
Coping with hard computational problems

A large number of optimisation problems which are required to be

solved in practice are NP-hard.

These problems are unlikely to have an efficient algorithm.

This does not obviate the need for solving these problems.

Observe that NP-hardness only means that, if P is not equal toNP, we

cannot find algorithms which will find the optimalsolution to all

instances of the problem in time which is polynomialin the size of

the input.

There are three possibilities for relaxing the requirements outlined

above.

1

Super-polynomial time heuristics

In some cases there are algorithms which are just barely

super-polynomial and run reasonably fast in practice.

There are techniques such as branch-and-bound or dynamic

programming which are useful from this point of view.

For example, the Knapsack problem is NP-complete but it is

considered “easy” since there is a “pseudo-polynomial” time

algorithm for it.

A problem with this approach is that very few problems are

susceptible to such techniques and for most NP-hard problems the

best algorithm we know runs in truly exponential time.

2

Probabilistic analysis of heuristics

In some applications, it is possible that the class of input instances is

severely constrained and for these instances there is an efficient

algorithm which will always do the trick.

Consider for example the problem of finding Hamiltonian cycles (i.e.

simple cycles that visit every vertex in the given graph) in graphs.

This is NP-hard. However, it can be shown that there is an algorithm

which will find a Hamiltonian cycle in “almost every” graph which

contains one.

Such results are usually derived using a probabilistic model of the

constraints on the input instances. It is then shown that certain

heuristics will solve the problem with very high probability.

Unfortunately, it is usually not very easy to justify the choice of a

particular input distribution.

3

Approximation algorithms

In practice, it is usually hard to tell the difference between an optimal

solution and a near-optimal solution.

It seems reasonable to devise algorithms which are really efficient in

solving NP-hard problems, at the cost of providing solutions which in

all cases is guaranteed to be only slightly sub-optimal.

In some situations, this relaxation of the requirements forsolving a

problem appears to be the most reasonable.

This results in the notion of the “approximate” solution of an

optimisation problem.

4

The stress will be (AS ALWAYS) on algorithms
for which one can PROVE some kind of
performance guarantee.

I.e. there may be more refined algorithms that seem to do better in

practice, but for which nobody is able to prove anything!

5

Preliminaries
The definition of optimisation problem was given informallyin Lecture 1.

From now on we will be concerned with a particular class of optimisation

problems.

An NP optimisation problem (NPO) is defined by four components

(I,SOL, c, opt) where:

(1) I is the set of theinstances. Membership inI is decidable in poly-

nomial time.

(2) For eachx ∈ I, SOL(x) is the set ofsolutions of x. Membership

in SOL(x) is decidable in polynomial time and for eachy ∈ SOL(x),

the length ofy, |y| is polynomial in the length ofx.

(3) For eachx ∈ I and eachy ∈ SOL(x), c(x, y) is an integer, non-

negative function, called theobjective or cost function.

(4)opt ∈ {max, min} is theoptimisation criterion and tells if the prob-

lemP is a maximisation or a minimisation problem.

6

Example: vertex covers

If I is the set of undirected graphs,SOL(G) is, for everyG ∈ I, the

collection of all sets of verticesU ⊆ V (G) such that every edge inG

has at least one end point inU , c(G, U) = |U | for every

U ∈ SOL(G), andopt = min then the problem under consideration

is that of finding a, so called,vertex cover of the edges of minimum

cardinality (denoted by MINVC).

The number of vertices of this optimal cover is a graph parameter

normally denoted byτ(G).

7

Example: bin-packing

We are given a collection of items, each with an associated size (a

number between 0 and 1). We are required to pack them into binsof

unit size so as to minimise the number of bins used. Thus, we have

the following minimisation problem.

Instances Sets{s1, s2, . . . , sn} of numbers withsi ∈ [0, 1] for all i (for

example{0.1, 0.8, 0.3, 0.5} and{0.2, 0.2, 0.7, 0.9} are two instances

of size four).

Solutions A collection of subsets{B1, B2, . . . , Bk} which is a partition of

I, such that for alli
∑

j∈Bi

sj ≤ 1 (for exampleB1 = {0.1, 0.8} and

B2 = {0.3, 0.5} is a solution to the first instance given above).

Objective The cost of a solution is the number of bins used.

Optimisation Criterion Minimisation!

8

Technical assumptions

We would like to specify at the outset that an underlying assumption

throughout this book will be that the optimisation problemssatisfy

the following two technical conditions.

1. The range of the cost function and all the numbers inI have to

be integers. Note that we can easily extend this to allow rational

numbers since those can be represented as pairs of integers.For

example, in the Bin Packing problem we will assume all item

sizes are rationals.

2. For anyy ∈ SOL(x), c(x, y) is polynomially bounded in the

size of any number which appears inI.

9

Approximation algorithm: the definition

Given an NP-hard optimisation problem, it is clear that we cannot

find an algorithm which is guaranteed to compute an optimal solution

in polynomial time for all input instances, unless P=NP. We now

relax the requirement of optimality and ask for an approximation

algorithm. This is defined as follows.

An approximation algorithm A, for an optimisation problem, is

a polynomial time algorithm such that given an input instance

x, it will output some A(x) ∈ SOL(x).

Note that we are only interested in polynomial time algorithms.

10

Example
Consider the Bin Packing problem. Let DA (Dumb Algorithm) bean

algorithm which packs each item into a bin by itself.

Clearly, this is an approximation algorithm for the problemBP (!)

Of course it is not a very good approximation algorithm in thesense that the

number of bins it uses need not be close to the optimal number of bins.

Thus, we need some way of comparing approximation algorithms and

analysing the quality of solutions produced by them.

Moreover, the “measure of goodness” of an approximation algorithm must

relate the optimal solution to the solution produced by the algorithm.

Such measures are referred to as performance guarantees andthe exact

choice of such a measure is not obvious a priori. We will explore twoa

notions of performance guarantees in what follows.

aWhat do you think is the most natural choice of such a measure?

11

Absolute Performances

We know that packing a collection of items into the smallest possible

number of bins is “impossible”.

So what is the next best solution that we could obtain?

Clearly, this would be a solution which uses at most one extrabin

when compared to the optimal solution.

In general, it would be desirable to have a solution whose value

differs from the optimal by some small constant. This is formalised in

theabsolute performance measure.

12

An absolute approximation algorithm A for an NPO optimisation

problem is an approximation algorithm such that for some con-

stantk > 0,

∀x ∈ I, |c(x, A(x)) − opt(x)| ≤ k

This is clearly the best we can expect from an approximation

algorithm for any NP-hard problem. But can we find such

algorithms? We give below a couple of examples where such

algorithms are possible to find.

13

Example 1: Planar Vertex Colouring

Consider the problem of colouring the

vertices of a graph such that no two ad-

jacent vertices have the same colour.

The goal is to minimise the number of

colours used. We denote byχ(G) the

minimum number of colours needed to

colourG (this is also known as thechro-

matic number of G).

The decision version of this problem is

NP-hard even when restricted to graphs

that are cubic and planar

11
1

2

3

4

6

5

7

8

9

10

We will show that the planar graph colouring problem has an absolute

approximation algorithm.

14

Simple facts about planar graphs

• (The magic Euler formula) IfG is a connected planar graph onn

vertices,m edges then any plane embedding ofG on the plane

has

` = m − n + 2

faces.

• Every planar graph onn vertices has at most3n − 6 edges.

• Every planar graph has a vertex of degree at most 5.

• (Exercise) IfG is a planar graph thenχ(G) ≤ 6.

15

Every planar graph is 5-colorablea

By induction on the number of verticesn.

BASE: For any planar graph with at most 5 vertices the result is trivial (just

give each vertex a different colour).

STEP: We assume that all planar graphs with at mostn vertices are

5-colourable. LetG be a planar graph withn + 1 vertices. Assume w.l.o.g.

that the given graph is connected (if not the inductive hypothesis applies

directly to each component).

Let v be a vertex of degree at most 5 inG, and letN(v) = {vi : 1 ≤ i ≤ 5}

. By the induction hypothesisG \ v is 5-colourable. Letc be one such a

colouring.

Case 1.(the easy one) If one of the 5 colours is not used to colourN(v) we

can colourv with it and complete the colouring ofG.
aIn fact, the (in)famous Four Color Theorem for planar maps [AH] tells us that every

planar graph is 4-colorable.

16

Case 2.(using “Kempe chains”) Without loss of generality assume

c(vi) = ci.

Let G13 be the subgraph ofG \ v induced by the vertices colouredc1

andc3.

If v1 andv3 belong to different components ofG13 then interchange

the colours of the vertices in the component containingv1. Vertexv

can now be colouredc1.

Otherwise ifv1 andv3 belong to the same component then there

exists a pathP betweenv1 andv3 such thatP + v forms a cycle

which necessarily encloses the vertexv2 or bothv4 andv5. We can

then complete the colouring usingG24 and assigningc2 to v.

17

Theorem. There is an absolute approximation algorithm for the planargraph

colouring problem.

Proof. Consider the algorithm that computes a 5-colouring of the given

planar graph (in polynomial time). It is easy to see thatA never uses more

than 2 extra colours.

• Describe using pseudo-code the 5-colouring algorithm.

• What is the running time of this algorithm?

• Run your algorithm on the graph below

8

1
2

34

5
6

7

10

9

18

