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Percy Heawood example

19-1

Example 2: edge colouring

We are given a graph and we have to colour its edgeswith the

smallest possible number of colours such that no two adjacent edges

have the same colour.

We denote byχ′ = χ′(G) this number, a.k.a.chromatic index of G).

20

(Vizing) Every graph needs at least∆ and at most∆+1 colours

to colour its edges.

In fact, the proof of Vizing’s statement is based on a polynomial time

algorithm that actually finds a colouring using∆ + 1 colours. It is therefore

amazing that even a very special case of the edge colouring problem is

NP-hard.

(Holyer) The problem of determining the number of colours

needed for a 3-regular planar graph is NP-hard.

Putting all this together we can construct another absoluteapproximation

algorithm for an NP-hard optimisation problem. The algorithmA just

colours the input graph using∆ + 1 colours as per Vizing’s Theorem.

The approximation algorithmA has the performance guarantee

|Ac(G) − χ′(G)| ≤ 1 for every instanceG.
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Negative results on absolute approximation

Consider the CLIQUE problem. The problem is that of finding the

largest clique (or, complete subgraph) in the input graphG. Let ω(G)

be the size of the largest cliques inG. This is an NP-hard problema

The following theorem establishes the hardness of approximating the

size of the largest clique in a given graphG.

If P 6= NP, then there is no absolute approximation algorithm

for the CLIQUE problem.

aNote that the problem is essentially (Can you see why MIS and CLIQUE are re-

lated?).the same as the MAXIMUM INDEPENDENT SET (MIS) problem.
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The mth-power of a graph

Define them-power of a graphG, sayGm by takingm copies ofG

and connecting any two vertices that lie in different copies.

Claim. ω(Gm) = m · ω(G).

23

Proof of main theorem
Let us assume for the purposes of contradiction that there isan approximation

algorithmA gives an absolute error ofk for the clique problem. We claim

that the clique problem can be optimally solved by the following strategy.

RunA onGk+1. Let K be the clique returned by the algorithm (we know

that|K| = c(Gk+1, A(Gk+1))). Then return the largest projectionKmax of

K in a copy ofG as a proposed solution to CLIQUE inG.

We have thatω(Gk+1) − c(Gk+1, A(Gk+1)) ≤ k and hence

ω(G) − c(Gk+1,Gk+1))
k+1

≤ k
k+1

Also

|Kmax| ≥
c(Gk+1,A(Gk+1))

k+1

since otherwisec(Gk+1, A(Gk+1)) couldn’t be so large. Since both|Kmax|

andω(G) are integer-valued, it follows thatKmax must be an optimal clique

in G.
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