Coping with hard computational problems

A large number of optimisation problems which are requiede
solved in practice are NP-hard.

These problems are unlikely to have an efficient algorithm.
This does not obviate the need for solving these problems.

Observe that NP-hardness only means that, if P is not eqiNPtave
cannot find algorithms which will find the optimablution to all
instances of the problem in time which is polynonirathe size of
the input.

There are three possibilities for relaxing the requirementlined
above.

Probabilistic analysis of heuristics

In some applications, it is possible that the class of inpsitainces is
severely constrained and for these instances there is aiepffi
algorithm which will always do the trick.

Consider for example the problem of finding Hamiltonian egd{i.e.
simple cycles that visit every vertex in the given graph)riaghs.
This is NP-hard. However, it can be shown that there is arrittgo
which will find a Hamiltonian cycle in “almost every” graph veh
contains one.

Such results are usually derived using a probabilistic rofige
constraints on the input instances. It is then shown thaaicer
heuristics will solve the problem with very high probalyilit

Unfortunately, it is usually not very easy to justify the a®wof a
particular input distribution.

Super-polynomial time heuristics

In some cases there are algorithms which are just barely
super-polynomial and run reasonably fast in practice.

There are techniques such as branch-and-bound or dynamic
programming which are useful from this point of view.

For example, the Knapsack problem is NP-complete but it is
considered “easy” since there is a “pseudo-polynomial’&tim
algorithm for it.

A problem with this approach is that very few problems are
susceptible to such techniques and for most NP-hard prealtieen
best algorithm we know runs in truly exponential time.

Approximation algorithms

In practice, it is usually hard to tell the difference betwee optimal
solution and a near-optimal solution.

It seems reasonable to devise algorithms which are redibyesft in
solving NP-hard problems, at the cost of providing solwiaich in
all cases is guaranteed to be only slightly sub-optimal.

In some situations, this relaxation of the requirementséiving a
problem appears to be the most reasonable.

This results in the notion of the “approximate” solution of a
optimisation problem.

The stress will be (AS ALWAYS) on algorithms
for which one can PROVE some kind of
performance guarantee

l.e. there may be more refined algorithms that seem to dorhette

practice, but for which nobody is able to prove anything!

Example: vertex covers

If Z is the set of undirected grapiSOL(G) is, for everyG € 7, the
collection of all sets of vertice§ C V(G) such that every edge i@
has at least one end pointln, ¢(G, U) = |U| for every

U € SOL(G), andopt = min then the problem under consideration
is that of finding a, so calledgrtex cover of the edges of minimum
cardinality (denoted by MiVC).

The number of vertices of this optimal cover is a graph patame
normally denoted by (G).

Preliminaries

The definition of optimisation problem was given informalylLecture 1.

From now on we will be concerned with a particular class ofrojsation

problems.

An NP optimisation problem (NPO) is defined by four componen
(Z,80L, ¢, opt) where:

nomial time.
(2) For eachr € Z, SOL(x) is the set okolutions of . Membership
in SOL(x) is decidable in polynomial time and for eagte SOL(z),
the length ofy, |y| is polynomial in the length of.

(3) For each: € 7 and eacly € SOL(x), ¢(z,y) is an integer, non
negative function, called thabjective or cost function.

(1) Z is the set of thénstances. Membership irZ is decidable in poly;

(4) opt € {max, min} is theoptimisation criterion and tells if the probt

lem P is a maximisation or a minimisation problem.

Example: bin-packing
We are given a collection of items, each with an associatesl(si
number between 0 and 1). We are required to pack them intcolbins

unit size so as to minimise the number of bins used. Thus, we ha
the following minimisation problem.

Instances Sets{s1, s2, . .., s» } of numbers withs; € [0, 1] for all 4 (for
example{0.1,0.8,0.3,0.5} and{0.2,0.2,0.7,0.9} are two instances
of size four).

Solutions A collection of subset$ B+, B, ..., B} which is a partition of
Z, such that for alk ZjEBi s; < 1 (for exampleB; = {0.1,0.8} and
B, = {0.3,0.5} is a solution to the first instance given above).

Objective The cost of a solution is the number of bins used.

Optimisation Criterion Minimisation!

Technical assumptions

We would like to specify at the outset that an underlying agsion
throughout this book will be that the optimisation problesasisfy
the following two technical conditions.

1. The range of the cost function and all the numbets rave to
be integers. Note that we can easily extend this to allowmati
numbers since those can be represented as pairs of intégers.
example, in the Bin Packing problem we will assume all item
sizes are rationals.

2. Foranyy € SOL(z), c(x,y) is polynomially bounded in the
size of any number which appearszin

Example

Consider the Bin Packing problem. Let DA (Dumb Algorithm)doe
algorithm which packs each item into a bin by itself.

Clearly, this is an approximation algorithm for the problBi (!)

Of course it is not a very good approximation algorithm in skase that the
number of bins it uses need not be close to the optimal nunfigns.

Thus, we need some way of comparing approximation algostand
analysing the quality of solutions produced by them.

Moreover, the “measure of goodness” of an approximatioarélgm must
relate the optimal solution to the solution produced by tfgerdhm.

Such measures are referred to as performance guaranteteandct
choice of such a measure is not obvious a priori. We will esgptavd®
notions of performance guarantees in what follows.

“What do you think is the most natural choice of such a measure?

11

Approximation algorithm: the definition

Given an NP-hard optimisation problem, it is clear that wencd
find an algorithm which is guaranteed to compute an optimatism
in polynomial time for all input instances, unless P=NP. \WWe/n
relax the requirement of optimality and ask for an approxioma
algorithm. This is defined as follows.

An approximation algorithm A, for an optimisation problem, |s
a| polynomial time{ algorithm such that given an input instance

x, it will output[some| A(z) € SOL(x).

Note that we are only interested in polynomial time algorith

Absolute Performances

We know that packing a collection of items into the smallesstgible
number of bins is “impossible”.

So what is the next best solution that we could obtain?

Clearly, this would be a solution which uses at most one éitra
when compared to the optimal solution.

In general, it would be desirable to have a solution whoseeval
differs from the optimal by some small constant. This is faliged in
the absol ute performance measure.

10

12

An absolute approximation algorithm A for an NPO optimisation
problem is an approximation algorithm such that for some con
stantk > 0,

Ve eZ, |e(z,A(x)) —opt(z) <k

This is clearly the best we can expect from an approximation
algorithm for any NP-hard problem. But can we find such
algorithms? We give below a couple of examples where such
algorithms are possible to find.

13

Simple facts about planar graphs

¢ (The magic Euler formula) If~ is a connected planar graph an
vertices,m edges then any plane embedding:bbn the plane
has

{=m-—n+2
faces.
e Every planar graph on vertices has at most. — 6 edges.
e Every planar graph has a vertex of degree at most 5.

o (Exercise) IfG is a planar graph thep(G) < 6.

Example 1: Planar Vertex Colouring

Consider the problem of colouring the
vertices of a graph such that no two ad-
jacent vertices have the same colour.
The goal is to minimise the number of
colours used. We denote by(G) the
minimum number of colours needed to
colour@ (this is also known as thehro-
matic number of G).

The decision version of this problem is
NP-hard even when restricted to graphs
that are cubic and planar

We will show that the planar graph colouring problem has aohlie
approximation algorithm.

15

14

Every planar graph is 5-colorable’
By induction on the number of vertices

BASE: For any planar graph with at most 5 vertices the resutvial (just
give each vertex a different colour).

STEP: We assume that all planar graphs with at mosgrtices are
5-colourable. LetG be a planar graph with 4 1 vertices. Assume w.l.0.g.
that the given graph is connected (if not the inductive higpsis applies
directly to each component).

Letv be a vertex of degree at most 5Gf and letN (v) = {v; : 1 <17 < 5}
. By the induction hypothesi& \ v is 5-colourable. Let be one such a
colouring.

Case 1.(the easy one) If one of the 5 colours is not used to colé(w) we
can colourv with it and complete the colouring @F.

@In fact, the (in)famous Four Color Theorem for planar mapd]£ells us that every
planar graph is 4-colorable.

16

Case 2.(using “Kempe chains”) Without loss of generality assume
c(vy) = ¢

Let G153 be the subgraph aF \ v induced by the vertices coloured
andcs.

If v; andwvs belong to different components 6f; 5 then interchange
the colours of the vertices in the component containingvertexv
can now be coloured; .

Otherwise ifv; andwvs belong to the same component then there
exists a pathP betweenv; andwvs such thatP 4+ v forms a cycle
which necessarily encloses the vertgxor bothv, andvs. We can
then complete the colouring usirigy, and assignings, to v.

17

Theorem. There is an absolute approximation algorithm for the planaph
colouring problem.

Proof. Consider the algorithm that computes a 5-colouring of thermi
planar graph (in polynomial time). It is easy to see thatever uses more
than 2 extra colours.

e Describe using pseudo-code the 5-colouring algorithm.
e What is the running time of this algorithm?

e Run your algorithm on the graph below

18

