let P be an optimization problem. For
every instance x of P, and every solution y of z, let cp(x,y) be the cost of the
solution y. Let optp(z) be the cost of an optimal solution.

Definition 2. Let P and () be two optimization problems. An L-reduction from
P to Q is a four-tuple (t1,t2,, 3) where t1 and t2 are polynomial time com-
putable functions and o and (B are positive constants with the following proper-
ties:

(1) t1 maps instances of P to instances of Q and for every instance x of P,
opto(ti(z)) < a - optp(x).

(2) for every instance x of P, ta maps pairs (t1(x),y') (wherey' is a solution
of t1(x)) to a solution y of x so that

loptp(z) — cp (@, t2(t1(2),y"))| < Bloptq(ti(z)) — colti(z),y')l.

Theorem 5. If P and Q) are two mazimization problems, there is an L-reduction
from P to Q with parameters a and (3, and it is NP-hard to approzimate P with

ratio ¢ then it is NP-hard to approzimate () with ratio ﬁ

Proof. The result is derived from [12, Proposition 13.2]. Suppose by contradic-

tion that there is an algorithm which approximates ) with ratio % For

every instance = of P let y' be the result of applying this algorithm to #;(z).
Then, by definition of L-reduction,

optq(ti(x)) — cq(ti(x),y’)
optg(ti(z))

optq (t1(x)) afec
cq(ti(z)y’) — (af—1)c+1’

opto(ti(x) — cqti(e),y) - (@f—Detl 1 ([ 1
opta(tr () =8 ‘@(“Z)

and the result follows. O

optp(z) —cp(z, ta(t1(2),y"))

optp(x) <of

therefore

By definition of performance ratio it is




Let MIS denote the problem of finding a largest independent set in a graph
(problem GT20 in [8]). Appellations (4, A)-MIS and d-MIS are defined in the
obvious way. There is [10] a very simple L-reduction from MIS to MIM with
parameters @ = 8 = 1. Given a graph G = (V, E), define t;(G) = (V',E') as
follows:

Vi=vVu{v:veV}, E=EU{{v,v'}:veV}.

If U is an independent set in G then F' = {{v,v'} : v € U} is an induced matching
in ¢t (G). Conversely if F' is an induced matching in ¢ (G) the set t2(t1(G), F)
obtained by picking one endpoint from every edge in F' is an independent set in
G. Therefore the size of the largest independent set in G is v (1 (G)).

The s-padding of a (3, A)-graph G, G, is obtained by replacing every vertex
v by a distinct set of vertices vy,...,v, with {v;,u;} € E(G,) if and only if
{u,v} € E(G). The following result is a consequence of the definition.

Lemma 1. For any s > 2, if G is a (6, A)-graph then G is a (s- 8, s - A)-graph.

The key property of the s-padding of a graph is that it preserves the distance
between two vertices. If G = (V, E) is a graph then for every u,v € V(G),
dstg(u,v) is the distance between u and v, defined as the number of edges in a
shortest path between u and v.

Lemma 2. For all graphs G and for every s > 2, dstg(u,v) = dstq, (u;,v;) for
all u,v € V(G) withu #v and all i,5 € {1,2,...,s}.

Lemma 3. For all graphs G and for every s > 2, vi(G) = vi(Gs).

Proof. Let M be an induced matching in G. Define M, = {{u1,v1} € E(Gs) :
{u,v} € M}. By Lemma 2 all edges in M, are at distance at least two. Conversely
if M, is an induced matching in G define M = {{u,v} € E(G) : {u;,v;} € M;
for some 4,5 € {1,...,s}}. M is an induced matching in G. a

The following Lemmas show how to remove vertices of degree one, two and
three from a (1, A)-graph.

Lemma 4. Any (1, A)-graph G can be transformed in polynomial time into a
(2, A)-graph G' such that |V1(G)| = vi(G") — vi(G).

Proof. Given a (1, A)-graph G, the graph G’ is obtained by replacing each vertex
v of degree one in G by the gadget G, shown in Figure 3. The edge {v,w}
incident to v is attached to vg. The resulting graph has minimum degree two
and maximum degree A. If M is an induced matching in G it is easy to build an
induced matching in G' of size |[M|+|V1(G)|. Conversely every induced matching

V1 GW
G
v,
0 v w w
v, 1 2

Fig. 3. Gadgets replacing vertices of degree one and two.



M' in G' will contain exactly one edge from every gadget G,. Replacing (if
necessary) each of these edges by the edge {v1,v2} could only result in a larger
matching. The matching obtained by forgetting the gadget-edges is an induced
matching in G and its size is (at least) |M'| — |[V1(G)|. |

Lemma 5. Any (2, A)-graph G can be transformed in polynomial time into a
(3, A)-graph G' such that |Vo(G)| = vi(G') — vi(G).

Proof. Let G be a (2, A)-graph. Every vertex w of degree two is replaced by
the graph G,, in Figure 3. The two edges {u,w} and {v,w} adjacent to w are
replaced by edges {u,w;} and {v,w2}. Let G' be the resulting (3, A)-graph. If
M is a maximal induced matching in G, a matching M’ in G' is obtained by
taking all edges in M and adding one edge from each of the graphs G,,. Figure 4
shows all the relevant cases. If w € V(M) then without loss of generality we can
assume that w; € V(M') and one of the two edges adjacent to ws can be added
to M'. If w ¢ V(M) then any of the four central edges in G,, can be added to
M'. After these replacements no vertex in the original graph gets any closer to
an edge in the matching. Inequality v;(G') > vi(G) + |V2(G)| follows from the
argument above applied to a maximum induced matching in G.

Conversely for any induced matching M’ in G’ at most one edge from each
copy of G, belongs to M'. The copies of Gy, with M' N E(G,) = 0 are called
empty, all others are called full. Inequality vr(G) > vi(G') — |V2(G)| is proved
by the following claims applied to a maximum induced matching in G'.

Claim 1 Any mazimal induced matching M' in G' can be transformed into
another induced matching M" in G' with |M'| < |M"| and such that all gadgets
in M" are full.

Claim 2 M =4 M" N E(Q) is an induced matching in G.

To prove the first claim, an algorithm is described which, given an induced
matching M' C E(G'"), fills all empty gadgets in M'. The algorithm visits in
turn all gadgets in G’ that have been created by the reduction and performs the
following steps:

(1) If the gadget Gy, under consideration is empty some local replacements are
performed that fill G,,.
(2) The gadget G, is then marked as “checked”.

c/jw\o 4 X °©
w

f\o any of these edges can be chosen
. &f/@\o\o—@

Fig. 4. Possible ways to define the matching in G’ given the one in G.
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Fig. 5. Filling an empty gadget, normal cases.

(3) A mazimality restoration phase is performed in which, as a consequence of
the local replacements in Step (1), some edges might be added to the induced
matching.

Initially all gadgets are “unchecked”. Let G, be an unchecked gadget. If G,
is full the algorithm simply marks it as checked and carries on to the next
gadget. Otherwise, since M’ is maximal, at least one of the two edges adjacent
to vertices w; and wy must be in M’ for otherwise it would be possible to
extend M' by picking any of the four central edges in G,. Without loss of
generality let {u,w;} € M'. Figure 5 shows all possible cases. If vertex v does
not belong to another gadget then either of the configurations on the left of
Figure 5 is replaced by the one shown on the right. If v is part of another gadget
few subcases need to be considered. Figure 6 shows all possible cases and the
replacement rule. In all cases after the replacement the neighbouring gadget is
marked as checked. Notice that all replacement rules do not decrease the size of
the induced matching. Also as the process goes by, new edges in E(G) can only
be added to the current matching during the maximality restoration phase. To
prove the second claim, assume by contradiction that two edges e = {u,v} and
f ={w,y} in M are at distance one. Notice that dstq (e, f) = dstg(e, f) unless
all the shortest paths beween them contain a vertex of degree two. The existence
of e and f is contradicted by the fact that M’ and M" are induced matchings
in G’ and all gadgets in G' are filled by M". O

Fig. 6. Filling an empty gadget, special cases.



Fig. 7. Gadget connecting pairs of vertices of degree three.

Lemma 6. Any (3, A)-graph G can be transformed in polynomial time into a
(4, A)-graph G’ such that |V3(G)| = Lv1(G") — vi(G).

Proof. Let G be a (3, A)-graph. The graph G’ is defined by taking two copies of
G and connecting pairs of corresponding vertices of degree three with the gadget
shown in Figure 7. The given gadget has the following important properties:

1. All maximal induced matchings in G, contain exactly two edges.
2. There exists an induced matching M. in G, such that neither v; nor vy are
adjacent to a vertex in V (M).

If M is an induced matching in G then the union of two copies of M (one in
each copy of G) and a copy of M*v for each v € V3(G) is an induced matching
in G'. Conversely given a matching M’ in G' the replacement of M' N E(G,) by
{{vs,va}, {vs,v6}} for every v € V3(G) can only lead to a possibly larger induced
matching. O

The non-approximability of (ks, (A+1)s)-MAXINDMATCH (for k = 1,2,3,4)
and 4s-MAXINDMATCH follows from Theorem 5 applied to known results on
independent set [1, 2].

Theorem 6. Let h(5,A,c) = (1+L6§?g)g)(c(:’_?)+1]c- Define

9(0,A,¢c) =c¢
g(i,A,C):h(i,A,g(i—l,A,C)) 7/21

For every A > 3, let ca be a constant such that it is NP-hard to approximate
(1, A)-MIS with ratio ca. Then for k = 1,2,3,4 and every integer s > 0 it is NP-
hard to approzimate (ks,(A+1)s)-MAXINDMATCH with ratio g(k—1, A+1,ca).

Proof. The result for k¥ = 1 follows from the L-reduction at the beginning of
the section for s = 1 and a further L-reduction based on s-paddings for s > 2.
For k € {2,3,4} If G has minimum degree k — 1, Theorem 4 implies v;(G) >
[Vi—1(G)|/ f(k — 1, A). The result follows using these bounds along with the
reductions in Lemma 4, 5, and 6. O

Theorem 7. Let ¢y be a constant such that 3-MIS is NP-hard to approrimate
with ratio cyg. Then for every integer s > 0 it is NP-hard to approximate 4s-

. :_T740co
MAXINDMATCH with ratio 7gge: ==



Proof. The reduction at the beginning of Section 3 and Theorem 5 imply that it
is NP-hard to approximate (1,4)-MAXINDMATCH with ratio ¢p. If the original
cubic graph G has n vertices, then t1(G) has |Vi (t1(GQ))| = |Va(t1(G))| = n, no
vertex of degree two or three, 5n/2 edges and the maximum number of edges at
distance at most one from a given edge is 19. We call one such graph a special
(1,4)-graph.
Claim 3 There is an L-reduction from (1,4)-MAXINDMATCH restricted to spe-
cial (1,4)-graphs to (3,4)-MAXINDMATCH with parameters a = ‘%3 and g = 1.
If G is a (1,4)-graph with |V2(G)| = |V5(G)| = 0, then replacing each vertex v of
degree one with the gadget in Figure 3, gives a (3,4)-graph G'. The properties
of special (1,4)-graphs and the same argument used to prove Theorem 4 imply
vi(G) > £|Vi(G)|. Therefore
v(@) = ni(G) + V(G < mi(G) + Sw(G) = 2

Also, for every matching M’ in G, define t5(G', M') as described in Lemma 4.
It follows that v1(G) — [t2(G', M")| < vi(G') — |M'| and the claim is proved.

Therefore, by Theorem 5, (3,4)-MAXINDMATCH is hard to approximate with
ratio ¢; = 3843%‘ The special (3,4)-graphs H generated by the last reduc-
tion have again a lot of structure. In particular, |V3(H)| = |Va(H)|, |[E(H)| =
7|Va(H)|/2 and again the maximum number of edges at distance at most one
from a given edge is 23.

V[(G)

Claim 4 There is an L-reduction from (3,4)-MAXINDMATCH restricted to spe-
cial (3,4)-graphs to 4-MAXINDMATCH with parameters a = 21 and 8 = 1.

The reduction was described in Lemma 6. Theorem 4 and the properties of
special (3,4)-graphs imply v;(H) > & |V3(H)|. Therefore

vi(H') < Z7vi(H)

and thus, by Theorem 5, 4-MAXINDMATCH is hard to approximate with ratio

161)2?1111' Finally by Lemma 3 there is an L-reduction from 4-MAXINDMATCH
to 4s-MAXINDMATCH (for s > 2) with parameters a = § = 1. O

4 Polynomial Time Solution on Trees

Although NP-complete for several classes of graphs including planar or bipartite
graphs of maximum degree four and regular graphs of degree four, the problem
of finding the largest induced matching admits a polynomial time solution on
trees [3]. The algorithmic approach suggested by Cameron reduces the problem
to that of finding the largest independent set in a graph H that can be defined
starting from the given tree. If G = (V, E) is a tree, the graph H = (W, F') has
|[V|—1 vertices, one for each edge in G and there is an edge between two members
of W if and only if the two original edges in G are either incident or connected
by a single edge. Notice that |F| = O(|V|?). Moreover each induced matching



in G is an independent set of the same size in H. Gavril’s algorithm [7] finds
the largest independent set in a chordal graph with n vertices and m edges in
O(n+m) time. Since the graph H is chordal, the largest induced matching in the
tree can be found in O(|V|?) time. In this section we describe a simpler and more
efficient way of finding a maximum induced matching in a tree. If G = (V, E) is
a tree we choose a particular vertex r € V to be the root of the tree (and we say
that G is rooted at ). If v € V'\ {r} then parent(v) is the unique neighbour of v in
the path from v to r; if parent(v) # r then grandparent(v) = parent(parent(v)).
In all other cases parent and grandparent are not defined. If u = parent(v) then
v is w’s child. All children of the same node are siblings of each other. Let ¢(v)
be the number of children of node v. The upper neighbourhood of v (in symbols
UN(v)) is empty if v = r, it includes r and all v’s siblings if v is a child of » and
it includes v’s siblings, v’s parent and v’s grandparent otherwise. E(UN(v)) is
the set of edges in G connecting the vertices in UN(v).

Claim 5 If G = (V,E) is a tree and M is an induced matching in G then
|[M N E(UN(v))| <1, for everyv € V.

Note that if M is an induced matching in G, any node v in the tree belongs to
one of the following types with respect to the set of edges E(UN(v)):

Type 1. the node {v, parent(v)} is part of the matching,

Type 2. either {parent(v), grandparent(v)} or {parent(v), w} (where w is some
siblings of v) belongs to the matching,

Type 3. Neither Type 1. nor Type 2. applies.

The algorithm for finding the largest induced matching in a tree G with n
vertices handles an n x 3 matrix Value such that Value[i,t] is the size of the
matching in the subtree rooted at i if vertex i is of type t.

Lemma 7. If G is a tree with n vertices, Value[i,t] can be computed in O(n)
time for everyi € {1,...,n} and t =1,2,3.

Proof. Let G be a tree with n vertices. We assume G is in adjacency list repre-
sentation. If A is the height of the tree, some linear preprocessing is needed to
define an array level[i] (for s = 0,..., h) such that level[i] contains all vertices at
distance ¢ from the root.

The matrix Value can be filled in a bottom-up fashion starting from the
deepest vertices of G. If 7 is a leaf of G then Value[i,t] = 0 for ¢t = 1,2,3. In
filling the entry corresponding to node ¢ € V of type ¢ we only need to consider
the entries for all children of i.

(1) Value[i,1] = ZZ(:')l Value[j, 2]. Since {i,parent(i)} will be part of the
matching, we cannot pick any edge from i to one of its children. The matching
for the tree rooted at i is just the union of the matchings of the subtrees rooted
at each of i’s children.

(2) Value[i, 2] = Ez(:')l Value[j, 3]. We cannot pick any edge from ¢ to one of
its children here either.



(3) If node i has ¢(i) children then Value[i,3] is the maximum between
Z;(:Z)l Value[ji, 3] and a number of terms

sj, = 1+ Value[jx, 1] + Y _ Value[ji, 2]
1%k

If the upper neighbourhood of i is unmatched we can either combine the match-
ings in the subtrees rooted at each of ¢’s children (assuming these children are
of type 3) or add to the matching an edge from 4 to one of its children j; (the
one that maximises s;,) and complete the matching for the subtree rooted at i
with the matching for the subtree rooted at j; (assuming jj is of type 1) and
that of the subtrees rooted at each of i’s other children (assuming these children
are of type 3).

Option (3) above is the most expensive involving the maximum over a number
of sums equal to the degree of the vertex under consideration. Since the sum of
the degrees in a tree is linear in the number of vertices the whole table can be
computed in linear time. O

Theorem 8. MIM can be solved optimally in polynomial time if G is a tree.

Proof. The largest between Value[r, 1], Value[r,2] and Value[r, 3] is the size of
the largest matching in G. By using appropriate date structures it is also possible
to store the actual matching. The complexity of the whole process is O(n). O

5 Conclusions

In this paper we investigated the complexity of finding a largest induced match-
ing in a graph. We suggested a couple of simple heuristics for solving the problem
with O(A)-bounded ratio on graphs with maximum degree A. The definition of
algorithms achieving better performance ratios is an open problem. In Section 3
we complemented these positive results with a number of non-approximability
results. In particular there is a constant ¢ such that it is NP-hard to find in-
duced matchings whose size approximates vr(G) with ratio c even if G is regular
of degree 4s for any integer s > 0. We believe that similar results hold for cubic
graphs and, using the s-padding technique described in Section 3, for regular
graphs of degree 3s for any integer s > 0. Proving hardness on regular graphs of
degree d for every integer d > 2 maybe harder. Finally we presented an algorithm
which solves MIM optimally if the input graph is a tree. Our algorithm is simple
in that it does not reduce the original problem to another one, its complexity
improves the one of the best algorithm known and it is clearly optimal in the
sense that to define an induced matching in a tree 2(n) operations are needed.
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