Greedy: is it all as simple as that?

Weighted Activity-selection problem. We are given a set of proposed activities $S = \{A_1, A_2, \ldots, A_n\}$ that wish to use a resource, which can be used by only one activity at a time. Each activity is defined by a *start time* s_i , a *finish time* f_i , with $0 \le s_i < f_i < +\infty$, and a positive integer value w_i . If selected, activity A_i takes place during the time interval $[s_i, f_i)$. Two activities A_i and A_j are *compatible* if $s_i \ge f_j$ or $s_j \ge f_i$. The *weighted* activity-selection problem is to select a number of mutually compatible activities of the largest possible total weight.

1

Remarks

No (optimal) greedy algorithm is known for the Weighted Activity Selection problem.

The "Greedy-choice" property seems to fail! An activity that ends the earliest is not guaranteed to be the most profitable.

What can be done??

Look at an optimal solution

not.

7

Look at an optimal solution A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} DLet X be an optimal solution. The last activity A_{n} can either be in X or

Go for Divide and Conquer!

We assume the activities are sorted by nondecreasing finish time.

For each j define p(j) to be the largest index smaller than j of an activity compatible with A_j (p(j) = 0 if such index does not exist). In the last example p(1) = p(2) = 0, and p(3) = 1.

Case 1. A_n in X: then X cannot contain any other activity with index larger than p(n).

9

In other words:

$$OPT(n) = \max\{A_n + OPT(p(n)), OPT(n-1)\}$$

and

$$cost(OPT(n)) = max\{w_n + cost(OPT(p(n))), cost(OPT(n-1))\}\$$

11

Based on the argument so far we can at least write a recursive method that computes the cost of an optimal solution ... rather inefficiently. The list of all weights is a global variable (w_1, \ldots, w_n) to

The optimum for the given instance on n activities is obtained by running RECURSIVE-WEIGHTED-SELECTOR (n).

Case 2. A_n is not in X. We can throw it away and consider A_1, \ldots, A_{n-1} .

Memoization

The array M[j] (another global variable) contains the size of the optima for the instances A_1, \ldots, A_j .

```
FAST-RECURSIVE-WEIGHTED-SELECTOR (j)

if j = 0

return 0

else if M[j] not empty

return M[j]

else

M[j] \leftarrow \max\{w_j + \text{FAST-RECURSIVE-WEIGHTED-SELECTOR } (p(j)),

FAST-RECURSIVE-WEIGHTED-SELECTOR (j - 1)\}

return M[j]
```

13

Exercises

- 1. Derive a recursive algorithm that actually computes the optimal set of activities from the algorithm RECURSIVE-WEIGHTED-SELECTOR.
- Derive a recursive algorithm that actually computes the optimal set of activities from the algorithm FAST-RECURSIVE-WEIGHTED-SELECTOR.
- 3. Simulate both RECURSIVE-WEIGHTED-SELECTOR and FAST-RECURSIVE-WEIGHTED-SELECTOR on the following instance:

	A_1	A_2	A_3	A_4	A_5	
s	1	2	3	5	3	
f	3	6	7	7	10	
w	4	2	4	2	6	