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Example 2: edge colouring

We are given a graph and we have to colour its edgtsthe
smallest possible number of colours such that no two adjauhyes
have the same colour.

We denote by’ = x/(G) this number, a.k.achromatic index of G).
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(Vizing) Every graph needs at leastand at mosi\ + 1 colours
to colour its edges.

In fact, the proof of Vizing’s statement is based on a polyiatime
algorithm that actually finds a colouring usidg+ 1 colours. Itis therefore
amazing that even a very special case of the edge colouraidegn is
NP-hard.

(Holyer) The problem of determining the number of colgurs
needed for a 3-regular planar graph is NP-hard.

Putting all this together we can construct another absalpjpgoximation
algorithm for an NP-hard optimisation problem. The aldoritA just
colours the input graph usingy + 1 colours as per Vizing's Theorem.

The approximation algorithmd has the performance guaraniee
|A.(G) — X'(G)] < 1 for every instancé.
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Negative results on absolute approximation

Consider the CLIQUE problem. The problem is that of finding th
largest clique (or, complete subgraph) in the input gréph.et w(G)
be the size of the largest cliques@h This is an NP-hard problefh
The following theorem establishes the hardness of appratiig the
size of the largest clique in a given gragh

If P £ NP, then there is no absolute approximation algorithm
for the CLIQUE problem.

“Note that the problem is essentially (Can you see why MIS anOE are re-
lated?).the same as the MAXIMUM INDEPENDENT SET (MIS) preiol.

Proof of main theorem

Let us assume for the purposes of contradiction that thene &pproximation
algorithm A gives an absolute error éffor the clique problem. We claim
that the clique problem can be optimally solved by the follaystrategy.
RunA onG*, Let K be the clique returned by the algorithm (we know
that| K| = ¢(G*"*, A(G*T1))). Then return the largest projecti@inax of
K in a copy ofG as a proposed solution to CLIQUE .

We have that(G* 1) — ¢(G**!, A(G*1)) < k and hence

k+1 ~k+1
w@) - <

— k+1

Also

. Gk+1,A Gk+1
IKrnax‘ Z L(k—+(1)>

since otherwise(G*™*, A(G**1)) couldn’t be so large. Since botk max|
andw (@) are integer-valued, it follows thad,,.x must be an optimal clique
inG.
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The mth-power of agraph

Define them-power of a grapltz, sayG™ by takingm copies ofGG
and connecting any two vertices that lie in different copies

Claim. w(G™) = m - w(G).
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