
Greedy Algorithms

We consider optimisation problems. Algorithms for optimization

problems typically go through a sequence of steps, with a setof choices at

each step.

A greedy algorithmis a process that always makes the

choice that looks best at the moment.

Greedy algorithms are natural, and in few cases solve optimally the given

problem.

We will look at one simple example and we will try to understand why

does it work.

We will consider more examples later.

1

Optimization Problem

An optimisation problemP is defined by four components

(I,SOL, c, opt) where:

(1) I is the set of theinstancesof P . Membership inI is decidable in

polynomial time.

(2) For eachx ∈ I, SOL(x) is the set ofsolutionsof x. Membership in

SOL(x) is decidable in polynomial time and for eachy ∈ SOL(x), the

length ofy is polynomial in the length ofx.

(3) For eachx ∈ I and eachy ∈ SOL(x), c(x, y) is an integer,

non-negative function, called theobjective(or cost) function.

(4) opt ∈ {max, min} is theoptimisation criterionand tells if the

problemP is a maximisation or a minimisation problem.

2

Activity-selection problem

We are given a set of proposed activitiesS = {A1, A2, . . . , An} that wish

to use a resource, which can be used by only one activity at a time. Each

activity is defined by a pair consisting of astart timesi and afinish time

fi, with 0 ≤ si < fi < +∞. If selected, activityAi takes place during

the time interval[si, fi). Two activitiesAi andAj arecompatibleif

si ≥ fj or sj ≥ fi. Theactivity-selection problemis to select the

maximum number of mutually compatible activities.

3

Example

i 1 2 3 4 5 6 7 8 9 10 11 12

si 44 7 37 83 27 49 16 44 44 58 27 26

fi 86 25 96 89 84 62 17 70 84 94 79 57

4

4-1

Two possible solutions (the columns marked by a “*” correspond to

activities picked in the particular solution).

i 1 2 3 4 5 6 7 8 9 10 11 12

si 44 7 37 83 27 49 16 44 44 58 27 26

fi 86 25 96 89 84 62 17 70 84 94 79 57

* *

i 1 2 3 4 5 6 7 8 9 10 11 12

si 44 7 37 83 27 49 16 44 44 58 27 26

fi 86 25 96 89 84 62 17 70 84 94 79 57

* * *

5

Open issues

How far can we go?

Scale this up to a real life situation, where there may be few hundreds

activities. We write some software that, when run on a particular example,

returns 50 activities: is this the best?? The people who employ us may

wonder whether it is possible to do better?

Unprofessional answer: Yep!

Better answer: My program is “certified” to produce the best possible

answer (I can show you the program AND a mathematical proof that it

works)!

6

Example of Real Life Application “Time-dependent web

browsing”

The access speeds to particular sites on the World Wide Web can vary

depending on the time of access.

Figure 1: Access rates for USA and Asia over 24 hours. (Derived from

data posted by the Anderson News Network

http://www.internettrafficreport.com/)

7

A single central computer (e.g. a search engine server) collects all the

information stored in a certain number of web documents, located at

various sites.

The information is gathered by scheduling a number of consecutive

client/server TCP connections with the required web sites.

We assume that the loading time of any particular page from any site may

be different at different times, e.g. the access to the page is much slower

in peak hours than in off-peak hours.

Having a list of pages to be collected along with some information about

the access time at any given instant, the goal is to download as many

pages as possible.

8

Typical input for this problem can be a sequence of tables like the

following (times are GMT), one for each remote web site

t1 0.00 0.15

t25 12.00 13.13
t24 11.30 12.29

t2 0.30 0.47

t4 1.30 2.06
t3 1.00 1.35

www.one.com

9

It is an optimisation problem.

The set of instances coincides with the set of all possible groups of

activities (in tabular form).

A solution is a set of compatible activities.

The cost of a solution is its size (orcardinality), and we are seeking a

maximum cardinality solution.

How do we solve it? What is a good strategy?

10

Greedy algorithm

GREEDY-ACTIVITY-SELECTOR (S, n)

j ← index of the minimumfi in S

X ← {Aj}

S ← S \ {Aj}

for i← 2 to n

k ← index of the minimumfi in S

if sk ≥ fj

X ← X ∪ {Ak}

j ← k

S ← S \ {Ak}

return X

11

Remarks.

The algorithm takes as input a set of activitiesS (each activity stored as a

pair of numbers(si, fi)) and the total number of activitiesn.

The setX collects the selected activities. The variablej always specifies

the most recent addition toX .

Notice also that the pseudo-code is using “sets” but any implementation

of GREEDY-ACTIVITY-SELECTOR will have to use arrays, vectors or

some other data structure present in the chosen programminglanguage.

12

Examples

(1) Back to the first example we considered.

i 1 2 3 4 5 6 7 8 9 10 11 12

si 44 7 37 83 27 49 16 44 44 58 27 26

fi 86 25 96 89 84 62 17 70 84 94 79 57

What are the algorithm choices? Let’s simulate it!

(2) Time-dependent web browsing

site 1 2 3 4 5 6 7 8 9 10 11 12

si 9.15 7.42 10.00 11.54 9.17 9.47 7.34 8.16 8.36 10.45 11.53 11.05

fi 9.35 7.49 11.34 12.52 9.57 10.19 8.51 9.23 9.25 10.56 12.30 12.16

Problem? You are not guaranteed to get information from all of them.

This requirement can make the problem quite difficult (more later).

13

Time complexity

Claim. The time complexity of GREEDY-ACTIVITY-SELECTOR is O(n2)

(assuming that set update operations only cost one step each!).

• Each iteration of thefor loop lasts for at most|S|+ 3 steps.

• The size ofS decreases by one at each iterations (initially|S| = n).

• The total number of steps is therefore

(n + 2) + ((n − 1) + 3) + ((n − 2) + 3) + . . . + (1 + 3)
︸ ︷︷ ︸

n times

which is at mostn× ((n + 3) + 3) = n2 + 6n (or, exactly,
n2

+7n
2
− 1, if we a just a bit more careful with the arithmetic).

14

The run time can be reduced toO(n log n) by an algorithm that combines

a linear time greedy heuristic with a sort preprocessing step.

SGREEDY-ACTIVITY-SELECTOR (S, n)

sortS in order of increasing finishing time

j ← 1

X ← {Aj}

for i← 2 to n

if si ≥ fj

X ← X ∪ {Ai}

j ← i

return X

15

Here is the same example, after the execution of the first stepof

SGREEDY-ACTIVITY-SELECTOR.

i 9 2 12 6 7 11 5 8 1 4 10 3

si 16 7 26 49 44 27 27 44 44 83 58 37

fi 17 25 57 62 70 79 84 84 86 89 94 96

The algorithm eventually selects activities 9, 12, and 4.

16

