
Greedy: is it all as simple as that?

Weighted Activity-selection problem. We are given a set of proposed

activitiesS = {A1, A2, . . . , An} that wish to use a resource, which can

be used by only one activity at a time. Each activity is definedby astart

timesi, afinish timefi, with 0 ≤ si < fi < +∞, and a positive integer

valuewi. If selected, activityAi takes place during the time interval

[si, fi). Two activitiesAi andAj arecompatibleif si ≥ fj or sj ≥ fi.

Theweightedactivity-selection problem is to select a number of mutually

compatible activities of the largest possible total weight.

1

Example

2A

3

A

A

1 2

2

1

2

One more example

1

3

2A

A

A 2

5

2

3

... and again

3

2

A

A1

A

2

2

4.2

4



Remarks

No (optimal) greedy algorithm is known for the Weighted Activity

Selection problem.

The “Greedy-choice” property seems to fail! An activity that ends the

earliest is not guaranteed to be the most profitable.

What can be done??

5

Go for Divide and Conquer!

We assume the activities are sorted by nondecreasing finish time.

For eachj definep(j) to be the largest index smaller thanj of an activity

compatible withAj (p(j) = 0 if such index does not exist). In the last

examplep(1) = p(2) = 0, andp(3) = 1.

6

Look at an optimal solution

p(4)=0

A1

A5

A6

A4

A3

A2 p(2)=0

4

4

4

7

2

p

1

(1)=0

p(3)=1

p(6)=3

p(5)=3

7

Look at an optimal solution

p(4)=0

A1

A5

A6

A4

A3

A2 p(2)=0

4

4

4

7

2

p

1

(1)=0

p(3)=1

p(6)=3

p(5)=3

Let X be an optimal solution. The last activityAn can either be inX or

not.

8



p(4)=0

A1

A5

A6

A4

A3

A2 p(2)=0

4

4

4

7

2

p

1

(1)=0

p(3)=1

p(6)=3

p(5)=3

Case 1.An in X : thenX cannot contain any other activity with index

larger thanp(n).

9

p(4)=0

A1

A5

A6

A4

A3

A2 p(2)=0

4

4

4

7

2

p

1

(1)=0

p(3)=1

p(6)=3

p(5)=3

Case 2.An is not inX . We can throw it away and consider

A1, . . . , An−1.

10

To summarize either the optimal solution is formed by some solution to

the instance formed by activitiesA1, . . . , Ap(n) plusAn or the optimal

solution does not containAn (and therefore it is some solution to the

instance formed by activitiesA1, . . . , An−1). Of course to maximize the

size of the solution to the whole instance, we’d better choose optimal

solutions toA1, . . . , Ap(n) or A1, . . . , An−1 (in other words the problem

has the optimal sub-problem property).

In other words:

OPT(n) = max{An+ OPT(p(n)), OPT(n − 1)},

and

cost(OPT(n)) = max{wn+ cost(OPT(p(n))), cost(OPT(n − 1))}.

11

Recursive solution

Based on the argument so far we can at least write a recursive method that

computes the cost of an optimal solution ... rather inefficiently. The list of

all weights is a global variable(w1, . . . , wn) to

RECURSIVE-WEIGHTED-SELECTOR(j)

if j = 0

return 0

else
return max{wj+ RECURSIVE-WEIGHTED-SELECTOR(p(j)),

RECURSIVE-WEIGHTED-SELECTOR(j − 1)}

The optimum for the given instance onn activities is obtained by running

RECURSIVE-WEIGHTED-SELECTOR (n).

12



Memoization

The arrayM [j] (another global variable) contains the size of the optima

for the instancesA1, . . . , Aj .

FAST-RECURSIVE-WEIGHTED-SELECTOR(j)

if j = 0

return 0

else if M [j] not empty

return M [j]

else
M [j]← max{wj+ FAST-RECURSIVE-WEIGHTED-SELECTOR(p(j)),

FAST-RECURSIVE-WEIGHTED-SELECTOR(j − 1)}

return M [j]

13

Exercises

1. Derive a recursive algorithm that actually computes the optimal set of
activities from the algorithm RECURSIVE-WEIGHTED-SELECTOR.

2. Derive a recursive algorithm that actually computes the optimal set of
activities from the algorithm
FAST-RECURSIVE-WEIGHTED-SELECTOR.

3. Simulate both RECURSIVE-WEIGHTED-SELECTOR and
FAST-RECURSIVE-WEIGHTED-SELECTOR on the following
instance:

A1 A2 A3 A4 A5

s 1 2 3 5 3

f 3 6 7 7 10

w 4 2 4 2 6

14


