
Relative Performances

From the preceding section it is clear that, while absolute

performance guarantees are the most desirable ones, it is quite

unlikely that we can give such guarantees for any interesting class of

hard optimisation problems.

Therefore it seems reasonable to relax the requirement for a“good

approximation algorithm”.

We start by examining the problem of multiprocessor scheduling and

use it to motivate the definition of relative performance guarantees.

Interestingly enough, the whole field of approximation algorithms has

its roots in the work of Graham in 1966 on the problem of scheduling.

In fact, scheduling problems probably have the most well-developed

body of work from the point of view of approximation algorithms.

1

Multiprocessor scheduling

The input consists ofn jobs. Each job has a corresponding runtime

p1, . . . , pn, where eachpi is assumed to be rational. The jobs are to

be scheduled onm identical machines or processors so as to

minimise the finish time. The finish time is defined to be the

maximum over all processors of the total run-time of the jobs

assigned to that processor. The set of feasible solutions consists of all

partitions of then jobs intom subsets, and the value of a solution is

the maximum over all subsets of the total run-time of the subset. The

problem is known to be NP-hard even in the case wherem = 2.

2

Algorithm LIST SCHEDULING

Consider the following algorithm due to Graham which is called the

list scheduling(or LS) algorithm. The algorithm considers then jobs

one-by-one, assigning each job to one of them machines in an online

fashion. The rule is to assign the current job to that processor which

is (at that point) the least loaded processor. Note that the load on a

processor is the total run-time of all the jobs assigned to it.

For all input instancesx,
c(x,LS(x))

opt(x) ≤ 2 −
1
m

Moreover, this bound is tight in that there exists an input instance

x∗ such that
c(x∗,LS(x∗))

opt(x∗) = 2 −
1
m

3

Argument

Let us first prove the upper bound on the ratio. Assume, without loss of

generality, that after all the jobs have been assigned the machineM1 has the

highest load. This is the cost of the solution returned by thelist scheduling

algorithm, that isc(x, LS(x)).

Also, letJj denote the last job assigned to this machine.

j

1

c(x,LS(x)) − p

machines

load

M

j
p

4



We claim that every machine has a total load of at leastc(x, LS(x)) − pj .

This is because whenJj was assigned toM1, M1 was the least loaded

processor (with a load exactlyc(x, LS(x)) − pj).

It then follows that
∑n

i=1
pi ≥ m(c(x, LS(x)) − pj) + pj

But it is also the case that

opt(x) ≥ 1

m

∑n

i=1
pi

since some processor must have this much load at the end of thescheduling

process. Therefore

opt(x) ≥ (c(x, LS(x)) − pj) +
pj

m
= c(x, LS(x)) −

(

1 −
1

m

)

pj

Observing that opt(x) ≥ pj since some processor has to execute the jobJj ,

we obtain the desired result.

5

To see that the algorithm actually achieves this ratio, consider the

following input instancex∗. Let n = m(m − 1) + 1 and let the first

n − 1 jobs have a run-time of 1 each, while the last job haspn = m.

It is easy to see that opt(x∗) = m while c(x∗, LS(x∗)) = 2m − 1.

This gives the desired lower bound on the ratio.

6

Approximation ratio

We have just proved:

c(x, LS(x)) ≤
(

2 −
1
m

)

opt(x).

The interesting thing to note about this result is that we aremeasuring

the quality of the approximation algorithm in terms of the ratio

between the value of its solution and that of the optimal solution.

This is exactly what we mean by a relative performance measure.

The following definition formalises this notion.

Given an instancex and a feasible solutiony of x for

a given NPO problem, theperformance ratio of y with

respect tox is

R(x, y) = max
{

c(x,y)
opt(x) ,

opt(x)
c(x,y)

}

7

“Reasonable” approximation algorithms

We now can define more precisely the type of approximation

algorithms that we will consider.

Let an NPO problem be given and letA be an algorithm that, for

any given instancex of the problem, returns a feasible solution

A(x) of x. Given an arbitrary functionr : IN → (1,∞) we

say thatA is an r(n)-approximation algorithm for the given

problem if, for every instancex of ordern,

R(x, A(x)) ≤ r(n).

Also we say that the problemcan be approximated with ratio

r > 1 if there exists anr-approximation algorithm for it.

Applying these definitions to the list scheduling algorithm, we have

that the list scheduling algorithm is a2− 1
m

approximation algorithm.

8



Better results for scheduling

There is an even better approximation algorithm for the scheduling

problem called LPT. This algorithm first orders the jobs by

decreasing value of their run-times. After this, the algorithm behaves

exactly as the list scheduling algorithm.

The performance ratio of the LPT algorithm is at most3
2 .

9

Example

Suppose there are four machines (m = 4) and the seven jobs to

schedule, with processing times:

1 2 1 3 3 2 6

LS would assign the first and the fifth job to machine one (totalload

of four), the second job and the last one to machine two (totalload of

eight), the third and the sixth job to machine three (total load three),

and the fourth to machine four (total load of three).

By sorting the jobs first LPT would assign the heavy-weight job

seven first, and then proceed like LS. It can be easily checkedthat the

resulting solution is optimal.

10


