Greedy Algorithms

We consider optimisation problems. Algorithms for optiation
problems typically go through a sequence of steps, with afsgtoices at
each step.

A greedy algorithmis a process that always makes the
choice that looks best at the moment.

Greedy algorithms are natural, and in few cases solve offyithe given
problem.

We will look at one simple example and we will try to understavhy
does it work.

We will consider more examples later.

Activity-selection problem

We are given a set of proposed activit®s= {A;, Ao, ..., A, } that wish
to use a resource, which can be used by only one activity aie ttach
activity is defined by a pair consisting ofsgart times; and afinish time
fi,with0 < s; < f; < +00. If selected, activityd,; takes place during
the time intervals;, f;). Two activitiesA; and A; arecompatibleif

s; > fj ors; > f;. Theactivity-selection probleris to select the
maximum number of mutually compatible activities.

Optimization Problem

An optimisation problen® is defined by four components
(Z,80L, ¢, opt) where:

(1) Z is the set of thénstancesof P. Membership irZ is decidable in
polynomial time.

(2) For eachr € Z, SOL(x) is the set obolutionsof zz. Membership in
SOL(z) is decidable in polynomial time and for eagle SOL(x), the
length ofy is polynomial in the length aof.

(3) For eachr € 7 and eacly € SOL(x), ¢(x,y) is an integer,
non-negative function, called thodbjective(or cos) function.

(4) opt € {max, min} is theoptimisation criterionand tells if the
problemP is a maximisation or a minimisation problem.

Example

i \ 1 2 3 4 5 6 7 8 9 10 11 12
s, |44 7 37 83 27 49 16 44 44 58 27 26
f, 186 25 96 89 84 62 17 70 84 94 79 57

y

4-1

Open issues

How far can we go?

Scale this up to a real life situation, where there may be feadheds
activities. We write some software that, when run on a paldicexample,

returns 50 activities: is this the best?? The people who eynyd may
wonder whether it is possible to do better?

Unprofessional answer: Yep!

Better answer: My program is “certified” to produce the best possible
answer (I can show you the program AND a mathematical praafith
works)!

Two possible solutions (the columns marked by a “*” corregpto
activities picked in the particular solution).

~

s; |4 7 37 83 2 49 16 44 44 58 27 26
fi |86 25 96 89 84 62 17 70 84 94 79 57

s; |44 7 37 83 2 49 16 44 44 58 27 26
fi |86 25 96 89 84 62 17 70 84 94 79 57

~

Example of Real Life Application “Time-dependent web
browsing”

The access speeds to particular sites on the World Wide Wetbars
depending on the time of access.

"

\P-Wﬂ

Y S5900Y

Time of Day

Figure 1: Access rates for USA and Asia over 24 hours. (Ddrivem
data posted by the Anderson News Network
http://ww. internettrafficreport.com)

A single central computer (e.g. a search engine serve®atslhll the
information stored in a certain number of web documentsthxt at
various sites.

The information is gathered by scheduling a number of cangec
client/server TCP connections with the required web sites.

We assume that the loading time of any particular page fropsde may
be different at different times, e.g. the access to the pageich slower
in peak hours than in off-peak hours.

Having a list of pages to be collected along with some infairomeabout
the access time at any given instant, the goal is to downlsadaey
pages as possible.

It is an optimisation problem.

The set of instances coincides with the set of all possilemg of
activities (in tabular form).

A solution is a set of compatible activities.

The cost of a solution is its size (oardinality), and we are seeking a
maximum cardinality solution.

How do we solve it? What is a good strategy?

Typical input for this problem can be a sequence of tablestlie
following (times are GMT), one for each remote web site

Www.one.com

t1 0.000.15

12 0.30047

t3 1.001.35

4 1.302.06
.

124 11.3012.29
125 12.0013.13

10

Greedy algorithm

GREEDY-ACTIVITY-SELECTOR(S, n)
j « index of the minimumf; in S
X —{4;}

S —S\{4;}
fori«— 2ton
k < index of the minimumy; in S
if s > f;
X — X U{A}
7k
S — S\ {Ak}
return X

11

Remarks.

The algorithm takes as input a set of activitfegeach activity stored as a
pair of numbergs;, f;)) and the total number of activities

The setX collects the selected activities. The variaplaways specifies
the most recent addition t§ .

Notice also that the pseudo-code is using “sets” but anyamphtation
of GREEDY-ACTIVITY-SELECTORWiIll have to use arrays, vectors or
some other data structure present in the chosen progranamiggage.

Time complexity

Claim. The time complexity of ®EEDY-ACTIVITY-SELECTORIs O(n?)
(assuming that set update operations only cost one stefj each

e Each iteration of théor loop lasts for at mogtS| + 3 steps.
e The size ofS decreases by one at each iterations (initiafly= n).

e The total number of steps is therefore

n+2)+((n—-1)+3)+((n—-2)+3)+...+(1+3)

n times
which is at most x ((n + 3) 4+ 3) = n? + 6n (or, exactly,
@ — 1, if we a just a bit more careful with the arithmetic).

12

14

Examples
(1) Back to the first example we considered.
il1 2 3 4 5 & 7 8 9 10 11 12

4 7 37 83 27 49 16 44 44 58 27 26
86 25 96 89 84 62 17 70 84 94 79 57

Si
fi

What are the algorithm choices? Let’s simulate it!

(2) Time-dependent web browsing

Site‘ 1 2 3 4 5 6 7 8 9 10 11 12

54

fi
Problem? You are not guaranteed to get information from all of them.
This requirement can make the problem quite difficult (mater).

9.35 7.49 11.3412.529.57 10.198.51 9.23 9.25 10.5612.3@12

9.15 7.42 10.0011.549.17 9.47 7.34 8.16 8.36 10.4511.5511.

The run time can be reduceddqn log n) by an algorithm that combines
a linear time greedy heuristic with a sort preprocessing. ste

SGREEDY-ACTIVITY-SELECTOR(S, n)

sortS in order of increasing finishing tim
J—1
X —{4;}
for i «— 2ton

ifs; > f;

Je=t

return X

11

13

15

Here is the same example, after the execution of the firstatep
SGREEDY-ACTIVITY-SELECTOR

i ‘ 9 2 122 6 7 11 5 8 1 4 10 3
s; |16 7 26 49 44 27 27 44 44 83 58 37
fi |17 25 57 62 70 79 84 84 86 89 94 96

The algorithm eventually selects activities 9, 12, and 4.

16

