
Correctness

Algorithm SGREEDY-ACTIVITY-SELECTOR produces solutions of

maximum size for the activity-selection problem.

We use INDUCTION to prove that

“We can find an optimal selection if we are givenn activities”.

Remember that, after the first step of SGREEDY-ACTIVITY-SELECTOR,

activities are in order of finish time. We thus assume w.l.o.g. that activity

A has the earliest finish time.

4

Simple case: there is only one activity ... we win (there is nothing to

choose)!!

Complicated case: there’s many activities.

Induction tells us we need to prove that we can find an optimal selection if

we are givenn activities assuming we can solve the same problem but

with only n − 1 activities.

5

(1) We apply SGREEDY-ACTVITY-SELECTOR and selectA as the first

activity. We argue that there must be an optimal solution whose first

activity isA.

SupposeX ⊆ S is an optimal solution (we write the activities inX by

increasing finishing time). Suppose the first activity inX is A′. If

A = A′ we are done, otherwise we could replaceA′ with A and obtain

another solution with the same number of activities asX.

6

(2) Now we are left withS \ {A} (in fact we can discard all activities

starting strictly before the end ofA). This is a set of (at most)n − 1

activities: we know how to solve the given problem if we only haven − 1

activities!! So letY be the set of activities chosen fromS \ {A}. The set

of activities selected fromS will be:

{A} ∪ Y

AND THIS IS AN OPTIMAL CHOICE! (i.e. combiningA with an

optimal solution for the problem involving the “remaining”activities we

get an optimal solution for the whole problem).

Suppose that the best solution is{A} ∪ Z. But then|Z| > |Y |. SoY

would not be optimal solution for the “remaining” activities!.

7

Why does it all work?

Greedy Solution

S
o
l
u
t
i
o
n
s

8

Fundamental Properties

Greedy-choice an optimal solution can be found by making locally

optimal greedy choices at each step.

Optimal substructure an optimal solution contains within it optimal

solutions to subproblems.

Some (simple) greedy algorithm will always work as long as the solu-

tion sets for a given problem have the “greedy-choice” and “optimal-

substructure” properties.

Writing down a good program to solve the given problem is less

important than studying the combinatorial properties of its solutions.

9

Another example

i A1 A2 A3 A4 A5 A6 A7

si 1 1 5 8 7 11 3

fi 2 4 6 9 10 12 13

(to speed things up activities are already sorted by non-decreasing finish

time).

10

Detailed simulation

instructions processed j X i

first two instructions beforefor loop 1 {A1}
i← 2 2
(s2 = 1, f1 = 2, s2 6≥ f1) i← i + 1 3
(s3 = 5, f1 = 2, s3 ≥ f1) X ← X ∪ {A3} {A1, A3}

j ← i 3
i← i + 1 4

(s4 = 8, f3 = 6, s4 ≥ f3) X ← X ∪ {A4} {A1, A3, A4}
j ← i 4
i← i + 1 5

(s5 = 7, f4 = 9, s5 6≥ f4) i← i + 1 6
(s6 = 11, f4 = 9, s6 ≥ f4) X ← X ∪ {A6} {A1, A3, A4, A6}

j ← i 6
i← i + 1 7

10-1

Exercise: Timetabling
Lecture rooms:R1, R2, . . . , Rk, each room is available for the samex hours. No

room can be booked by two lecturers as the same time.

Lectures:C1, C2, . . . , Cl, each taking one hour.

Attendability constraints: a set of pairs(Ci, Cj) meaning that lectureCi cannot

take place at the same time as lectureCj .

Avoidability constraints: for each lectureCi, a set of times

Ti = {t : t ∈ {1, . . . , x}} such thatCi should not take place at timet ∈ Ti.

Goal. Assign lectures to lecture rooms, satisfying as many attendability

constraints and avoidability constraints as possible.

Questions. can you find a greedy algorithm that returnssomesolution? Can you

prove/disprove this algorithm gives an optimal solution?

A correct solution (a working program or pseudo-code) for any of the problems I

am suggesting is worth1
4

of the coursework mark.

11

Greedy: is it all as simple as that?

Weighted Activity-selection problem. We are given a set of proposed
activitiesS = {A1, A2, . . . , An} that wish to use a resource, which can
be used by only one activity at a time. Each activity is definedby astart

timesi, afinish timefi, with 0 ≤ si < fi < +∞, and a positive integer
valuewi. If selected, activityAi takes place during the time interval
[si, fi). Two activitiesAi andAj arecompatibleif si ≥ fj or sj ≥ fi.
Theweightedactivity-selection problem is to select a number of mutually
compatible activities of the largest possible total weight.

The problem makes perfect sense (it is even more realistic than the
original problem). Perhaps the resource manager wants to maximise his
profit (takevi as the profit gained from runningAi).

How would you solve the problem?

12

Example

2A

3

A

A

1 2

2

1

13

One more example

1

3

2A

A

A 2

5

2

14

... and again

3

2

A

A1

A

2

2

4.2

15

